1
|
Robertson AP, Jones BJ, Langton CM, Wearing SC. Calcaneal Ultrasound Attenuation: Does the Region of Interest and Loading Influence the Repeatability of Measurement? Calcif Tissue Int 2025; 116:48. [PMID: 40063094 PMCID: PMC11893676 DOI: 10.1007/s00223-025-01357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Current calcaneal quantitative ultrasound systems assess different regions of interest (ROI), under different levels of lower limb loading, yield different parameter values, and are likely prone to different levels of error. This study evaluated the repeatability of measures of frequency-dependent attenuation (FDA, 0.3-0.8 MHz) at three calcaneal ROI, Brooke-Wavell (BW), Jaworski (JA), and foot gauge (FG), under four loading conditions (non-weightbearing, semi-weightbearing, bipedal stance, and unipedal stance). FDA in the calcaneus was assessed in 20 healthy participants (mean (± SD) age, 41.7 ± 19.6 years; height, 1.70 ± 0.16 m; and weight, 70.1 ± 23.0 kg) using a custom-built transmission-mode ultrasound system. Reliability was evaluated using the standard error of measurement (SEM) and limits of agreement (LA) and tolerance (95%TL). Differences in mean FDA values between ROI, loading, and measurement occasions were assessed using a repeated measures ANOVA (α = .05). Mean FDA values ranged between 58.0 ± 32.0 and 77.2 ± 27.6 dB/MHz across all conditions. Repeatability of FDA was dependent on the ROI examined and tended to improve with weightbearing. The narrowest limits for 95%TL ranged between ± 15.1 dB/MHz (JA SWB) and ± 62.7 dB/MHz (BW NWB) across sites. The SEM was approximately 10 dB/MHz for both FG and JA during non-weightbearing and was reduced to around 5 dB/MHz with full weightbearing. This study demonstrates that, although measures of ultrasound FDA are dependent on the ROI, lower limb loading may be a useful method to improve the repeatability of FDA measurements.
Collapse
Affiliation(s)
- Aaron P Robertson
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, Australia.
| | | | - Christian M Langton
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast, Australia
| | - Scott C Wearing
- School of Medicine and Health Sciences, Technical University of Munich, Bavaria, Germany
| |
Collapse
|
2
|
Xu Z, Locke CS, Morris R, Jamison D, Kozloff KM, Wang X. Development of a semi-anthropomorphic photoacoustic calcaneus phantom based on nano computed tomography and stereolithography 3D printing. J Orthop Res 2024; 42:647-660. [PMID: 37804209 PMCID: PMC10932887 DOI: 10.1002/jor.25702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Osteoporosis is a major public health threat with significant physical, psychosocial, and financial consequences. The calcaneus bone has been used as a measurement site for risk prediction of osteoporosis by noninvasive quantitative ultrasound (QUS). By adding optical contrast to QUS, our previous studies indicate that a combination of photoacoustic (PA) and QUS, that is, PAQUS, provides a novel opportunity to assess the health of human calcaneus. Calibration of the PAQUS system is crucial to realize quantitative and repeatable measurements of the calcaneus. Therefore, a phantom which simulates the optical, ultrasound, and architectural properties of the human calcaneus, for PAQUS system calibration, is required. Additionally, a controllable phantom offers researchers a versatile framework for developing versatile structures, allowing more controlled assessment of how varying bone structures cause defined alterations in PA and QUS signals. In this work, we present the first semi-anthropomorphic calcaneus phantom for PAQUS. The phantom was developed based on nano computed-tomography (nano-CT) and stereolithography 3D printing, aiming to maximize accuracy in the approximation of both trabecular and cortical bone microstructures. Compared with the original digital input calcaneus model from a human cadaveric donor, the printed model achieved accuracies of 71.15% in total structure and 87.21% in bone volume fraction. Inorganic materials including synthetic blood, mineral oil, intralipid, and agar gel were used to model the substitutes of bone marrow and soft tissue, filling and covering the calcaneus phantom. The ultrasound and optical properties of this phantom were measured, and the results were consistent with those measured by a commercialized device and from previous in vivo studies. In addition, a short-term stability test was conducted for this phantom, demonstrating that the optical and ultrasound properties of the phantom were stable without significant variation over 1 month. This semi-anthropomorphic calcaneus phantom shows structural, ultrasound, and optical properties similar to those from a human calcaneus in vivo and, thereby, can serve as an effective source for equipment calibration and the comprehensive study of human patients.
Collapse
Affiliation(s)
- Zhanpeng Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Conor S. Locke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - DeAndre Jamison
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kenneth M. Kozloff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Suo M, Zhang D, Yang H, Yang Y. Application of full waveform inversion algorithm in Laplace-Fourier domain for high-contrast ultrasonic bone quantitative imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107404. [PMID: 36758266 DOI: 10.1016/j.cmpb.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Full waveform inversion (FWI) has been widely applied for the reconstruction of underground medium parameters in seismic communities and has made a great success. It is also a promising way to image hard tissues such as bones by ultrasonic FWI algorithm. However, the ultrasonic FWI methods for bone parameters imaging reported in literature so far are limited to the time domain and/or Fourier domain, and can only achieve quantitative imaging with acoustic velocity of bone less than 3000 m/s. Because the acoustic velocity of actual cortical bones can be as high as 4200 m/s, it is still a challenge for FWI to achieve higher parameter contrast bone imaging. METHODS Here, we proposed an ultrasonic FWI algorithm in Laplace-Fourier domain (LFDFWI) for high-contrast bone quantitative imaging. Compared to Time domain and Fourier domain, the LFDFWI algorithm is more appropriate for dealing with the presence of high contrast between bone tissues, reducing the possibility of inversion falling into a local minimum, and obtaining better inversion results. We adapted the seismic FWI algorithm to make it suitable for high-frequency ultrasonic sources and small-sized bone parameter imaging. RESULTS We conducted a series of bone models to evaluate the effectiveness of the proposed algorithm, including four kinds of bone model derived from micro computed tomography (Micro-CT) image of rat. We evaluated the experimental results based on visual analysis, error analysis and structural similarity (SSIM). The numerical simulation results showed that, when acoustic approximation is used, the proposed method can obtain accurate high-contrast images of the velocity and density parameters of bone structure, the mean relative error (MRE) in the region of interest (ROI) were all less than 2%, and the SSIM is up to 98%; when the viscoelastic approximation is used, this method can also obtain the desired high-contrast bone parameter distribution, with MRE less than 4% and SSIM higher than 74%, both of which are better than FDFWI in Fourier domain (FDFWI). CONCLUSION The results demonstrated that the proposed FWI algorithm can obtain high resolution bone parameter models close to the Micro-CT image, which proves its clinical application potential.
Collapse
Affiliation(s)
- Meng Suo
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| | - Dong Zhang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Haiqi Yang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yan Yang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
4
|
Bi D, Shi L, Liu C, Li B, Li Y, Le LH, Luo J, Wang S, Ta D. Ultrasonic Through-Transmission Measurements of Human Musculoskeletal and Fat Properties. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:347-355. [PMID: 36266143 DOI: 10.1016/j.ultrasmedbio.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The study described here was aimed at investigating the feasibility of using the ultrasonic through-transmission technique to estimate human musculoskeletal and fat properties. Five hundred eighty-two volunteers were assessed by dual-energy X-ray absorptiometry (DXA) and ultrasonic transmission techniques. Bone mineral density (BMD), muscle and fat mass were measured for both legs and the whole body. Hip BMD and spine BMD were also measured. Ultrasonic transmission measurements were performed on the heel, and the measured parameters were broadband ultrasound attenuation (BUA), speed of sound (SOS), ultrasonic stiffness index (SI), T-score and Z-score, which were significantly correlated with all measured BMDs. The optimal correlation was observed between SI and left-leg BMD (p < 0.001) before and after adjustment for age, sex and body mass index (BMI). The linear and partial correlation analyses revealed that BUA and SOS were closely associated with muscle and fat mass, respectively. Multiple regressions revealed that muscle and fat mass significantly contributed to the prediction of transmission parameters, explaining up to 17.83% (p < 0.001) variance independently of BMD. The results suggest that the ultrasonic through-transmission technique could help in the clinical diagnosis of skeletal and muscular system diseases.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lingwei Shi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Sijia Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Osteoporosis Screening: Applied Methods and Technological Trends. Med Eng Phys 2022; 108:103887. [DOI: 10.1016/j.medengphy.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
|
6
|
Hoffmeister BK, Delahunt SI, Downey KL, Viano AM, Thomas DM, Georgiou LA, Gray AJ, Newman WR, Main EN, Pirro G. In Vivo Comparison of Backscatter Techniques for Ultrasonic Bone Assessment at the Femoral Neck. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:997-1009. [PMID: 35282987 DOI: 10.1016/j.ultrasmedbio.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Ultrasonic techniques are being developed to detect changes in cancellous bone caused by osteoporosis. The goal of this study was to test the relative in vivo performance of eight backscatter parameters developed over the last several years for ultrasonic bone assessment: apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter (FIAB), normalized mean of the backscatter difference (nMBD), normalized slope of the backscatter difference (nSBD), normalized intercept of the backscatter difference (nIBD), normalized backscatter amplitude ratio (nBAR) and backscatter amplitude decay constant (BADC). Backscatter measurements were performed on the left and right femoral necks of 80 adult volunteers (age = 25 ± 11 y) using an imaging system equipped with a convex array transducer. For comparison, additional ultrasonic measurements were performed at the left and right heel using a commercially available heel-bone ultrasonometer that measured the stiffness index. Six of the eight backscatter parameters (all but nSBD and nIBD) exhibited similar and highly significant (p < 0.000001) left-right correlations (0.51 ≤ R ≤ 0.68), indicating sensitivity to naturally occurring variations in bone tissue. Left-right correlations for the stiffness index measured at the heel (R = 0.75) were not significantly better than those produced by AIB, FSAB and FIAB. The short-term precisions of AIB, nMBD, nBAR and BADC (7.8%-11.7%) were comparable to that of the stiffness index measured with the heel-bone ultrasonometer (7.5%).
Collapse
Affiliation(s)
| | | | - Kiera L Downey
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Doni M Thomas
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | | | - Aubrey J Gray
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Will R Newman
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Evan N Main
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Gia Pirro
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Shi Q, Li Y, Liu Y, Gu M, Song X, Liu C, Ta D, Wang W. Index-Rotated Fast Ultrasound Imaging of Cortical Bone Based on Predicted Velocity Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1582-1595. [PMID: 35275812 DOI: 10.1109/tuffc.2022.3157256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the significant acoustic impedance contrast at cortical boundaries, highly inside attenuation, and the unknown sound velocity distribution, accurate ultrasound cortical bone imaging remains a challenge, especially for the traditional pulse-echo modalities using unique sound velocity. Moreover, the large amounts of data recorded by multielement probe results in a relatively time-consuming reconstruction process. To overcome these limitations, this article proposed an index-rotated fast ultrasound imaging method based on predicted velocity model (IR-FUI-VP) for cortical cross section ultrasound tomography (UST) imaging, utilizing ray-tracing synthetic aperture (RTSA). In virtue of ring probe, the sound velocity model was predicted in advance using bent-ray inversion (BRI). With the predicted velocity model, index-rotated fast ultrasound imaging (IR-FUI) was further applied to image the cortical cross sections in the sectors corresponding to the dynamic apertures (DAs) and ring center. The final result was merged by all sector images. One cortical bone phantom and two ex vivo bovine femurs were utilized to demonstrate the performance of the proposed method. Compared to the conventional synthetic aperture (SA) imaging, the method can not only accurately image the outer cortical boundary but also precisely reconstruct the inner cortical surface. The mean relative errors of the predicted sound velocity in the region of interest (ROI) were all smaller than 7%, and the mean errors of cortical thickness are all less than 0.31 mm. The reconstructed images of bovine femurs were in good agreement with the reference images scanned by micro-computed tomography ( μ CT) with respect to the morphology and thickness. The speed of IR-FUI is about 3.73 times faster than the traditional SA. It is proved that the proposed IR-FUI-VP-based UST is an effective way for fast and accurate cortical bone imaging.
Collapse
|
8
|
Jindal G, Jethe J, Patkar D. Noninvasive screening of osteoporosis using bio-impedance and quantitative ultrasound. MGM JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4103/mgmj.mgmj_75_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Li Y, Shi Q, Liu Y, Gu M, Liu C, Song X, Ta D, Wang W. Fourier-Domain Ultrasonic Imaging of Cortical Bone Based on Velocity Distribution Inversion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2619-2634. [PMID: 33844628 DOI: 10.1109/tuffc.2021.3072657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a significant acoustic impedance contrast between the cortical bone and the surrounding soft tissue, resulting in difficulty for ultrasound penetration into bone tissue with high frequency. It is challenging for the conventional pulse-echo modalities to give accurate cortical bone images using uniform sound velocity model. To overcome these limitations, an ultrasound imaging method called full-matrix Fourier-domain synthetic aperture based on velocity inversion (FM-FDSA-VI) was developed to provide accurate cortical bone images. The dual linear arrays were located on the upper and lower sides of the imaging region. After full-matrix acquisition with two identical linear array probes facing each other, travel-time inversion was used to estimate the velocity distribution in advance. Then, full-matrix Fourier-domain synthetic aperture (FM-FDSA) imaging based on the estimated velocity model was applied twice to image the cortical bone, utilizing the data acquired from top and bottom linear array, respectively. Finally, to further improve the image quality, the two images were merged to give the ultimate result. The performance of the method was verified by two simulated models and two bone phantoms (i.e., regular and irregular hollow bone phantom). The mean relative errors of estimated sound velocity in the region-of-interest (ROI) are all below 12%, and the mean errors of cortical section thickness are all less than 0.3 mm. Compared to the conventional synthetic aperture (SA) imaging, the FM-FDSA-VI method is able to accurately image cortical bone with respect to the structure. Moreover, the result of irregular bone phantom was close to the image scanned by microcomputed tomography ( μ CT) in terms of macro geometry and thickness. It is demonstrated that the proposed FM-FDSA-VI method is an efficient way for cortical bone ultrasonic imaging.
Collapse
|
10
|
Minonzio JG, Han C, Cassereau D, Grimal Q. In vivopulse-echo measurement of apparent broadband attenuation and Qfactor in cortical bone: a preliminary study. Phys Med Biol 2021; 66. [PMID: 34192679 DOI: 10.1088/1361-6560/ac1022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
Quantitative ultrasound (QUS) methods have been introduced to assess cortical bone health at the radius and tibia through the assessment of cortical thickness (Ct.Th), cortical porosity and bulk wave velocities. Ultrasonic attenuation is another QUS parameter which is not currently used. We assessed the feasibility ofin vivomeasurement of ultrasonic attenuation in cortical bone with a broadband transducer with 3.5 MHz center frequency. Echoes from the periosteal and endosteal interfaces were fitted with Gaussian pulses using sparse signal processing. Then, the slope of the broadband ultrasonic attenuation (Ct.nBUA) in cortical bone and quality factorQ11-1were calculated with a parametric approach based on the center-frequency shift. Five human subjects were measured at the one-third distal radius with pulse-echo ultrasound, and reference data was obtained with high-resolution x-ray peripheral computed tomography (Ct.Th and cortical volumetric bone mineral density (Ct.vBMD)). Ct.Th was used in the calculation of Ct.nBUA whileQ11-1is obtained solely from ultrasound data. The values of Ct.nBUA (6.7 ± 2.2 dB MHz-1.cm-1) andQ11-1(8.6 ± 3.1%) were consistent with the literature data and were correlated to Ct.vBMD (R2=0.92,p<0.01, RMSE = 0.56 dB.MHz-1.cm-1, andR2=0.93,p<0.01, RMSE = 0.76%). This preliminary study suggests that the attenuation of an ultrasound signal propagating in cortical bone can be measuredin vivoat the one-third distal radius and that it provides an information on bone quality as attenuation values were correlated to Ct.vBMD. It remains to ascertain that Ct.nBUA andQ11-1measured here exactly reflect the true (intrinsic) ultrasonic attenuation in cortical bone. Measurement of attenuation may be considered useful for assessing bone health combined with the measurement of Ct.Th, porosity and bulk wave velocities in multimodal cortical bone QUS methods.
Collapse
Affiliation(s)
- Jean-Gabriel Minonzio
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, F-75006 Paris, France.,Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362735, Chile.,Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Chao Han
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, F-75006 Paris, France
| | - Didier Cassereau
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, F-75006 Paris, France
| | - Quentin Grimal
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, F-75006 Paris, France
| |
Collapse
|
11
|
Xia M, Rong S, Zhu X, Yan H, Chang X, Sun X, Zeng H, Li X, Zhang L, Chen L, Wu L, Ma H, Hu Y, He W, Gao J, Pan B, Hu X, Lin H, Bian H, Gao X. Osteocalcin and Non-Alcoholic Fatty Liver Disease: Lessons From Two Population-Based Cohorts and Animal Models. J Bone Miner Res 2021; 36:712-728. [PMID: 33270924 DOI: 10.1002/jbmr.4227] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Osteocalcin regulates energy metabolism in an active undercarboxylated/uncarboxylated form. However, its role on the development of non-alcoholic fatty liver disease (NAFLD) is still controversial. In the current study, we investigated the causal relationship of circulating osteocalcin with NAFLD in two human cohorts and studied the effect of uncarboxylated osteocalcin on liver lipid metabolism through animal models. We analyzed the correlations of serum total/uncarboxylated osteocalcin with liver steatosis/fibrosis in a liver biopsy cohort of 196 participants, and the causal relationship between serum osteocalcin and the incidence/remission of NAFLD in a prospective community cohort of 2055 subjects from Shanghai Changfeng Study. Serum total osteocalcin was positively correlated with uncarboxylated osteocalcin (r = 0.528, p < .001). Total and uncarboxylated osteocalcin quartiles were inversely associated with liver steatosis, inflammation, ballooning, and fibrosis grades in both male and female participants (all p for trend <.05). After adjustment for confounding glucose, lipid, and bone metabolism parameters, the male and female participants with lowest quartile of osteocalcin still had more severe liver steatosis, with multivariate-adjusted odds ratios (ORs) of 7.25 (1.07-49.30) and 4.44 (1.01-19.41), respectively. In the prospective community cohort, after a median of 4.2-year follow-up, the female but not male participants with lowest quartile of osteocalcin at baseline had higher risk to develop NAFLD (hazard ratio [HR] = 1.90; 95% confidence interval [CI] 1.14-3.16) and lower chance to achieve NAFLD remission (HR = 0.56; 95% CI 0.31-1.00). In wild-type mice fed a Western diet, osteocalcin treatment alleviated hepatic steatosis and reduced hepatic SREBP-1 and its downstream proteins expression. In mice treated with osteocalcin for a short term, hepatic SREBP-1 expression was decreased without changes of glucose level or insulin sensitivity. When SREBP-1c was stably expressed in a human SREBP-1c transgenic rat model, the reduction of lipogenesis induced by osteocalcin treatment was abolished. In conclusion, circulating osteocalcin was inversely associated with NAFLD. Osteocalcin reduces liver lipogenesis via decreasing SREBP-1c expression. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shunxing Rong
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xiaoming Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linshan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Lingyan Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wanyuan He
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Center of Clinical Epidemiology and EBM of Fudan University, Shanghai, China.,Department of Nutrition, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| |
Collapse
|
12
|
Maïmoun L, Renard E, Huguet H, Lefebvre P, Boudousq V, Mahadea K, Picot MC, Doré R, Philibert P, Seneque M, Gaspari L, Courtet P, Sultan C, Sultan A, Laux D, Guillaume S, Mariano-Goulart D. The quantitative ultrasound method for assessing low bone mass in women with anorexia nervosa. Arch Osteoporos 2021; 16:13. [PMID: 33447939 DOI: 10.1007/s11657-020-00870-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study investigated the potential role of quantitative ultrasound (QUS) to assess low bone mass in anorexia nervosa patients (AN). Bone parameters from QUS and DXA were positively correlated and significantly reduced in AN compared with controls, suggesting that QUS is a pertinent technique to assess low bone mass in these patients. PURPOSE The aim of this study was to investigate the potential role of an alternative technique, quantitative ultrasound (QUS), to assess low bone mass in patients with anorexia nervosa (AN). METHODS Two hundred seven young women (134 patients with AN and 73 healthy controls) with ages ranging from 14.4 to 38.4 years participated in this observational cross-sectional study. Bone mass was concomitantly evaluated by DXA to determine areal bone mineral density (aBMD; g/cm2) at hip, lumbar spine, and radius and by QUS to determine broadband ultrasound attenuation (BUA; dB/MHz) at the heel. RESULTS BUA (66.5 ± 4.6 dB/MHz vs 61.0 ± 5.0 dB/MHz) and aBMD at the hip (0.916 ± 0.013 g/cm2 vs 0.806 ± 0.010 g/cm2), lumbar spine (0.966 ± 0.012 g/cm2 vs 0.886 ± 0.010 g/cm2), and radius (0.545 ± 0.005 g/cm2 vs 0.526 ± 0.04 g/cm2) were significantly decreased (p < 0.01) in patients with AN compared with controls. When patient and control data were pooled, BUA was significantly correlated with aBMD at the hip (r = 0.60, p < 0.001), lumbar spine (r = 0.48, p < 0.001), and radius (r = 0.40, p<0.001). In patients with AN, BUA and aBMD were mainly and positively correlated with weight, lean tissue mass, body mass index (BMI), and minimal BMI life and negatively with the duration of both disease and amenorrhea. Better concordance between the two techniques was obtained when absolute BUA and aBMD values were used according to the WHO T score classification. CONCLUSION BUA measurement at the heel by QUS appears to be a pertinent nonionizing technique to assess low bone mass in patients with AN.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, 34295, Montpellier, France. .,PhyMedExp,Université de Montpellier, INSERM, CNRS, Montpellier, France. .,Département de Biophysique, Université de Montpellier Service de Médecine Nucléaire, Hôpital Lapeyronie 371, avenue du Doyen Gaston Giraud, 34295, Montpellier cedex 5, France.
| | - Eric Renard
- Departement d'Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, CHRU Montpellier, 34295, Montpellier, France.,CIC INSERM 1411, Hôpital Gui de Chauliac, CHRU Montpellier, 34295, Montpellier cedex 5, France.,Institut de Génomique Fonctionnelle, CNRS UMR 5203/INSERM U661/Université Montpellier, Montpellier, France
| | - Héléna Huguet
- IUnité de Recherche Clinique et Epidémiologie, Hôpital la Colombière, CHRU Montpellier, 34295, Montpellier, France
| | - Patrick Lefebvre
- Departement d'Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, CHRU Montpellier, 34295, Montpellier, France
| | - Vincent Boudousq
- Département de Médecine Nucléaire, Hôpital Caremeau, CHRU de Nîmes, 30000 Nîmes et Université de Montpellier, Montpellier, France
| | | | - Marie Christine Picot
- IUnité de Recherche Clinique et Epidémiologie, Hôpital la Colombière, CHRU Montpellier, 34295, Montpellier, France
| | - Rémi Doré
- Institut d'Electronique et des Systèmes, UMR CNRS 5214, Université de Montpellier, Montpellier, France
| | - Pascal Philibert
- Departement de Biochimie, Hôpital Caremeau, CHRU de Nimes, 30000, Nîmes, France
| | - Maude Seneque
- Département d'Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHRU Montpellier, UMI, INSERM U1061, 34295, Montpellier, France
| | - Laura Gaspari
- Unité d'Endocrinologie et Gynécologie Pédiatrique, Département de Pédiatrie, Hôpital Arnaud de Villeneuve, CHRU Montpellier et UMI, 34295, Montpellier, France
| | - Philippe Courtet
- Département d'Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHRU Montpellier, UMI, INSERM U1061, 34295, Montpellier, France
| | - Charles Sultan
- Unité d'Endocrinologie et Gynécologie Pédiatrique, Département de Pédiatrie, Hôpital Arnaud de Villeneuve, CHRU Montpellier et UMI, 34295, Montpellier, France
| | - Ariane Sultan
- Département Endocrinologie, Nutrition, Diabète , Equipe Nutrition, Diabète, CHRU Montpellier, Montpellier, France
| | - Didier Laux
- Institut d'Electronique et des Systèmes, UMR CNRS 5214, Université de Montpellier, Montpellier, France
| | - Sébastien Guillaume
- Département d'Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHRU Montpellier, UMI, INSERM U1061, 34295, Montpellier, France
| | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, 34295, Montpellier, France.,PhyMedExp,Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
13
|
Ichioka H, Miyamori D, Ishikawa N, Bandou R, Idota N, Kondou H, Ikegaya H. Estimation of Cadaveric Age by Ultrasonography. Diagnostics (Basel) 2020; 10:diagnostics10070499. [PMID: 32698432 PMCID: PMC7400501 DOI: 10.3390/diagnostics10070499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: While decreasing bone mineral density (BMD) with age in living people has been well documented, a correlation between age and bone mineral density in deceased people has only been reported in a few studies. A correlation between age and BMD in deceased people was investigated as an objective tool for age estimation of unidentified remains. (2) Methods: The Bone Area Ratio (BAR) was measured in 402 autopsy cases (143 females and 259 males over the age of 20). (3) Results: The correlation coefficient in the females was r = -0.5476, and the correlation coefficient in the males was r = -0.2166, indicating a stronger correlation in females than in males. A comparison of the BAR values in the deceased females for each age group with that in live females found no significant differences in the BAR values. BAR values in the deceased were similar to in live individuals, and this did not change with duration of the postmortem interval. (4) Conclusions: Measuring the BAR value based on bone mass using ultrasonic waves is rapid and easy, even for those lacking forensic training, and may be used to estimate the age of an individual and the likelihood of fracture due to trauma.
Collapse
Affiliation(s)
- Hiroaki Ichioka
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
| | - Daisuke Miyamori
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Noboru Ishikawa
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Risa Bandou
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
| | - Nozomi Idota
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
| | - Hiroki Kondou
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.I.); (D.M.); (N.I.); (R.B.); (N.I.); (H.K.)
- Correspondence: ; Tel.: +81-75-251-5343
| |
Collapse
|
14
|
Castillo L, Del Rio M, Carranza J, Mateos C, Tejado JJ, López F. Ultrasound speed in red deer antlers: a non–invasive correlate of density and a potential index of relative qualit. ANIMAL BIODIVERSITY AND CONSERVATION 2020. [DOI: 10.32800/abc.2020.43.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deer antlers can be used as an index of individual performance both in ecological and productive contexts. Their quality is often measured only by their biometrical features, such as size, asymmetry or weight. Mechanic characteristics cannot normally be measured without destroying the antler and hence losing the commercial value of the trophies. Here, we studied ultrasonic velocities, density, and tensile strength across various sections of cast antlers of Iberian red deer (Cervus elaphus hispanicus). We found that the speed value depended on the section of the antler and the propagation direction. For antler sections, velocities were lowest for mid–beam and highest for brow tine. Results were similar for density and indirect tensile strength, probably related to differences in functionality among antler sections. Density explained most of the variability of ultrasound–speed. The time elapsed from antler shed affected density more than ultrasound speed. The indirect tensile strength showed a non–linear, decelerating relationship with ultrasound speed. We discuss the applications of ultrasound speed as a non–invasive tool to measure density and physical properties of antlers and antler sections, and their potential use as an index of quality.
Collapse
Affiliation(s)
| | - M. Del Rio
- Universidad de Extremadura, Cáceres, Spain
| | | | - C. Mateos
- Universidad de Extremadura, Cáceres, Spain
| | | | - F. López
- Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
15
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
16
|
Rodriguez-Sendra J, Jimenez N, Pico R, Faus J, Camarena F. Monitoring the Setting of Calcium Sulfate Bone-Graft Substitute Using Ultrasonic Backscattering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1658-1666. [PMID: 31283503 DOI: 10.1109/tuffc.2019.2926827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a method to monitor the setting process of bone-graft substitutes (calcium sulfate) using ultrasonic backscattering techniques. Analyzing the backscattered fields using a pulse-echo technique, we show that it is possible to dynamically describe the acoustic properties of the material which are linked to its setting state. Several experiments were performed to control the setting process of calcium sulfate using a 3.5-MHz transducer. The variation of the apparent integrated backscatter (AIB) with time during the setting process is analyzed and compared with measurements of the speed of sound (SOS) and temperature of the sample. The correlation of SOS and AIB allows us to clearly identify two different states of the samples, liquid and solid, in addition to the transition period. Results show that using backscattering analysis, the setting state of the material can be estimated with a threshold of 15 dB. This ultrasonic technique is indeed the first step to develop real-time monitoring systems for time-varying complex media as those present in bone regeneration for dental implantology applications.
Collapse
|
17
|
Schneider J, Ramiandrisoa D, Armbrecht G, Ritter Z, Felsenberg D, Raum K, Minonzio JG. In Vivo Measurements of Cortical Thickness and Porosity at the Proximal Third of the Tibia Using Guided Waves: Comparison with Site-Matched Peripheral Quantitative Computed Tomography and Distal High-Resolution Peripheral Quantitative Computed Tomography. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1234-1242. [PMID: 30777311 DOI: 10.1016/j.ultrasmedbio.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 05/09/2023]
Abstract
The aim of this study was to estimate cortical porosity (Ct.Po) and cortical thickness (Ct.Th) using 500-kHz bi-directional axial transmission (AT). Ct.ThAT and Ct.PoAT were obtained at the tibia in 15 patients from a 2-D transverse isotropic free plate model fitted to measured guided wave dispersion curves. The velocities of the first arriving signal (υFAS) and A0 mode (υA0) were also determined. Site-matched peripheral quantitative computed tomography (pQCT) provided volumetric cortical bone mineral density (Ct.vBMDpQCT) and Ct.ThpQCT. Good agreement was found between Ct.ThAT and Ct.ThpQCT (R2 = 0.62, root mean square error [RMSE] = 0.39 mm). Ct.vBMDpQCT correlated with Ct.PoAT (R2 = 0.57), υFAS (R2 = 0.43) and υA0 (R2 = 0.28). Furthermore, a significant correlation was found between AT and distal high-resolution pQCT. The measurement ofcortical parameters at the tibia using guided waves might improve the prediction of bone fractures in a cost-effective and radiation-free manner.
Collapse
Affiliation(s)
- Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Donatien Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne University, CNRS, INSERM, Paris, France; BleuSolid, Pomponne, France
| | - Gabriele Armbrecht
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Zully Ritter
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Felsenberg
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jean-Gabriel Minonzio
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne University, CNRS, INSERM, Paris, France; Escuela de Ingeniería Civil en Informática, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
18
|
Compared to limb pain of other origin, ultrasonographic osteodensitometry reveals loss of bone density in complex regional pain syndrome. Pain 2019; 160:1261-1269. [DOI: 10.1097/j.pain.0000000000001520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Lee WN, Chang EJH, Guo Y, Wang Y. Experimental Investigation of Guided Wave Imaging in Thin Soft Media under Various Coupling Conditions. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2821-2837. [PMID: 30241727 DOI: 10.1016/j.ultrasmedbio.2018.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 06/30/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Guided wave imaging for the artery remains in its infancy in clinical practice mainly because of complex arterial microstructure, hemodynamics and boundary conditions. Despite the theoretically known potential effect of the surrounding medium on guided wave propagation in thin media in non-destructive testing, experimental evidence pertaining to thin soft materials, such as the artery, is relatively scarce in the relevant literature. Therefore, this study first evaluated the propagating guided wave generated by acoustic radiation force in polyvinyl alcohol-based hydrogel plates differing in thickness and stiffness under various material coupling conditions (water and polyvinyl alcohol bulk). A thin-walled polyvinyl alcohol hollow cylindrical phantom coupled by softer gelatin-agar phantoms and an excised porcine aorta surrounded by water and pork belly were further examined. Guided waves in the thin structure and shear waves in the bulk media were captured by ultrafast ultrasound imaging, and guided wave dispersion as a function of the frequency-thickness product was analyzed using the zero-order anti-symmetric Lamb wave model to estimate the shear modulus of each thin medium studied. Results confirmed the deviated shear modulus estimates from the ground truth for thin plates, the thin-walled hollow cylindrical phantom and the porcine aorta bounded by stiffness-unmatched bulk medium. The findings indicated the need for (i) careful interpretation of estimated shear moduli of thin structure bounded by bulk media and (ii) a generalized guided wave model that takes into account the effect of coupling medium.
Collapse
Affiliation(s)
- Wei-Ning Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong.
| | - Enoch Jing-Han Chang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yahua Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Hoffmeister BK, Huber MT, Viano AM, Huang J. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:911. [PMID: 29495707 PMCID: PMC5812744 DOI: 10.1121/1.5023219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 05/28/2023]
Abstract
Materials that simulate the ultrasonic properties of tissues are used widely for clinical and research purposes. However, relatively few materials are known to simulate the ultrasonic properties of cancellous bone. The goal of the present study was to investigate the suitability of using a polymer, open-cell rigid foam (OCRF) produced by Sawbones®. Measurements were performed on OCRF specimens with four different densities. Ultrasonic speed of sound and normalized broadband ultrasonic attenuation were measured with a 0.5 MHz transducer. Three backscatter parameters were measured with a 5 MHz transducer: apparent integrated backscatter, frequency slope of apparent backscatter, and normalized mean of the backscatter difference. X-ray micro-computed tomography was used to measure the microstructural characteristics of the OCRF specimens. The trabecular thickness and relative bone volume of the OCRF specimens were similar to those of human cancellous bone, but the trabecular separation was greater. In most cases, the ultrasonic properties of the OCRF specimens were similar to values reported in the literature for cancellous bone, including dependence on density. In addition, the OCRF specimens exhibited an ultrasonic anisotropy similar to that reported for cancellous bone.
Collapse
Affiliation(s)
| | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Jinsong Huang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
21
|
Rizvi B, Da Silva E, Slatkovska L, Cheung AM, Tavakkoli J, Pejović-Milić A. Technical Note: Bone mineral density measurements of strontium-rich trabecular bone-mimicking phantoms using quantitative ultrasound. Med Phys 2016; 43:5817. [DOI: 10.1118/1.4963805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
22
|
Steinberg I, Turko N, Levi O, Gannot I, Eyal A. Quantitative study of optical and mechanical bone status using multispectral photoacoustics. JOURNAL OF BIOPHOTONICS 2016; 9:924-33. [PMID: 26487250 DOI: 10.1002/jbio.201500206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 05/17/2023]
Abstract
Osteoporosis is a major public health problem worldwide. Here, we present a quantitative multispectral photoacoustic method for the evaluation of bone pathologies which has significant advantages over pure ultrasonic or pure optical methods as it provides both molecular information and bone mechanical status. This is enabled via a simultaneous measurement of the bone's optical properties as well as the speed of sound and ultrasonic attenuation in the bone. To test the method's quantitative predictions, a combined ultrasonic and photoacoustic system was developed. Excitation was performed optically via a portable triple laser-diode system and acoustically via a single element transducer. Additional dual transducers were used for detecting the acoustic waves that were generated by the two modalities. Both temporal and spectral parameters were compared between different excitation wavelengths and measurement modalities. Short photoacoustic excitation wavelengths allowed sensing of the cortical layer while longer wavelengths produced results which were compatible with the quantitative ultrasound measurements.
Collapse
Affiliation(s)
- Idan Steinberg
- The Laboratory for Optics and Lasers in Medicine, Dept. of BME, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel.
- The Laboratory for Optics and Photonics, School of EE, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Nir Turko
- The Biomedical Optical Microscopy, Nanoscopy and Interferometry Research Group, Dept. of BME, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Omri Levi
- The Laboratory for Optics and Photonics, School of EE, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Israel Gannot
- The Laboratory for Optics and Lasers in Medicine, Dept. of BME, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Dept. of ECE, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Avishay Eyal
- The Laboratory for Optics and Photonics, School of EE, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
| |
Collapse
|
23
|
Linder H, Malo MKH, Liukkonen J, Jurvelin JS, Töyräs J. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements – towards improved ultrasound bone diagnostics. J Med Eng Technol 2016; 40:293-7. [DOI: 10.1080/03091902.2016.1185472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hans Linder
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Markus K. H. Malo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jukka Liukkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jukka S. Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
Vafaeian B, Le LH, Tran TNHT, El-Rich M, El-Bialy T, Adeeb S. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results. ULTRASONICS 2016; 68:17-28. [PMID: 26894840 DOI: 10.1016/j.ultras.2016.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures.
Collapse
Affiliation(s)
- B Vafaeian
- Department of Civil & Environmental Engineering, Faculty of Engineering, University of Alberta, Canada.
| | - L H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada.
| | - T N H T Tran
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada.
| | - M El-Rich
- Department of Civil & Environmental Engineering, Faculty of Engineering, University of Alberta, Canada.
| | - T El-Bialy
- Orthodontics and Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| | - S Adeeb
- Department of Civil & Environmental Engineering, Faculty of Engineering, University of Alberta, Canada.
| |
Collapse
|
25
|
Correlation between the combination of apparent integrated backscatter–spectral centroid shift and bone mineral density. J Med Ultrason (2001) 2016; 43:167-73. [DOI: 10.1007/s10396-015-0690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
26
|
Hoffmeister BK, Mcpherson JA, Smathers MR, Spinolo PL, Sellers ME. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:2115-25. [PMID: 26683412 DOI: 10.1109/tuffc.2015.007299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.
Collapse
|
27
|
Daugschies M, Brixen K, Hermann P, Rohde K, Glüer CC, Barkmann R. Quantitative ultrasound measurements at the heel: improvement of short- and mid-term speed of sound precision. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:858-870. [PMID: 25619776 DOI: 10.1016/j.ultrasmedbio.2014.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel with the aim of minimizing common error sources like the position and penetration angle of the ultrasound beam, as well as the soft tissue temperature. To achieve these objectives, we used a receiver array, mechanics to adjust the beam direction and a foot temperature sensor. In a group of 60 volunteers, short-term precision was evaluated for the foot ultrasound scanner and a commercial device (Achilles Insight, GE Medical, Fairfield, CT, USA). In a subgroup of 20 subjects, mid-term precision (1-mo follow-up) was obtained. Compared with measurement of the speed of sound with the Achilles Insight, measurement with the foot ultrasound scanner reduced precision errors by half (p < 0.05). The study indicates that improvement of the precision of calcaneal quantitative ultrasound measurements is feasible.
Collapse
Affiliation(s)
- Melanie Daugschies
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.
| | - Kim Brixen
- Department of Medical Endocrinology, Odense University Hospital, Odense, Denmark
| | - Pernille Hermann
- Department of Medical Endocrinology, Odense University Hospital, Odense, Denmark; Department of Internal Medicine, Kolding Hospital, Kolding, Denmark
| | - Kerstin Rohde
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Claus-Christian Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
28
|
Lashkari B, Yang L, Mandelis A. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents. Quant Imaging Med Surg 2015; 5:46-56. [PMID: 25694953 DOI: 10.3978/j.issn.2223-4292.2014.11.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND This study examines the backscattered ultrasound (US) and back-propagating photoacoustic (PA) signals from trabecular bones, and their variations with reduction in bone minerals and collagen content. While the collagen status is directly related to the strength of the bone, diagnosis of its condition using US remains a challenge. METHODS For both PA and US methods, coded-excitation signals and matched filtering were utilized to provide high sensitivity of the detected signal. The optical source was a 805-nm CW laser and signals were detected employing a 2.2-MHz ultrasonic transducer. Bone decalcification and decollagenization were induced with mild ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite solutions, respectively. RESULTS The PA and US signals were measured on cattle bones, and apparent integrated backscatter/back-propagating (AIB) parameters were compared before and after demineralization and decollagenization. CONCLUSIONS The results show that both PA and US are sensitive to mineral changes. In addition, PA is also sensitive to changes in the collagen content of the bone, but US is not significantly sensitive to these changes.
Collapse
Affiliation(s)
- Bahman Lashkari
- 1 Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada ; 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lifeng Yang
- 1 Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada ; 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Andreas Mandelis
- 1 Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada ; 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
29
|
Lee KI. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:EL194-9. [PMID: 25698050 DOI: 10.1121/1.4907738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The dependences of ultrasonic properties on the frequency and the trabecular spacing were investigated in 20 trabecular-bone-mimicking phantoms consisting of cellular copper foams. The strong slow waves were consistently observed in the signals transmitted through all of the phantoms. The frequency-dependent phase velocity and attenuation coefficient of the slow wave were measured at frequencies from 0.7 to 1.3 MHz. The phase velocity decreased approximately linearly with increasing frequency while the attenuation coefficients increased with increasing frequency. The phase velocity increased monotonically with increasing trabecular spacing from 1337 to 2931 μm while the attenuation coefficient decreased with increasing spacing.
Collapse
Affiliation(s)
- Kang Il Lee
- Department of Physics, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
30
|
Techniques for diagnosing osteoporosis: a systematic review of cost-effectiveness studies. Int J Technol Assess Health Care 2014; 30:273-81. [PMID: 25100174 DOI: 10.1017/s0266462314000257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The study question was whether dual-energy X-ray absorptiometry (DXA) alone is more cost-effective for identifying postmenopausal women with osteoporosis than a two-step procedure with quantitative ultrasound sonography (QUS) plus DXA. To answer this question, a systematic review was performed. METHODS Electronic databases (PubMed, INAHTA, Health Evidence Network, NIHR, the Health Technology Assessment program, the NHS Economic Evaluation Database, Research Papers in Economics, Web of Science, Scopus, and EconLit) were searched for cost-effectiveness publications. Two independent reviewers selected eligible publications based on the inclusion/exclusion criteria. Quality assessment of economic evaluations was undertaken using the Drummond checklist. RESULTS Seven journal articles and four reports were reviewed. The cost per true positive case diagnosed by DXA was found to be higher than that for diagnosis by QUS+DXA in two articles. In one article it was found to be lower. In three studies, the results were not conclusive. These articles were characterized by the differences in the types of devices, parameters and thresholds on the QUS and DXA tests and the unit costs of the DXA and QUS tests as well as by variability in the sensitivity and specificity of the techniques and the prevalence of osteoporosis. CONCLUSIONS The publications reviewed did not provide clear-cut evidence for drawing conclusions about which screening test may be more cost-effective for identifying postmenopausal women with osteoporosis.
Collapse
|
31
|
Vafaeian B, El-Rich M, El-Bialy T, Adeeb S. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone. ULTRASONICS 2014; 54:1663-1676. [PMID: 24656933 DOI: 10.1016/j.ultras.2014.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone.
Collapse
Affiliation(s)
- B Vafaeian
- Faculty of Engineering, Civil and Environmental Engineering Department, 3-016 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| | - M El-Rich
- Faculty of Engineering, Civil and Environmental Engineering Department, 3-016 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| | - T El-Bialy
- Faculty of Medicine and Dentistry, 7-020D Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| | - S Adeeb
- Faculty of Engineering, Civil and Environmental Engineering Department, 3-016 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
32
|
Lee KI. Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:EL61-7. [PMID: 25234916 DOI: 10.1121/1.4862878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The frequency-dependent phase velocity, attenuation coefficient, and backscatter coefficient were measured from 0.8 to 1.2 MHz in 24 water-saturated nickel foams as trabecular-bone-mimicking phantoms. The power law fits to the measurements showed that the phase velocity, the attenuation coefficient, and the backscatter coefficient were proportional to the frequency with exponents n of 0.95, 1.29, and 3.18, respectively. A significant linear correlation was found between the phase velocity at 1.0 MHz and the porosity. In contrast, the best regressions for the normalized broadband ultrasound attenuation and the backscatter coefficient at 1.0 MHz were obtained with the polynomial fits of second order.
Collapse
Affiliation(s)
- Kang Il Lee
- Department of Physics, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
33
|
Stein EM, Rosete F, Young P, Kamanda-Kosseh M, McMahon DJ, Luo G, Kaufman JJ, Shane E, Siffert RS. Clinical assessment of the 1/3 radius using a new desktop ultrasonic bone densitometer. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:388-95. [PMID: 23312957 PMCID: PMC3570600 DOI: 10.1016/j.ultrasmedbio.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
The objectives of this study were to evaluate the capability of a novel ultrasound device to clinically estimate bone mineral density (BMD) at the 1/3 radius. The device rests on a desktop and is portable, and permits real-time evaluation of the radial BMD. The device measures two net time delay (NTD) parameters, NTD(DW) and NTD(CW). NTD(DW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue, cortex and medullary cavity, and the transit time through soft tissue only of equal overall distance. NTD(CW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue and cortex only, and the transit time through soft tissue only again of equal overall distance. The square root of the product of these two parameters is a measure of the radial BMD at the 1/3 location as measured by dual-energy X-ray absorptiometry (DXA). A clinical IRB-approved study measured ultrasonically 60 adults at the 1/3 radius. BMD was also measured at the same anatomic site and time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.93 (p < 0.001). These results are consistent with previously reported simulation and in vitro studies. In conclusion, although X-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here should enable significant expansion of diagnosis and monitoring of osteoporosis through a desktop device that ultrasonically assesses bone mass at the 1/3 radius.
Collapse
Affiliation(s)
- Emily M Stein
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Babatunde OO, Forsyth JJ. Quantitative Ultrasound and bone's response to exercise: a meta analysis. Bone 2013; 53:311-8. [PMID: 23269404 DOI: 10.1016/j.bone.2012.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022]
Abstract
UNLABELLED The utility of Quantitative Ultrasound (QUS) for assessing and monitoring changes in bone health due to exercise is limited for lack of adequate research evidence. Restrictions to bone density testing and the enduring debate over repeat dual energy absorptiometry testing spells uncertainty over clinical and non-clinical evaluation of exercise for prevention of osteoporosis. This study, via systematic review and meta-analysis, aimed to paint a portrait of current evidence regarding QUS' application to monitoring bone's adaptive response to exercise interventions. METHODS Structured and comprehensive search of databases was undertaken along with hand-searching of key journals and reference lists to locate relevant studies published up to December 2011. Twelve articles met predetermined inclusion criteria. The effect of exercise interventions for improving bone health, as measured by QUS of the calcaneum, was examined across the age spectrum. Study outcomes for analysis: absolute (dB/MHz) or relative change (%) in broadband ultrasound attenuation (BUA) and/or os calcis stiffness index were compared by calculating standardised mean difference (SMD) using fixed- and random-effects models. RESULTS Quality of included trials varied from low to high on a scale of one to three. Four to 36months of exercise led to a significant improvement in calcaneum BUA (0.98 SMD, 95% CI 0.80, 1.16, overall effect Z-value=10.72, p=0.001) across the age spectrum. CONCLUSION The meta-analysis attests to the sensitivity of QUS to exercise-induced changes in bone health across the age groups. QUS may be considered for use in exercise-based bone health interventions for preventing osteoporosis.
Collapse
Affiliation(s)
- O O Babatunde
- School of Psychology, Sport and Exercise, Staffordshire University, Stoke on Trent, UK.
| | | |
Collapse
|
35
|
Bezuti MT, Mandarano Filho LG, Barbieri G, Mazzer N, Barbieri CH. Ultrasonometry evaluation of axial compression osteosinthesis. An experimental study. ACTA ORTOPEDICA BRASILEIRA 2013; 21:46-51. [PMID: 24453644 PMCID: PMC3862021 DOI: 10.1590/s1413-78522013000100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/12/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: To measure the ultrasound propagation velocity (UV) through a tibial transverse osteotomy in sheep, before and after the fixation with a DCP plate. MATERIAL AND METHODS: Ten assemblies of a DCP plate with the diaphyseal segment of tibiae, in which a transverse osteotomy was made, were used. Both coronal and sagittal transverse and the axial UV were measured, first with the intact bone assembled with the plate and then with the uncompressed and compressed osteotomy; statistical comparisons were made at the 1% (p<0.01) level of significance. RESULTS: Compared with the intact bone assembly, axial UV significantly decreased with the addition of the osteotomy and significantly increased with compression, presenting the same behavior for the other modalities, although not significantly. DISCUSSION AND CONCLUSION: In accordance with the literature data on the ultrasonometric evaluation of fracture healing, underwater UV measurement was able to demonstrate the efficiency of DCP plate fixation. The authors conclude that the method has a potential for clinical application in the postoperative follow-up of DCP plate osteosinthesis, with a capability to demonstrate when it becomes ineffective. Laboratory investigation.
Collapse
|
36
|
Liu CR, Niu HJ, Pu F, Wang L, Sun LW, Fan YB, Li DY. The effect of physical loading on calcaneus quantitative ultrasound measurement: a cross-section study. BMC Musculoskelet Disord 2012; 13:70. [PMID: 22584084 PMCID: PMC3436732 DOI: 10.1186/1471-2474-13-70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 04/17/2012] [Indexed: 11/24/2022] Open
Abstract
Background Physical loading leads to a deformation of bone microstructure and may influence quantitative ultrasound (QUS) parameters. This study aims at evaluating the effect of physical loading on bone QUS measurement, and further, on the potential of diagnosing osteoporosis using QUS method under physical loading condition. Methods 16 healthy young females (control group) and 45 postmenopausal women (divided into 3 groups according to the years since menopause (YSM)) were studied. QUS parameters were measured at calcaneus under self-weight loading (standing) and no loading (sitting) conditions. Weight-normalized QUS parameter (QUS parameter measured under loading condition divided by the weight of the subject) was proposed to evaluate the influence of loading. T-test, One-Way analysis of variance (one way ANOVA) and receiver operating characteristic (ROC) analysis were applied for analysis. Results In QUS parameters, mainly normalized broadband ultrasound attenuation (nBUA), measured with loading significantly differed from those measured without loading (p < 0.05). The relative changes of weight-normalized QUS parameters on postmenopausal women with respect to premenopausal women under loading condition were larger than those on traditional QUS parameters measured without loading. In ROC analysis, weight-normalized QUS parameters showed their stronger discriminatory ability for menopause. Conclusions Physical loading substantially influenced bone QUS measurement (mainly nBUA). Weight-normalized QUS parameters can discriminate menopause more effectively. By considering the high relationship between menopause and osteoporosis, an inference was drawn that adding physical loading during measurement may be a probable way to improve the QUS based osteoporosis diagnosis.
Collapse
Affiliation(s)
- Cheng-Rui Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Xia MF, Yan HM, He WY, Li XM, Li CL, Yao XZ, Li RK, Zeng MS, Gao X. Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: an improvement method. Obesity (Silver Spring) 2012; 20:444-52. [PMID: 22016092 PMCID: PMC3270296 DOI: 10.1038/oby.2011.302] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate measures of liver fat content are essential for investigating the role of hepatic steatosis in the pathophysiology of multiple metabolic disorders. No traditional imaging methods can accurately quantify liver fat content. [(1)H]-magnetic resonance spectroscopy (MRS) is restricted in large-scale studies because of the practical and technological issues. Previous attempts on computer-aided ultrasound quantification of liver fat content varied in method, and the ultrasound quantitative parameters measured from different ultrasound machines were hardly comparable. We aimed to establish and validate a simple and propagable method for quantitative assessment of liver fat content based on the combination of standardized ultrasound quantitative parameters, using [(1)H]-MRS as gold standard. Totally 127 participants were examined with both ultrasonography (US) and [(1)H]-MRS. Ultrasound hepatic/renal echo-intensity ratio (H/R) and ultrasound hepatic echo-intensity attenuation rate (HA) were obtained from ordinary ultrasound images using computer program. Both parameters were standardized using a tissue-mimicking phantom before analysis. Standardized ultrasound H/R and HA were positively correlated with the liver fat content by [(1)H]-MRS (r = 0.884, P < 0.001 and r = 0.711, P < 0.001, respectively). Linear regression analysis showed ultrasound H/R could modestly predict the amount of liver fat (adjusted explained variance 78.0%, P < 0.001). The addition of ultrasound HA slightly improved the adjusted explained variance to 79.8%. Difference of estimated liver fat contents between different ultrasound machines and operators was reasonably well. Thus, computer-aided US is a valid method to estimate liver fat content and can be applied extensively after standardization of ultrasound quantitative parameters.
Collapse
Affiliation(s)
- Ming-Feng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Il Lee K, Joo Choi M. Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:EL67-73. [PMID: 22280732 DOI: 10.1121/1.3671064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The frequency-dependent attenuation and backscatter coefficients were measured in 25 bovine femoral trabecular bone samples from 0.2 to 1.2 MHz. When the average attenuation coefficient was fitted to a nonlinear power law α(f)=α(0)+α(1)f(n), the exponent n was found to be 1.65. In contrast, the average backscatter coefficient was fitted to a power law η(f)=η(1)f(n) and the exponent n was measured as 3.25. The apparent bone density was significantly correlated with the parameter α(1) (0.2-0.7 MHz: r = 0.852, 0.6-1.2 MHz: r = 0.832) as well as the backscatter coefficient (0.5 MHz: r = 0.751, 1.0 MHz: r = 0.808).
Collapse
Affiliation(s)
- Kang Il Lee
- Department of Physics, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | |
Collapse
|
39
|
Cheng J, Serra-Hsu F, Tian Y, Lin W, Qin YX. Effects of phase cancellation and receiver aperture size on broadband ultrasonic attenuation for trabecular bone in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2116-25. [PMID: 22033134 PMCID: PMC3223273 DOI: 10.1016/j.ultrasmedbio.2011.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/15/2011] [Accepted: 08/10/2011] [Indexed: 05/25/2023]
Abstract
Phase cancellation in ultrasound due to large receiver size has been proposed as a contributing factor to the inaccuracy of estimating broadband ultrasound attenuation (BUA), which is used to characterize bone quality. Transducers with aperture size ranging from 2 to 5 mm have been used in previous attempts to study the effect of phase cancellation. However, these receivers themselves are susceptible to phase cancellation because aperture size is close to one center wavelength (about 3 mm at 500 KHz in water). This study uses an ultra small receiver (aperture size: 0.2 mm) in conjunction with a newly developed two-dimensional (2-D) synthetic array system to investigate the effects of phase cancellation and receiver aperture size on BUA estimations of bone tissue. In vitro ultrasound measurements were conducted on 54 trabecular bone samples (harvested from sheep femurs) in a confocal configuration with a focused transmitter and synthesized focused receivers of different aperture sizes. Phase sensitive (PS) and phase insensitive (PI) detections were performed. The results show that phase cancellation does have a significant effect on BUA. The normalized BUA (nBUA) with PS is 8.1% higher than PI nBUA while PI BUA is well correlated with PS BUA. Receiver aperture size also influences the BUA reading for both PI and PS detection and smaller receiver aperture tends to result in higher BUA readings. The results also indicate that the receiver aperture size used in the confocal configuration with PI detection should at least equal the aperture of the transmitter to capture most of the energy redistributed by the interference and diffraction from the trabecular bone.
Collapse
Affiliation(s)
| | | | | | | | - Yi-Xian Qin
- Address correspondence to: Yi-Xian Qin, Bioengineering Building RM 215, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281.
| |
Collapse
|
40
|
Sani FM, Sarji SA, Bilgen M. Quantitative ultrasound measurement of the calcaneus in Southeast Asian children with thalassemia: comparison with dual-energy X-ray absorptiometry. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:883-894. [PMID: 21705720 DOI: 10.7863/jum.2011.30.7.883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES The purpose of this study was to test the hypothesis that quantitative ultrasound properties of the calcaneus in Southeast Asian children treated for thalassemia have different characteristics than those of their healthy counterparts and thereby can be used for assessing the risk of osteoporosis. METHODS Broadband ultrasound attenuation and the speed of sound were measured from groups of thalassemic and healthy children and compared with bone mineral density (BMD) estimated from dual-energy X-ray absorptiometry to determine intergroup and intragroup dependencies of the measurements and variations with differences in sex and anthropometric characteristics. RESULTS Broadband ultrasound attenuation and speed of sound measurements were found to be independent of sex but dependent on age in the thalassemic children. Consistently, broadband ultrasound attenuation had lower values and the speed of sound had higher values compared with those of the healthy children in each age group. Broadband ultrasound attenuation correlated well with the speed of sound and also with age, weight, and height, but the speed of sound did not show an association with these parameters. Broadband ultrasound attenuation correlated moderately with BMD in the lumbar spine and whole body, but the corresponding association was much weaker for the speed of sound. In the thalassemic children, both broadband ultrasound attenuation and BMD increased with age as they grew older but not fast enough compared with the healthy children, and the risk of osteoporosis was greater at older ages. CONCLUSIONS Calcaneal quantitative ultrasound may be used as a diagnostic screening tool for assessing the bone status in thalassemic Southeast Asian children and for deciding whether further dual-energy X-ray absorptiometry is needed, particularly in those who are at a greater risk for osteoporosis as identified by low body weight and height.
Collapse
Affiliation(s)
- Fadhli Mohamed Sani
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
41
|
Aula AS, Töyräs J, Tiitu V, Jurvelin JS. Simultaneous ultrasound measurement of articular cartilage and subchondral bone. Osteoarthritis Cartilage 2010; 18:1570-6. [PMID: 20950692 DOI: 10.1016/j.joca.2010.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/26/2010] [Accepted: 09/24/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In osteoarthritis (OA), subchondral sclerosis takes place during cartilage degeneration. High frequency ultrasound (12-55MHz) has been shown to diagnose degenerated articular cartilage, while 0.1-1MHz ultrasound has been applied for clinical characterization of bone and diagnostics of osteoporosis. The aim of the study is to investigate, for the first time, the feasibility of 5MHz ultrasound for simultaneous analysis of articular cartilage and subchondral bone. METHODS Osteochondral samples (n=10) were prepared from fresh and visually normal bovine medial tibial plateaus. Acoustic properties of the cartilage and subchondral bone were measured with a scanning ultrasound system using the pulse-echo geometry and compared with biomechanical, histological and compositional reference data. RESULTS The apparent integrated backscatter (AIB) from internal cartilage showed significant partial correlations with hydroxyproline (Hypro) (r=0.58, P=0.000), water content (r=-0.52, P=0.001) and dynamic modulus (r=0.57, P=0.000) of the tissue. Weak but statistically significant correlation was found between the bone AIB and mineral density of the subchondral plate (r=-0.34, P=0.041). Topographical variations in cartilage thickness could be detected using ultrasound. Composition, thickness and mechanical properties of the cartilage varied significantly across the tibial plateau. For the calculated ultrasound parameters, the variation was significant only between a few locations. CONCLUSIONS Pulse-echo ultrasound geometry at 5MHz was feasible for simultaneous measurement of the acoustic properties of articular cartilage and subchondral bone. However, the relationships between the ultrasound parameters and properties of cartilage and bone were not as strong as reported earlier in studies focusing only either on bone or cartilage. Simultaneous measurement of both tissues compromises, due to natural curvature of articulating surfaces, the perpendicularity of the incidence of the ultrasound pulse. Obviously, this source of uncertainty should be minimized in order to enable effective clinical use of ultrasound in simultaneous measurement of articular cartilage and subchondral bone.
Collapse
Affiliation(s)
- A S Aula
- Department of Physics and Mathematics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| | | | | | | |
Collapse
|
42
|
Oudry J, Bastard C, Miette V, Willinger R, Sandrin L. Copolymer-in-oil phantom materials for elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1185-97. [PMID: 19427100 DOI: 10.1016/j.ultrasmedbio.2009.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 01/06/2009] [Accepted: 01/26/2009] [Indexed: 05/08/2023]
Abstract
Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.
Collapse
Affiliation(s)
- J Oudry
- Mechanical Institute of Fluids and Solids, Strasbourg, France.
| | | | | | | | | |
Collapse
|
43
|
Wear KA. Ultrasonic attenuation in parallel-nylon-wire cancellous-bone-mimicking phantoms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:4042-4046. [PMID: 19206826 DOI: 10.1121/1.2998784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Attenuation coefficients between 1.5 and 3.5 MHz were measured on four parallel-nylon-wire arrays (simulating cancellous bone) with four different wire diameters (150, 200, 250, and 300 microm). Interwire spacing was 800 microm for all four parallel-nylon-wire arrays. The measured frequency dependencies of attenuation were consistent with theoretical predications based on Faran's theory, which considers the component of attenuation due to scattering of longitudinal waves.
Collapse
Affiliation(s)
- Keith A Wear
- US Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| |
Collapse
|
44
|
Floch VL, McMahon DJ, Luo G, Cohen A, Kaufman JJ, Shane E, Siffert RS. Ultrasound simulation in the distal radius using clinical high-resolution peripheral-CT images. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1317-26. [PMID: 18343017 PMCID: PMC2562908 DOI: 10.1016/j.ultrasmedbio.2008.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/04/2008] [Accepted: 01/12/2008] [Indexed: 05/10/2023]
Abstract
The overall objective of this research is to develop an ultrasonic method for noninvasive assessment of the distal radius. The specific objective of this study was to examine the propagation of ultrasound through the distal radius and determine the relationships between bone mass and architecture and ultrasound parameters. Twenty-six high-resolution peripheral-CT clinical images were obtained from a set of subjects that were part of a larger study on secondary osteoporosis. A single midsection binary slice from each image was selected and used in the two-dimensional (2D) simulation of an ultrasound wave propagating from the anterior to the posterior surfaces of each radius. Mass and architectural parameters associated with each radius, including total (trabecular and cortical) bone mass, trabecular volume fraction, trabecular number and trabecular thickness were computed. Ultrasound parameters, including net time delay (NTD), broadband ultrasound attenuation (BUA) and ultrasound velocity (UV) were also evaluated. Significant correlations were found between NTD and total bone mass (R2 = 0.92, p < 0.001), BUA and trabecular number (R2 = 0.78, p < 0.01) and UV and trabecular bone volume fraction (R2 = 0.82, p < 0.01). There was only weak, statistically insignificant correlation (R2 < 0.14, p = 0.21) found between trabecular thickness and any of the ultrasound parameters. The study shows that ultrasound measurements are correlated with bone mass and architecture at the distal radius and, thus, ultrasound may prove useful as a method for noninvasive assessment of osteoporosis and fracture risk.
Collapse
Affiliation(s)
- Vincent Le Floch
- Ecole Nationale Superieure d'Arts et Metiers, Aix-en-Provence, Provence-Alpes-Cote-d'Azur, France
- CyberLogic, Inc., New York, NY, USA
| | - Donald J. McMahon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gangming Luo
- CyberLogic, Inc., New York, NY, USA
- VA New York Harbor HealthCare System, New York, NY, USA
- New York University School of Medicine, Department of Rehabilitation Medicine, New York, NY, USA
| | - Adi Cohen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jonathan J. Kaufman
- CyberLogic, Inc., New York, NY, USA
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| | - Elizabeth Shane
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robert S. Siffert
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|