1
|
Yan Z, Tran H, Ma D, Xie J. Emerging Piezoelectric Metamaterials for Biomedical Applications. MATERIALS AND INTERFACES 2024; 1:13-34. [PMID: 40046679 PMCID: PMC11882151 DOI: 10.53941/mi.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Emerging piezoelectric metamaterials hold immense promise for biomedical applications by merging the intrinsic electrical properties of piezoelectricity with the precise architecture of metamaterials. This review provides a comprehensive overview of various piezoelectric materials- such as molecular crystals, ceramics, and polymers-known for their exceptional piezoelectric performance and biocompatibility. We explore the advanced engineering approaches, including molecular design, supramolecular packing, and 3D assembly, which enable the customization of piezoelectric properties for targeted biomedical applications. Particular attention is given to the pivotal role of metamaterial structuring in the development of 0D spheres, 1D fibers and tubes, 2D films, and 3D scaffolds. Key biomedical applications, including tissue engineering, drug delivery, wound healing, and biosensing, are discussed through illustrative examples. Finally, the article addresses critical challenges and future directions, aiming to drive further innovations in piezoelectric biomaterials for next-generation healthcare technologies.
Collapse
Affiliation(s)
- Zishuo Yan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huy Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dezun Ma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Shen CC, Wu NH. Ultrasound Monitoring of Simultaneous high-intensity focused ultrasound (HIFU) therapy using minimum-peak-sidelobe coded excitation. ULTRASONICS 2024; 138:107224. [PMID: 38134515 DOI: 10.1016/j.ultras.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Bipolar sequences can be readily transmitted by ultrasound (US) pulser hardware with the full driving voltage to boost the echo magnitude in B-mode monitoring of HIFU treatment. In this study, a novel single-transmit bipolar sequence with minimum-peak-sidelobe (MPS) level is developed not only to restore the image quality of US monitoring but also remove acoustic interference from simultaneous HIFU transmission. The proposed MPS code is designed with an equal number of positive and negative bits and the bit duration should be an integer multiple of the period of the HIFU waveform. In addition, different permutations of code sequence are searched in order to obtain the optimal encoding. The received imaging echo is firstly decoded by matched filtering to cancel HIFU interference and to enhance the echo magnitude of US monitoring. Then, Wiener filtering is applied as the second-stage pulse compression to improve the final image quality. Simulations and phantom experiments are performed to compare the single-transmit MPS decoding with conventional two-transmit methods such as pulse-inversion subtraction (PIS) and Golay decoding for their performance in simultaneous US monitoring of HIFU treatment. Results show that the MPS decoding effectively removes HIFU interference even in the presence of tissue motion. The image quality of PIS and Golay decoding, on the other hand, is compromised by the uncancelled HIFU components due to tissue motion. Simultaneous US monitoring of tissue ablation using the proposed MPS decoding has also demonstrated to be feasible in ex-vivo experiments. Compared to the notch filtering that also allows single-transmit HIFU elimination, the MPS decoding is preferrable because it does not suffer from the tradeoff between residual HIFU and speckle deterioration in US monitoring images.
Collapse
Affiliation(s)
- Che-Chou Shen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, #43, Section 4, Keelung Road, Taipei 106, Taiwan.
| | - Nien-Hung Wu
- Department of Electrical Engineering, National Taiwan University of Science and Technology, #43, Section 4, Keelung Road, Taipei 106, Taiwan
| |
Collapse
|
3
|
Shin EJ, Park S, Kang S, Kim J, Chang JH. Improving the quality of ultrasound images acquired using a therapeutic transducer. ULTRASONICS 2023; 134:107063. [PMID: 37300907 DOI: 10.1016/j.ultras.2023.107063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
To enhance the effectiveness and safety of focused ultrasound (FUS) therapy, ultrasound image-based guidance and treatment monitoring are crucial. However, the use of FUS transducers for both therapy and imaging is impractical due to their low spatial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To address this issue, we propose a new method that significantly improve the quality of images obtained by a FUS transducer. The proposed method employs coded excitation to enhance SNR and Wiener deconvolution to solve the problem of low axial resolution resulting from the narrow spectral bandwidth of FUS transducers. Specifically, the method eliminates the impulse response of a FUS transducer from received ultrasound signals using Wiener deconvolution, and pulse compression is performed using a mismatched filter. Simulation and commercial phantom experiments confirmed that the proposed method significantly improves the quality of images acquired by the FUS transducer. The -6 dB axial resolution was improved 1.27 mm to 0.37 mm that was similar to the resolution achieved by the imaging transducer, i.e., 0.33 mm. SNR and CNR also increased from 16.5 dB and 0.69 to 29.1 dB and 3.03, respectively, that were also similar to those by the imaging transducer (27.8 dB and 3.16). Based on the results, we believe that the proposed method has great potential to enhance the clinical utility of FUS transducers in ultrasound image-guided therapy.
Collapse
Affiliation(s)
- Eui-Ji Shin
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sunghun Park
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sungwoo Kang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jinwoo Kim
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jin Ho Chang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea.
| |
Collapse
|
4
|
Shen CC, Lin RC, Wu NH. Golay-Encoded Ultrasound Monitoring of Simultaneous High-Intensity Focused Ultrasound Treatment: A Phantom Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1370-1381. [PMID: 35192463 DOI: 10.1109/tuffc.2022.3153661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) imaging has high potential in monitoring high-intensity focused US (HIFU) treatment due to its superior temporal resolution. However, US monitoring is often hindered by strong HIFU interference, which overwhelms the echoes received by the imaging array. In this study, a method of Golay-encoded US monitoring is proposed to visualize the imaged object for simultaneous HIFU treatment. It effectively removes HIFU interference patterns in real-time B-mode imaging and improves the metrics of image quality, such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and contrast ratio (CR). Compared to the pulse-inversion sequence, the N -bit Golay sequence can boost the echo magnitude of US monitoring by another N times and, thus, exhibits higher robustness. Simulations show that a sinusoidal HIFU waveform can be fully eliminated using Golay decoding when the bit duration of the N -bit Golay sequence ( N is the power of 4) coincides with either odd (Case I) or even (Case II) integer multiples of the HIFU quarter period. Experimental results also show that the Golay decoding with Case II can increase the PSNR of US monitoring images by more than 30 dB for both pulse- and continuous-wave HIFU transmissions. The SSIM index also effectively improves to about unity, indicating that the B-mode image with HIFU transmission is visually indistinguishable from that acquired without HIFU transmission. Though Case I is inferior to Case II in the elimination of even-order HIFU harmonic, they together enable a more flexible selection of imaging frequencies to meet the required image resolution and penetration for Golay-encoded US monitoring.
Collapse
|
5
|
Lee SA, Kamimura HAS, Konofagou EE. Displacement Imaging During Focused Ultrasound Median Nerve Modulation: A Preliminary Study in Human Pain Sensation Mitigation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:526-537. [PMID: 32746236 PMCID: PMC7858702 DOI: 10.1109/tuffc.2020.3014183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Focused ultrasound (FUS)-based viscoelastic imaging techniques using high frame rate (HFR) ultrasound to track tissue displacement can be used for mechanistic monitoring of FUS neuromodulation. However, a majority of techniques avoid imaging during the active push transmit (interleaved or postpush acquisitions) to mitigate ultrasound interference, which leads to missing temporal information of ultrasound effects when FUS is being applied. Furthermore, critical for clinical translation, use of both axial steering and real-time (<1 s) capabilities for optimizing acoustic parameters for tissue engagement are largely missing. In this study, we describe a method of noninterleaved, single Vantage imaging displacement within an active FUS push with simultaneous axial steering and real-time capabilities using a single ultrasound acquisition machine. Results show that the pulse sequence can track micron-sized displacements using frame rates determined by the calculated time-of-flight (TOF), without interleaving the FUS pulses and imaging acquisition. Decimation by 3-7 frames increases signal-to-noise ratio (SNR) by 15.09±7.03 dB. Benchmarking tests of CUDA-optimized code show increase in processing speed of 35- and 300-fold in comparison with MATLAB parallel processing GPU and CPU functions, respectively, and we can estimate displacement from steered push beams ±10 mm from the geometric focus. Preliminary validation of displacement imaging in humans shows that the same driving pressures led to variable nerve engagement, demonstrating important feedback to improve transducer coupling, FUS incident angle, and targeting. Regarding the use of our technique for neuromodulation, we found that FUS altered thermal perception of thermal pain by 0.9643 units of pain ratings in a single trial. Additionally, 5 [Formula: see text] of nerve displacement was shown in on-target versus off-target sonications. The initial feasibility in healthy volunteers warrants further study for potential clinical translation of FUS for pain suppression.
Collapse
|
6
|
Real-Time HIFU Treatment Monitoring Using Pulse Inversion Ultrasonic Imaging. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Real-time monitoring of high-intensity focused ultrasound (HIFU) surgery is essential for safe and accurate treatment. However, ultrasound imaging is difficult to use for treatment monitoring during HIFU surgery because of the high intensity of the HIFU echoes that are received by an imaging transducer. Here, we propose a real-time HIFU treatment monitoring method based on pulse inversion of imaging ultrasound; an imaging transducer fires ultrasound twice in 0° and 180° phases for one scanline while HIFUs of the same phase are transmitted in synchronization with the ultrasound transmission for imaging. By doing so, HIFU interferences can be eliminated after subtracting the two sets of the signals received by the imaging transducer. This function was implemented in a commercial research ultrasound scanner, and its performance was evaluated using the excised bovine liver. The experimental results demonstrated that the proposed method allowed ultrasound images to clearly show the echogenicity change induced by HIFU in the excised bovine liver. Additionally, it was confirmed that the moving velocity of the organs in the abdomen due to respiration does not affect the performance of the proposed method. Based on the experimental results, we believe that the proposed method can be used for real-time HIFU surgery monitoring that is a pivotal function for maximized treatment efficacy.
Collapse
|
7
|
Li G, Qiu W, Hong J, Jiang Q, Su M, Mu P, Yang G, Li Y, Wang C, Zhang H, Zheng H. Imaging-Guided Dual-Target Neuromodulation of the Mouse Brain Using Array Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1583-1589. [PMID: 29994254 DOI: 10.1109/tuffc.2018.2847252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuromodulation is an important method for investigating neural circuits and treating neurological and psychiatric disorders. Multiple-target neuromodulation is considered an advanced technology for the flexible optimization of modulation effects. However, traditional methods such as electrical and magnetic stimulations are not convenient for multiple-target applications due to their disadvantages of invasiveness or poor spatial resolution. Ultrasonic neuromodulation is a new noninvasive method that has gained wide attention in the field of neuroscience, and it is potentially able to support multiple-target stimulation by allocating multiple focal points in the brain using an array transducer. However, there are no reports in the literature of the efficacy of this technical concept, and an imaging tool for localizing the stimulation area for evaluating the neural effects in vivo has been lacking. In this study, we designed and fabricated a new system specifically for imaging-guided dual-target neuromodulation. The design of the array transducer and overall system is described in detail. The stimulation points were selectable on a B-mode image. In vivo experiments were carried out in mice, in which forelimbs shaking responses and electromyography outcomes were induced by changing the stimulation targets. The system could be a valuable tool for imaging-guided multiple-target stimulation in various neuroscience applications.
Collapse
|
8
|
Multi-frequency ultrasound transducers for medical applications: a survey. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2018. [DOI: 10.1007/s41315-018-0057-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Zachiu C, Ries M, Ramaekers P, Guey JL, Moonen CTW, de Senneville BD. Real-time non-rigid target tracking for ultrasound-guided clinical interventions. ACTA ACUST UNITED AC 2017; 62:8154-8177. [DOI: 10.1088/1361-6560/aa8c66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Heymans SV, Martindale CF, Suler A, Pouliopoulos AN, Dickinson RJ, Choi JJ. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017. [PMID: 28650807 DOI: 10.1109/tuffc.2017.2718513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode. Here, we present a simple, inexpensive, integrated setup, in which a focused single-element transducer can perform ultrasound therapy and monitoring simultaneously. MBs were made to flow through a vessel-mimicking tube, placed within the transducer's focus, and were sonicated with therapeutic pulses (peak rarefactional pressure: 75-827 kPa, pulse lengths: [Formula: see text] and 20 ms). The MB-seeded acoustic emissions were captured using the same transducer. The received signals were separated from the therapeutic signal with a hybrid coupler and a high-pass filter. We discriminated the MB-generated cavitation signal from the primary acoustic field and characterized MB behavior in real time. The simplicity and versatility of our circuit could make existing single-element therapeutic transducers also act as cavitation detectors, allowing the production of compact therapeutic systems with real time monitoring capabilities.
Collapse
|
11
|
Lindsey BD, Kim J, Dayton PA, Jiang X. Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1078-1086. [PMID: 28489536 PMCID: PMC5568756 DOI: 10.1109/tuffc.2017.2702010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cancers of the pancreas have the poorest prognosis among all cancers, as many tumors are not detected until surgery is no longer a viable option. Surgical viability is typically determined via endoscopic ultrasound imaging. However, many patients who may be eligible for resection are not offered surgery due to diagnostic challenges in determining vascular or lymphatic invasion. In this paper, we describe the development of a dual-frequency piezoelectric transducer for rotational endoscopic imaging designed to transmit at 4 MHz and receive at 20 MHz in order to image microbubble-specific superharmonic signals. Imaging performance is assessed in a tissue-mimicking phantom at depths from 1 cm [contrast-to-tissue ratio (CTR) = 21.6 dB] to 2.5 cm (CTR = 11.4 dB), in ex vivo porcine vessels, and in vivo in a rodent. The prototyped 1.1-mm aperture transducer demonstrates contrast-specific imaging of microbubbles in a 200- [Formula: see text]-diameter tube through the wall of a 1-cm-diameter porcine artery, suggesting such a device may enable direct visualization of small vessels from within the lumen of larger vessels such as the portal vein or superior mesenteric vein.
Collapse
|
12
|
Seo J, Koizumi N, Mitsuishi M, Sugita N. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound. Int J Med Robot 2016; 13. [PMID: 27995752 PMCID: PMC5724706 DOI: 10.1002/rcs.1793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Background Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory‐induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. Materials and methods In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three‐axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. Results In the experiments, respiratory‐induced organ motion was simulated in a water tank with a linear actuator and kidney‐shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU‐ablated lesion in the desired position of the respiratory‐moving phantom model. Conclusions We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment.
Collapse
Affiliation(s)
- Joonho Seo
- Korea Institute of Machinery and Materials, Daegu, South Korea
| | | | | | | |
Collapse
|
13
|
Lyu C, Liu Y, Wu C. Wide bandwidth dual-frequency ultrasound measurements based on fiber laser sensing technology. APPLIED OPTICS 2016; 55:5057-5062. [PMID: 27409190 DOI: 10.1364/ao.55.005057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A dual-frequency ultrasound measurement system based on a distributed Bragg reflector (DBR) fiber laser sensor in a liquid medium was presented. To compare the dual-frequency measurement performance of a DBR fiber laser acoustic sensor with that of a piezoelectric (PZT) ultrasound sensor, two experiments were performed. First, we fixed the driving frequencies of two ultrasound signals at 3 and 5 MHz, and decreased the driving voltage from 15 to 3 V. The outputs of the DBR acoustic sensor show flat-balanced response to dual-frequencies, compared with the PZT acoustic sensor whose response to one of the dual-frequency signals (5 MHz in this paper) has been covered by noise at low acoustic pressure. Then we increased the acoustic pressure by fixing the driving voltage at 20 V, and changed the frequency spacing between the two ultrasound signals. By analyzing the frequency response, sensitivity, signal-to-noise ratio, and noise equivalent pressure of two acoustic sensors under different frequencies, we found that the response of the DBR sensor to wideband dual-frequency is stable, while the response of the PZT sensor deteriorates sharply with increasing frequency spacing. The results demonstrate that the DBR fiber laser sensor performs better for wide bandwidth dual-frequency ultrasound measurements.
Collapse
|
14
|
Liu J, Foiret J, Stephens DN, Le Baron O, Ferrara KW. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia. Phys Med Biol 2016; 61:5275-96. [PMID: 27353347 DOI: 10.1088/0031-9155/61/14/5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jingfei Liu
- Department of Biomedical Engineering, University of California, Davis, CA 95616-8686, USA
| | | | | | | | | |
Collapse
|
15
|
Martin KH, Lindsey BD, Ma J, Lee M, Li S, Foster FS, Jiang X, Dayton PA. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging. SENSORS (BASEL, SWITZERLAND) 2014; 14:20825-20842. [PMID: 25375755 PMCID: PMC4279513 DOI: 10.3390/s141120825] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023]
Abstract
For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, Chapel Hill, NC 27599, USA.
| | - Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, Chapel Hill, NC 27599, USA.
| | - Jianguo Ma
- Department of Mechanical & Aero-Space Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Mike Lee
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Sibo Li
- Department of Mechanical & Aero-Space Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - F Stuart Foster
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Xiaoning Jiang
- Department of Mechanical & Aero-Space Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Kim Y, Maxwell AD, Hall TL, Xu Z, Lin KW, Cain CA. Rapid prototyping fabrication of focused ultrasound transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1559-1574. [PMID: 25167156 DOI: 10.1109/tuffc.2014.3070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rapid prototyping (RP) fabrication techniques are currently widely used in diverse industrial and medical fields, providing substantial advantages in development time and costs in comparison to more traditional manufacturing processes. This paper presents a new method for the fabrication of high-intensity focused ultrasound transducers using RP technology. The construction of a large-aperture hemispherical transducer designed by computer software is described to demonstrate the process. The transducer was conceived as a modular design consisting of 32 individually focused 50.8-mm (2-in) PZT-8 element modules distributed in a 300-mm hemispherical scaffold with a geometric focus of 150 mm. The entire structure of the array, including the module housings and the hemispherical scaffold was fabricated through a stereolithography (SLA) system using a proprietary photopolymer. The PZT elements were bonded to the lenses through a quarter-wave tungsten-epoxy matching layer developed in-house specifically for this purpose. Modules constructed in this manner displayed a high degree of electroacoustic consistency, with an electrical impedance mean and standard deviation of 109 ± 10.2 Ω for the 32 elements. Time-of-flight measurements for individually pulsed modules mounted on the hemispherical scaffold showed that all pulses arrived at the focus within a 350 ns range, indicating a good degree of element alignment. Pressure profile measurements of the fully assembled transducer also showed close agreement with simulated results. The measured focal beam FWHM dimensions were 1.9 × 4.0 mm (1.9 × 3.9 mm simulated) in the transversal and axial directions respectively. Total material expenses associated with the construction of the transducer were approximately 5000 USD (as of 2011). The versatility and lower fabrication costs afforded by RP methods may be beneficial in the development of complex transducer geometries suitable for a variety of research and clinical applications.
Collapse
|
17
|
Song JH, Yoo Y, Song TK, Chang JH. Real-time monitoring of HIFU treatment using pulse inversion. Phys Med Biol 2013; 58:5333-50. [PMID: 23863761 DOI: 10.1088/0031-9155/58/15/5333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound (US) imaging is widely used for the real-time guidance of high-intensity focused ultrasound (HIFU) treatment at a relatively low cost. However, ultrasound image guided HIFU (USgHIFU) is limited in the real-time monitoring of HIFU treatment due to the large amplitude HIFU signals received by the US imaging transducer. The amplitude of the HIFU scattered signal is generally much higher than the amplitude of the pulse-echo signal received by the imaging transducer. This creates an interference pattern obscuring the image of the tissue. As such, it is difficult to monitor lesion location. This paper proposes a real-time monitoring method to be performed concurrently with the HIFU insonation, but without HIFU interference, which allows for the improvement of treatment accuracy and safety in USgHIFU. The proposed method utilizes the physical properties of pulse inversion which is capable of removing the fundamental and odd harmonic components of the HIFU interference. Therefore, it is possible to secure the desired spectral bandwidth used to construct US images for HIFU treatment monitoring. The performance of the proposed method was evaluated through experiments with both a bovine serum albumin phantom and a chicken breast. The results demonstrated that the proposed method is capable of providing interference-free US images, thus successfully allowing for US imaging during HIFU treatment.
Collapse
Affiliation(s)
- Jae Hee Song
- Medical Solutions Institute, Sogang Institutes of Advanced Technology, Sogang University, Seoul, Korea
| | | | | | | |
Collapse
|
18
|
Jeong JS, Chang JH, Shung KK. Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: a preliminary study. ULTRASONICS 2012; 52:730-9. [PMID: 22356771 PMCID: PMC3751008 DOI: 10.1016/j.ultras.2012.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 05/20/2023]
Abstract
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9MHz frequency sweep range is used for B-mode imaging and 4MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4MHz and 8MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6MHz imaging signals and two outer elements are only used for transmitting 4MHz continuous HIFU wave. When the chirp signal and 4MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4MHz and 8MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to -45dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.
Collapse
Affiliation(s)
- Jong Seob Jeong
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Republic of Korea.
| | | | | |
Collapse
|
19
|
Wang S, Frenkel V, Zderic V. Optimization of pulsed focused ultrasound exposures for hyperthermia applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:599-609. [PMID: 21786925 DOI: 10.1121/1.3598464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hyperthermic temperatures, with potential applications in drug/gene delivery and chemo/radio sensitization, may be generated in biological tissues by applying focused ultrasound (FUS) in pulsed mode. Here, a strategy for optimizing FUS exposures for hyperthermia applications is proposed based on theoretical simulations and in vitro experiments. Initial simulations were carried out for tissue-mimicking phantoms, and subsequent thermocouple measurements allowed for validation of the simulation results. Advanced simulations were then conducted for an ectopic, murine xenograft tumor model. The ultrasound exposure parameters investigated in this study included acoustic power (3-5 W), duty cycle (DC) (10%-50%), and pulse repetition frequency (PRF) (1-5 Hz), as well as effects of tissue perfusion. The thermocouple measurements agreed well with simulation outcomes, where differences between the two never exceeded 1.9%. Based on a desired temperature range of 39-44 °C, optimal tumor coverage (40.8% of the total tumor volume) by a single FUS exposure at 1 MHz was achieved with 4 W acoustic power, 50% DC, and 5 Hz PRF. Results of this study demonstrate the utility of a proposed strategy for optimizing pulsed-FUS induced hyperthermia. These strategies can help reduce the requirement for empirical animal experimentation, and facilitate the translation of pulsed-FUS applications to the clinic.
Collapse
Affiliation(s)
- Shutao Wang
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
20
|
Jeong JS, Cannata JM, Shung KK. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer. Phys Med Biol 2010; 55:1889-902. [PMID: 20224162 DOI: 10.1088/0031-9155/55/7/007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 degrees C to 71 degrees C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging.
Collapse
Affiliation(s)
- Jong Seob Jeong
- Department of Biomedical Engineering, NIH Resource Center for Medical Ultrasonic Transducer Technology, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|