1
|
Chen LS, Koh G, Wang YN, Kim GW, Singh Z, Lehnert A, Miyaoka R, Gurm HS, Maxwell AD. Fracture and Fragmentation of Vascular Calcifications by Focused Ultrasound. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10611-4. [PMID: 40259194 DOI: 10.1007/s12265-025-10611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Peripheral artery disease results in ischemia necessitating interventions such as balloon angioplasty. However, calcified lesions resist balloon and stent expansion, leading to poor outcomes. We hypothesized that focused ultrasound can fracture vascular calcifications and enable balloon angioplasty. In a first experiment, focused ultrasound was applied to ex vivo human calcified plaque specimens to determine its effects based on micro-CT imaging. In a second experiment, ultrasound was applied to an in vitro phantom to evaluate whether the effects enable balloon expansion. Fractures, thinning, and disintegration of calcified sections were observed in 15 of 18 treated human plaque samples. Minor mechanical disruption to soft plaque was found in 33% of samples. In tissue phantoms, n = 10/10 samples were successfully expanded by a water-filled angioplasty balloon with ultrasound applied prior to or during expansion. No controls (n = 0/10) were expanded. These results indicate focused-ultrasound plaque fracture is feasible and may enhance balloon angioplasty.
Collapse
Affiliation(s)
- Lucas Su Chen
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Gabriel Koh
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Ga Won Kim
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Zorawar Singh
- Department of Urology, Smith Institute for Urology, Northwell Health, 450 Lakeville Road, New Hyde Park, New York, NY, 11042, USA
| | - Adrienne Lehnert
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert Miyaoka
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hitinder S Gurm
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Naftchi-Ardebili K, Menz MD, Salahshoor H, Popelka GR, Baccus SA, Butts Pauly K. Focal Volume, Acoustic Radiation Force, and Strain in Two-Transducer Regimes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1199-1216. [PMID: 39240744 PMCID: PMC11584166 DOI: 10.1109/tuffc.2024.3456048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Transcranial ultrasound stimulation (TUS) holds promise for noninvasive neural modulation in treating neurological disorders. Most clinically relevant targets are deep within the brain (near or at its geometric center), surrounded by other sensitive regions that need to be spared clinical intervention. However, in TUS, increasing frequency with the goal of improving spatial resolution reduces the effective penetration depth. We show that by using a pair of 1-MHz orthogonally arranged transducers, we improve the spatial resolution afforded by each of the transducers individually, by nearly 40 folds, achieving a subcubic millimeter target volume of [Formula: see text]. We show that orthogonally placed transducers generate highly localized standing waves with acoustic radiation force (ARF) arranged into periodic regions of compression and tension near the target. We further present an extended capability of the orthogonal setup, which is to impart selective pressures-either positive or negative, but not both-on the target. Finally, we share our preliminary findings that strain can arise from both particle motion (PM) and ARF with the former reaching its maximum value at the focus and the latter remaining null at the focus and reaching its maximum around the focus. As the field is investigating the mechanism of interaction in TUS by way of elucidating the mapping between ultrasound parameters and neural response, orthogonal transducers expand our toolbox by making it possible to conduct these investigations at much finer spatial resolutions, with localized and directed (compression versus tension) ARF and the capability of applying selective pressures at the target.
Collapse
|
3
|
Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2024; 102:106738. [PMID: 38150955 PMCID: PMC10765487 DOI: 10.1016/j.ultsonch.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
This work investigates the fundamental role of cavitation bubble clouds in stone comminution by focused ultrasound. The fragmentation of stones by ultrasound has applications in medical lithotripsy for the comminution of kidney stones or gall stones, where their fragmentation is believed to result from the high acoustic wave energy as well as the formation of cavitation. Cavitation is known to contribute to erosion and to cause damage away from the target, yet the exact contribution and mechanisms of cavitation remain currently unclear. Based on in situ experimental observations, post-exposure microtomography and acoustic simulations, the present work sheds light on the fundamental role of cavitation bubbles in the stone surface fragmentation by correlating the detected damage to the observed bubble activity. Our results show that not all clouds erode the stone, but only those located in preferential nucleation sites whose locations are herein examined. Furthermore, quantitative characterizations of the bubble clouds and their trajectories within the ultrasonic field are discussed. These include experiments with and without the presence of a model stone in the acoustic path length. Finally, the optimal stone-to-source distance maximizing the cavitation-induced surface damage area has been determined. Assuming the pressure magnitude within the focal region to exceed the cavitation pressure threshold, this location does not correspond to the acoustic focus, where the pressure is maximal, but rather to the region where the acoustic beam and thereby the acoustic cavitation activity near the stone surface is the widest.
Collapse
Affiliation(s)
- Luc Biasiori-Poulanges
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Bratislav Lukić
- European Synchrotron Radiation Facility, CS 40220, Grenoble F-38043, France
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
4
|
Thomas GPL, Chapelon JY, Birer A, Inserra C, Lafon C. Confocal lens focused piezoelectric lithotripter. ULTRASONICS 2020; 103:106066. [PMID: 32028115 DOI: 10.1016/j.ultras.2020.106066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
This work focuses on the evaluation of a type of piezoelectric lithotripter with similar dimensions of a commercial lithotripter and composed of either 3 or 4 large lens focused piezoelectric transducers set either in a confocal coplanar C-shape or a confocal spherical shape. Each transducer is made with a 92 mm diameter 220 kHz flat piezoelectric ceramic disc and a 3D printed acoustic lens. Both confocal setups pressure field were measured with a fiber optic hydrophone, and in vitro fragmentations of 13 mm diameter and 14 mm length cylindrical model stones were done in a 2 mm mesh basket. The acoustic characterization of the three transducers confocal setup revealed a disc shaped focal volume, with a 2.2 mm width on one axis and a 9.6 mm width on the other, and a peak positive pressure of 40.9 MPa and a peak negative pressure of -16.9 MPa, while the focus of the four transducers confocal setup was similar to a traditional narrow focus high pressure lithotripter with a focus width of 2.1 mm, and a peak positive pressure of 71.9 MPa and peak negative pressure of -24.3 MPa. Both confocal setups showed in vitro fragmentation efficiency close to a commercial electroconductive lithotripter.
Collapse
Affiliation(s)
- Gilles P L Thomas
- INSERM, LabTAU, F-69003 Lyon, France; Université Lyon 1, Univ Lyon, F-69003 Lyon, France.
| | | | | | | | | |
Collapse
|
5
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
7
|
Allen SP, Vlaisavljevich E, Shi J, Hernandez-Garcia L, Cain CA, Xu Z, Hall TL. The response of MRI contrast parameters in in vitro tissues and tissue mimicking phantoms to fractionation by histotripsy. Phys Med Biol 2017; 62:7167-7180. [PMID: 28741596 DOI: 10.1088/1361-6560/aa81ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histotripsy is a non-invasive, focused ultrasound lesioning technique that can ablate precise volumes of soft tissue using a novel mechanical fractionation mechanism. Previous research suggests that magnetic resonance imaging (MRI) may be a sensitive image-based feedback mechanism for histotripsy. However, there are insufficient data to form some unified understanding of the response of the MR contrast mechanisms in tissues to histotripsy. In this paper, we investigate the response of the MR contrast parameters R1, R2, and the apparent diffusion coefficient (ADC) to various treatment levels of histotripsy in in vitro porcine liver, kidney, muscle, and blood clot as well in formulations of bovine red blood cells suspended in agar gel. We also make a histological analysis of histotripsy lesions in porcine liver. We find that R2 and the ADC are both sensitive to ablation in all materials tested here, and the degree of response varies with tissue type. Correspondingly, under histologic analysis, the porcine liver exhibited various levels of mechanical disruption and necrotic debris that are characteristic of histotripsy. While the area of intact red blood cells and nuclei found within these lesions both decreased with increasing amounts of treatment, the area of red blood cells decreased much more rapidly than the area of intact nuclei. Additionally, the decrease in area of intact red blood cells saturated at the same treatment levels at which the response of the R2 saturated while the area of intact nuclei appeared to vary linearly with the response of the ADC.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd. Ann Arbor, MI 48109, United States of America
| | | | | | | | | | | | | |
Collapse
|
8
|
Villemain O, Kwiecinski W, Bel A, Robin J, Bruneval P, Arnal B, Tanter M, Pernot M, Messas E. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography. Eur Heart J Cardiovasc Imaging 2016; 17:1101-7. [DOI: 10.1093/ehjci/jew145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/10/2016] [Indexed: 01/12/2023] Open
|
9
|
Vlaisavljevich E, Xu Z, Maxwell A, Mancia L, Zhang X, Lin KW, Duryea A, Sukovich J, Hall T, Johnsen E, Cain C. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1064-1077. [PMID: 28113706 PMCID: PMC5770247 DOI: 10.1109/tuffc.2016.2565612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes.
Collapse
|
10
|
Ghorbani M, Oral O, Ekici S, Gozuacik D, Kosar A. Review on Lithotripsy and Cavitation in Urinary Stone Therapy. IEEE Rev Biomed Eng 2016; 9:264-83. [PMID: 27249837 DOI: 10.1109/rbme.2016.2573381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V.
Collapse
|
11
|
Ikeda T, Yoshizawa S, Koizumi N, Mitsuishi M, Matsumoto Y. Focused Ultrasound and Lithotripsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:113-29. [PMID: 26486335 DOI: 10.1007/978-3-319-22536-4_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural kidney stones. For the model stones, the erosion rate of the C-C waveform showed a distinct advantage with the combined high and low frequency waves over either wave alone. For optimization of the high frequency ultrasound intensity, we investigated the relationship between subharmonic emission from cavitation bubbles and stone erosion volume. For stone tracking we have also developed a non-invasive ultrasound theragnostic system (NIUTS) that compensates for kidney motion. Natural stones were eroded and most of the resulting fragments were less than 1 mm in diameter. The small fragments were small enough to pass through the urethra. The results demonstrate that, with the precise control of cavitation activity, focused ultrasound has the potential to be used to develop a less invasive and more controllable lithotripsy system.
Collapse
Affiliation(s)
| | - Shin Yoshizawa
- Department of Communications Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Norihiro Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Mamoru Mitsuishi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Matsumoto
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Lin KW, Hall TL, Xu Z, Cain CA. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2148-60. [PMID: 25929995 PMCID: PMC4466130 DOI: 10.1016/j.ultrasmedbio.2015.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 03/11/2015] [Accepted: 03/27/2015] [Indexed: 05/11/2023]
Abstract
When histotripsy pulses shorter than 2 cycles are applied, the formation of a dense bubble cloud relies only on the applied peak negative pressure (p-) exceeding the "intrinsic threshold" of the medium (absolute value of 26-30 MPa in most soft tissues). It has been found that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds ("dual-beam histotripsy"). Here, the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach is investigated. More specifically, an ATL L7-4 imaging transducer (Philips Healthcare, Andover, MA, USA), pulsed by a V-1 Data Acquisition System (Verasonics, Redmond, WA, USA), was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345-kHz array transducer, driven by a custom high-voltage pulser. These dual-beam histotripsy pulses were applied to red blood cell tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the red blood cell phantoms. The results indicated that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm, whereas that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages: (i) lesion steering can be achieved using the steering of the imaging transducer (implemented with the beamformer of the accompanying programmable ultrasound system), and (ii) treatment can be simultaneously monitored when the imaging transducer is used in conjunction with an ultrasound imaging system.
Collapse
Affiliation(s)
- Kuang-Wei Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Duryea AP, Roberts WW, Cain CA, Hall TL. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:896-904. [PMID: 25965682 PMCID: PMC4430129 DOI: 10.1109/tuffc.2015.7001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histotripsy has been shown to be an effective treatment for model kidney stones, eroding their surface to tiny particulate debris via a cavitational bubble cloud. However, similar to shock wave lithotripsy, histotripsy stone treatments display a rate-dependent efficacy, with pulses applied at a low rate generating more efficient stone erosion in comparison with those applied at a high rate. This is hypothesized to be the result of residual cavitation bubble nuclei generated by bubble cloud collapse. Although the histotripsy bubble cloud only lasts on the order of 100 μs, these microscopic remnant bubbles can persist on the order of 1 s, inducing direct attenuation of subsequent histotripsy pulses and influencing bubble cloud dynamics. In an effort to mitigate these effects, we have developed a novel strategy to actively remove residual cavitation nuclei from the field using low-amplitude ultrasound pulses. Previous work has demonstrated that with selection of the appropriate acoustic parameters these bubble removal pulses can stimulate the aggregation and subsequent coalescence of microscopic bubble nuclei, effectively deleting them from the target volume. Here, we incorporate bubble removal pulses in histotripsy treatment of model kidney stones. It was found that when histotripsy is applied at low rate (1 Hz), bubble removal does not produce a statistically significant change in erosion. At higher pulse rates of 10, 100, and 500 Hz, incorporating bubble removal results in 3.7-, 7.5-, and 2.7-fold increases in stone erosion, respectively. High-speed imaging indicates that the introduction of bubble removal pulses allows bubble cloud dynamics resulting from high pulse rates to more closely approximate those generated at the low rate of 1 Hz. These results corroborate previous work in the field of shock wave lithotripsy regarding the ill effects of residual bubble nuclei, and suggest that high treatment efficiency can be recovered at high pulse rates through appropriate manipulation of the cavitation environment surrounding the stone.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The aim of this article is to outline the initial development of histotripsy, a noninvasive image-guided focused ultrasound technology that mechanically homogenizes targeted tissues and to describe the results of preclinical translational research directed toward urologic applications. RECENT FINDINGS Histotripsy tissue ablation is based on initiation and control of acoustic cavitation at a target point within the body. This unique mechanical mechanism of action is distinct when compared with conventional thermal ablative modalities. Features of histotripsy (nonthermal, noninvasive, high precision, real-time monitoring/feedback, and tissue liquefaction) have prompted assessment of this technology as a potential ablative therapy for a number of organs and disease processes. SUMMARY Ongoing research efforts to apply histotripsy to preclinical models of benign prostatic hyperplasia, prostate cancer, renal masses, and renal calculi have resulted in enhanced understanding of cavitation bioeffects, refinement of treatment systems, strategies to enhance treatment efficiency, and initiation of a pilot human clinical trial to assess the safety of histotripsy for benign prostatic hyperplasia therapy.
Collapse
|
15
|
Lin KW, Hall TL, McGough RJ, Xu Z, Cain CA. Synthesis of monopolar ultrasound pulses for therapy: the frequency-compounding transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1123-1136. [PMID: 24960702 DOI: 10.1109/tuffc.2014.3012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In diagnostic ultrasound, broadband transducers capable of short acoustic pulse emission and reception can improve axial resolution and provide sufficient bandwidth for harmonic imaging and multi-frequency excitation techniques. In histotripsy, a cavitation-based ultrasound therapy, short acoustic pulses (<2 cycles) can produce precise tissue ablation wherein lesion formation only occurs when the applied peak negative pressure exceeds an intrinsic threshold of the medium. This paper investigates a frequency compounding technique to synthesize nearly monopolar (half-cycle) ultrasound pulses. More specifically, these pulses were generated using a custom transducer composed of 23 individual relatively-broadband piezoceramic elements with various resonant frequencies (0.5, 1, 1.5, 2, and 3 MHz). Each frequency component of the transducer was capable of generating 1.5-cycle pulses with only one high-amplitude negative half-cycle using a custom 23-channel high-voltage pulser. By varying time delays of individual frequency components to allow their principal peak negative peaks to arrive at the focus of the transducer constructively, destructive interference occurs elsewhere in time and space, resulting in a monopolar pulse approximation with a dominant negative phase (with measured peak negative pressure [P-]: peak positive pressure [P+] = 4.68: 1). By inverting the excitation pulses to individual elements, monopolar pulses with a dominant positive phase can also be generated (with measured P+: P- = 4.74: 1). Experiments in RBC phantoms indicated that monopolar pulses with a dominant negative phase were able to produce very precise histotripsy-type lesions using the intrinsic threshold mechanism. Monopolar pulses with a dominant negative phase can inhibit shock scattering during histotripsy, leading to more predictable lesion formation using the intrinsic threshold mechanism, while greatly reducing any constructive interference, and potential hot-spots elsewhere. Moreover, these monopolar pulses could have many potential benefits in ultrasound imaging, including axial resolution improvement, speckle reduction, and contrast enhancement in pulse inversion imaging.
Collapse
|
16
|
Lin KW, Kim Y, Maxwell AD, Wang TY, Hall TL, Xu Z, Fowlkes JB, Cain CA. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:251-65. [PMID: 24474132 PMCID: PMC3966303 DOI: 10.1109/tuffc.2014.6722611] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles, wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the shock-scattering mechanism). In our recent work, the peak negative pressure (P-) for generation of dense bubble clouds directly by a single negative half cycle, the intrinsic threshold, was measured. In this paper, the dense bubble clouds and resulting lesions (in red blood cell phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500-kHz therapy transducer was used to generate very short (<2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P- from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P- increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P- = 26 to 35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the -6-dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Because the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term microtripsy.
Collapse
|
17
|
Lin KW, Duryea AP, Kim Y, Hall TL, Xu Z, Cain CA. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:325-40. [PMID: 24474138 PMCID: PMC3971546 DOI: 10.1109/tuffc.2014.6722617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P-) exceeds the intrinsic threshold of the medium (26 to 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold. This pump-probe method of controlling a supra-threshold volume can be called dual-beam histotripsy. A 20-element dual-frequency (500-kHz and 3-MHz elements confocally aligned) array transducer was used to generate dual-beam histotripsy pulses in red blood cell phantoms and porcine hepatic tissue specimens. The results showed that when sub-intrinsic-threshold pump (500-kHz) and probe (3-MHz) pulses were applied together, dense bubble clouds (and resulting lesions) were only generated when their peak negative pressures combined constructively to exceed the intrinsic threshold. The smallest reproducible lesion varied with the relative amplitude between the pump and probe pulses, and, with a higher proportion of the probe pulse, smaller lesions could be generated. When the propagation direction of the probe pulse relative to the pump pulse was altered, the shape of the produced lesion changed based on the region that exceeded intrinsic threshold. Because the low-frequency pump pulse is more immune to attenuation and aberrations, and the high-frequency probe pulse can provide precision in lesion formation, this dual-beam histotripsy approach would be very useful in situations in which precise lesion formation is required through a highly attenuative and aberrative medium, such as transcranial therapy. This is particularly true if a small low-attenuation acoustic window is available for the high-frequency probe transducer.
Collapse
|
18
|
Itah Z, Oral O, Perk OY, Sesen M, Demir E, Erbil S, Dogan-Ekici AI, Ekici S, Kosar A, Gozuacik D. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue. Exp Biol Med (Maywood) 2013; 238:1242-50. [PMID: 24047796 DOI: 10.1177/1535370213503273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.
Collapse
Affiliation(s)
- Zeynep Itah
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Duryea AP, Roberts WW, Cain CA, Hall TL. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:301-309. [PMID: 23357904 PMCID: PMC3777638 DOI: 10.1109/tuffc.2013.2566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Stone comminution in shock wave lithotripsy (SWL) has been documented to result from mechanical stresses conferred directly to the stone, as well as the activity of cavitational microbubbles. Studies have demonstrated that the presence of this cavitation activity is crucial for stone subdivision; however, its exact role in the comminution process remains somewhat weakly defined, in part because it is difficult to isolate the cavitational component from the shock waves themselves. In this study, we further explored the importance of cavitation in SWL stone comminution through the use of histotripsy ultrasound therapy. Histotripsy was used to target model stones designed to mimic the mid-range tensile fracture strength of naturally occurring cystine calculi with controlled cavitation at strategic time points in the SWL comminution process. All SWL was applied at a peak positive pressure (p+) of 34 MPa and a peak negative pressure (p-) of 8 MPa; a shock rate of 1 Hz was used. Histotripsy pulses had a p- of 33 MPa and were applied at a pulse repetition frequency (PRF) of 100 Hz. Ten model stones were sonicated in vitro with each of five different treatment schemes: A) 10 min of SWL (600 shocks) with 0.7 s of histotripsy interleaved between successive shocks (totaling to 42 000 pulses); B) 10 min of SWL (600 shocks) followed by 10 min of histotripsy applied in 0.7-s bursts (1 burst per second, totaling to 42 000 pulses); C) 10 min of histotripsy applied in 0.7-s bursts (42 000 pulses) followed by 10 min of SWL (600 shocks); D) 10 min of SWL only (600 shocks); E) 10 min of histotripsy only, applied in 0.7-s bursts (42 000 pulses). Following sonication, debris was collected and sieved through 8-, 6-, 4-, and 2-mm filters. It was found that scheme D, SWL only, generated a broad range of fragment sizes, with an average of 14.9 ± 24.1% of the original stone mass remaining > 8 mm. Scheme E, histotripsy only, eroded the surface of stones to tiny particulate debris that was small enough to pass through the finest filter used in this study (<2 mm), leaving behind a single primary stone piece (>8 mm) with mass 85.1 ± 1.6% of the original following truncated sonication. The combination of SWL and histotripsy (schemes A, B, and C) resulted in a shift in the size distribution toward smaller fragments and complete elimination of debris > 8 mm. When histotripsy-controlled cavitation was applied following SWL (B), the increase in exposed stone surface area afforded by shock wave stone subdivision led to enhanced cavitation erosion. When histotripsy-controlled cavitation was applied before SWL (C), it is likely that stone surface defects induced by cavitation erosion provided sites for crack nucleation and accelerated shock wave stone subdivision. Both of these effects are likely at play in the interleaved therapy (A), although shielding of shock waves by remnant histotripsy microbubble nuclei may have limited the efficacy of this scheme. Nevertheless, these results demonstrate the important role played by cavitation in the stone comminution process, and suggest that the application of controlled cavitation at strategic time points can provide an adjunct to traditional SWL therapy.
Collapse
Affiliation(s)
- Alexander P. Duryea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - William W. Roberts
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A. Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Wang TY, Xu Z, Hall TL, Fowlkes JB, Cain CA. An efficient treatment strategy for histotripsy by removing cavitation memory. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:753-66. [PMID: 22402025 PMCID: PMC3462164 DOI: 10.1016/j.ultrasmedbio.2012.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/17/2011] [Accepted: 01/17/2012] [Indexed: 05/04/2023]
Abstract
Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, ∆t, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P-/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as ∆t increased from 2-200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer ∆ts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for ∆t ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions.
Collapse
Affiliation(s)
- Tzu-Yin Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|