1
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Yang J, Li Y, Sun J, Zou H, Sun Y, Luo J, Xie Q, A R, Wang H, Li X, Wang K, Yang L, Ma T, Wu L, Sun X. An Osimertinib-Perfluorocarbon Nanoemulsion with Excellent Targeted Therapeutic Efficacy in Non-small Cell Lung Cancer: Achieving Intratracheal and Intravenous Administration. ACS NANO 2022; 16:12590-12605. [PMID: 35863049 DOI: 10.1021/acsnano.2c04159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low accumulation of anticancer drugs in tumors and serious systemic toxicity remain the main challenges to the clinical efficiency of pharmaceuticals. Pulmonary delivery of nanoscale-based drug delivery systems offered a strategy to increase antitumor activity with minimal adverse exposure. Herein, we report an osimertinib-loaded perfluoro-15-crown-5-ether (AZD9291-PFCE) nanoemulsion, through intratracheal and intravenous delivery, synergizes with 19F magnetic resonance imaging (19F MRI)-guided low-intensity focused ultrasound (LIFU) for lung cancer therapy. Pulmonary delivery of AZD9291-PFCE nanoemulsion in orthotopic lung carcinoma models achieves quick distribution of the nanoemulsion in lung tissues and tumors without short-term and long-term toxic effects. Furthermore, LIFU can trigger drug release from the AZD9291-PFCE nanoemulsion and specifically increases tumor vascular and tumor tissue permeability. 19F MRI was applied to quantify nanoemulsion accumulation in tumors in real time after LIFU irradiation. We validate the treatment effect of AZD9291-PFCE nanoemulsion in resected human lung cancer tissues, proving the translational potential to enhance clinical outcomes of lung cancer therapy. Thus, this work presents a promising pulmonary nanoemulsion delivery system of osimertinib (AZD9291) for targeted therapy of lung cancer without severe side effects.
Collapse
Affiliation(s)
- Jie Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Yingbo Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Jiemei Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Hongyan Zou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Yige Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Jing Luo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Qian Xie
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Rong A
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Xiaona Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Teng Ma
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, Guangdong, China
| | - Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Liu Q, Jiang J, Tang L, Chen M. The effect of low frequency and low intensity ultrasound combined with microbubbles on the sonoporation efficiency of MDA-MB-231 cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:298. [PMID: 32355742 PMCID: PMC7186677 DOI: 10.21037/atm.2020.02.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Ultrasound can produce certain biophysical effects including thermal and non-thermal effects on cells. Sonoporation, the most widely studied non-thermal biological effect of ultrasound, is considered to be the basis for new therapeutic applications. Ultrasound irradiation can increase the permeability of cell membranes through sonoporous effect, which makes molecules like those of drugs, protein, and DNA that normally cannot pass through the cell membranes be able to enter cells. Considering the poor therapeutic effect and poor prognosis of triple negative breast cancer, we aimed to explore the experimental conditions and find the optimal parameters to improve the therapeutic efficacy of chemotherapeutic drugs for MDA-MB-231 cells. Methods By establishing an experimental and control group, our study investigated the effect of low frequency and low intensity ultrasound combined with microbubbles on MDA-MB-231 cell membrane permeability at different times. We conducted factorial cross-design and set 3 levels of ultrasound intensity: 230, 300, and 370 mW/cm2; 3 levels of irradiation time: 1, 2, and 3 minutes; and 6 levels of microbubble doses: 0, 0.2, 0.4, 0.6, 0.8, and 1 mL. Results Results show that ultrasound intensity, time of irradiation, and microbubbles concentration are not only related to but also have interactive effects on the sonoporation efficiency of MDA-MB-231 cells, with the rank order being sound intensity, irradiation time, and microbubble concentration. The average positive rates (%) of FD4 staining in sound intensities of 230, 300, and 370 mW/cm2 levels were 1.20±0.71, 13.80±5.86, and 10.71±4.36, respectively; and in irradiated times of 1, 2, and 3 min they were 7.54±5.95, 9.74±8.42, and 8.59±5.80, respectively. When the microbubbles increased according to the gradient of 0, 0.2, 0.4, 0.6, 0.8, and 1 mL, the positive rates (%) of FD4 staining were 7.32±5.89, 9.26±7.39, 8.31±5.67, 10.12±8.42, 8.67±7.23, and 7.72±6.24. Conclusions In our study, the optimal parameters of the sonoporous effect for MDA-MB-231 cells were 300 mW/cm2 of ultrasound intensity, 2 minutes of irradiation time, and 20% microbubbles concentration.
Collapse
Affiliation(s)
- Qi Liu
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jianwei Jiang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lei Tang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Man Chen
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
6
|
Numerical Simulations of the Nonlinear Interaction of a Bubble Cloud and a High Intensity Focused Ultrasound Field. ACOUSTICS 2019. [DOI: 10.3390/acoustics1040049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied the effects of a small bubble cloud located at the pre-focal area of a high-intensity focused ultrasound field. Our objective is to show that bubbles can modify the bioeffects of an ultrasound treatment in muscle tissue. We model a three-dimensional ultrasound field in an idealized configuration of real operating conditions. Simulations are performed using a combined method based on the Khokhlov-Zabolotskaya-Kuznetsov equation, describing the ultrasound propagation, and a Rayleigh-Plesset equation, modeling the bubble oscillations. The nonlinear interaction of the ultrasound field and the bubble oscillations is considered. Results with and without bubbles for different void fractions of the cloud and different acoustic powers are compared. The cloud induces scattering, nonlinear distortion, and shielding of ultrasound, which increase the mechanical index in the pre-focal zone, shift the location, reduce the size, and modify the shape of the volume of tissue of high mechanical index values, and lower the pressure at the intended focus considerably. Although some hypothesis and parameters used in the models do not fit the real HIFU situations, the simulation results suggest that the effects caused by a bubble cloud located in the pre-focal area should be considered and monitored to ensure the safety of high-intensity focused ultrasound treatments.
Collapse
|
7
|
Kwon DS, Sung JH, Park CY, Jeong JS. Phase-Inverted Multifrequency HIFU Transducer for Lesion Expansion: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1125-1132. [PMID: 29993367 DOI: 10.1109/tuffc.2018.2830108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been well known that the treatment time of high-intensity focused ultrasound (HIFU) surgery can be reduced by expanding the focal area per sonication. Previously, a dual-concentric transducer using phase-inverted signals was proposed to axially extend the focal area, but it has suffered from the deep notch point between two focal lobes. In this paper, we propose the improved HIFU transducer with dual-concentric aperture driven by phase-inverted multifrequency signals based on an inversion layer technique. The proposed transducer can generate the expanded focal zone with a significantly reduced level of the notch point between two focal lobes in the axial direction. The performance of the proposed transducer was investigated using finite element analysis simulation. The electrical impedance, one-way impulse response, and acoustic field of the transducer were simulated. Subsequently, the lesion volume was investigated by heat transfer simulation. In the proposed method, the level of the notch point was increased above -6 dB due to various phase interactions between the fundamental and harmonic frequency combinations and the inverted and noninverted frequency combinations. The -6-dB depth of field related to the necrotic lesion size was increased by 141% compared with the conventional single element transducer. Thus, the proposed transducer can be a potential way to enlarge coagulated lesion size resulting in a reduced overall treatment time of HIFU surgery.
Collapse
|
8
|
Wang JC, Zhou Y. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound. ULTRASONICS 2015; 55:65-74. [PMID: 25173067 DOI: 10.1016/j.ultras.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Extracorporeal shock wave lithotripsy (ESWL) has been used as an effective modality to fragment kidney calculi. Because of the bubble shielding effect in the pre-focal region, the acoustic energy delivered to the focus is reduced. Low pulse repetition frequency (PRF) will be applied to dissolve these bubbles for better stone comminution efficiency. In this study, low intensity pulsed ultrasound (LIPUS) beam was aligned perpendicular to the axis of a shock wave (SW) lithotripter at its focus. The light transmission was used to evaluate the compressive wave and cavitation induced by SWs without or with a combination of LIPUS for continuous sonication. It is found that bubble shielding effect becomes dominated with the SW exposure and has a greater significant effect on cavitation than compressive wave. Using the combined wave scheme, the improvement began at the 5th pulse and gradually increased. Suppression effect on bubble shielding is independent on the trigger delay, but increases with the acoustic intensity and pulse duration of LIPUS. The peak negative and integral area of light transmission signal, which present the compressive wave and cavitation respectively, using our strategy at PRF of 1 Hz are comparable to those using SW alone at PRF of 0.1 Hz. In addition, high-speed photography confirmed the bubble activities in both free field and close to a stone surface. Bubble motion in response to the acoustic radiation force by LIPUS was found to be the major mechanism of suppressing bubble shielding effect. There is a 2.6-fold increase in stone fragmentation efficiency after 1000 SWs at PRF of 1 Hz in combination with LIPUS. In summary, combination of SWs and LIPUS is an effective way of suppressing bubble shielding effect and, subsequently, improving cavitation at the focus for a better outcome.
Collapse
Affiliation(s)
- Jen-Chieh Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|