1
|
Meijlink B, Collado-Lara G, Bishard K, Conboy JP, Langeveld SAG, Koenderink GH, van der Steen AFW, de Jong N, Beekers I, Trietsch SJ, Kooiman K. Characterizing Microbubble-Mediated Permeabilization in a Vessel-on-a-Chip Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407550. [PMID: 39648449 DOI: 10.1002/smll.202407550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Indexed: 12/10/2024]
Abstract
Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, spatial distribution, and amount of vascular permeability increase. Accurate models are necessary for insights into the mechanism so a microvessel-on-a-chip is developed with a membrane-free extravascular space. Using these microvessels-on-a-chip, distinct differences between 2 MHz ultrasound treatments are shown with 10 or 1000 cycles. The onset rate is slower for 10 than 1000 cycles, while both cycle lengths increase the permeability in spot-wise patterns without affecting microvessel viability. Significantly less vascular permeability increase and sonoporation are induced for 10 versus 1000 cycles at 750 kPa (i.e., the highest studied peak negative acoustic pressure (PNP)). The PNP threshold for vascular permeability increases is 750 versus 550 kPa for 10 versus 1000 cycles, while this is 750 versus 220 kPa for sonoporation. Vascular permeability increases do not correlate with αvβ3-targeted microbubble behavior, while sonoporation correlates with αvβ3-targeted microbubble clustering. In conclusion, the further mechanistic unraveling of vascular permeability increase by ultrasound-activated microbubbles in a developed microvessel-on-a-chip model aids the safe and efficient development of microbubble-mediated drug transport.
Collapse
Affiliation(s)
- Bram Meijlink
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | | | - James P Conboy
- Department of Bionanoscience, Delft University of Technology, Building 58, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Simone A G Langeveld
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Delft University of Technology, Building 58, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Building 22, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Building 22, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Inés Beekers
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Health, ORTEC B.V., Houtsingel 5, Zoetermeer, 2719 EA, The Netherlands
| | | | - Klazina Kooiman
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| |
Collapse
|
2
|
Zhao X, Wright A, Goertz DE. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. ULTRASONICS SONOCHEMISTRY 2023; 93:106291. [PMID: 36640460 PMCID: PMC9852793 DOI: 10.1016/j.ultsonch.2023.106291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/04/2023]
Abstract
Therapeutic focused ultrasound in combination with encapsulated microbubbles is being widely investigated for its ability to elicit bioeffects in the microvasculature, such as transient permeabilization for drug delivery or at higher pressures to achieve 'antivascular' effects. While it is well established that the behaviors of microbubbles are altered when they are situated within sufficiently small vessels, there is a paucity of data examining how the bubble population dynamics and emissions change as a function of channel (vessel) diameter over a size range relevant to therapeutic ultrasound, particularly at pressures relevant to antivascular ultrasound. Here we use acoustic emissions detection and high-speed microscopy (10 kframes/s) to examine the behavior of a polydisperse clinically employed agent (Definity®) in wall-less channels as their diameters are scaled from 1200 to 15 µm. Pressures are varied from 0.1 to 3 MPa using either a 5 ms pulse or a sequence of 0.1 ms pulses spaced at 1 ms, both of which have been previously employed in an in vivo context. With increasing pressure, the 1200 µm channel - on the order of small arteries and veins - exhibited inertial cavitation, 1/2 subharmonics and 3/2 ultraharmonics, consistent with numerous previous reports. The 200 and 100 µm channels - in the size range of larger microvessels less affected by therapeutic focused ultrasound - exhibited a distinctly different behavior, having muted development of 1/2 subharmonics and 3/2 ultraharmonics and reduced persistence. These were associated with radiation forces displacing bubbles to the distal wall and inducing clusters that then rapidly dissipated along with emissions. As the diameter transitioned to 50 and then 15 µm - a size regime that is most relevant to therapeutic focused ultrasound - there was a higher threshold for the onset of inertial cavitation as well as subharmonics and ultraharmonics, which importantly had more complex orders that are not normally reported. Clusters also occurred in these channels (e.g. at 3 MPa, the mean lateral and axial sizes were 23 and 72 µm in the 15 µm channel; 50 and 90 µm in the 50 µm channel), however in this case they occupied the entire lumens and displaced the wall boundaries. Damage to the 15 µm channel was observed for both pulse types, but at a lower pressure for the long pulse. Experiments conducted with a 'nanobubble' (<0.45 µm) subpopulation of Definity followed broadly similar features to 'native' Definity, albeit at a higher pressure threshold for inertial cavitation. These results provide new insights into the behavior of microbubbles in small vessels at higher pressures and have implications for therapeutic focused ultrasound cavitation monitoring and control.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| | - Alex Wright
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| |
Collapse
|
3
|
Khan AH, Jiang X, Kaushik A, Nair HS, Edirisinghe M, Mercado-Shekhar KP, Shekhar H, Dalvi SV. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10288-10304. [PMID: 35943351 DOI: 10.1021/acs.langmuir.2c01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated microbubble suspensions but offer minimal control over the size and polydispersity of the microbubbles. One of the simplest and effective methods for producing monodisperse microbubbles is capillary-embedded T-junction microfluidic devices, which offer great control over the microbubble size. However, lower production rates (∼200 bubbles/s) and large microbubble sizes (∼300 μm) limit the applicability of such devices for biomedical applications. To overcome the limitations of these technologies, we demonstrate in this work an alternative approach to combine a capillary-embedded T-junction device with ultrasound to enhance the generation of narrow-sized microbubbles in aqueous suspensions. Two T-junction microfluidic devices were connected in parallel and combined with an ultrasonic horn to produce lipid-coated SF6 core microbubbles in the size range of 1-8 μm. The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 106 bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 109/mL to ∼2.3 × 106/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. The acoustic response of these microbubbles was examined using broadband attenuation spectroscopy, and flow phantom imaging was performed to determine the ability of these microbubble suspensions to enhance the contrast relative to the surrounding tissue. Overall, this approach of coupling ultrasound with microfluidic parallelization enabled the continuous production of stable microbubbles at high production rates and low polydispersity using simple T-junction devices.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Xinyue Jiang
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, U.K
| | - Anuj Kaushik
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Hari S Nair
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, U.K
| | - Karla P Mercado-Shekhar
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Himanshu Shekhar
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
4
|
Growth of Laser-Induced Microbubbles inside Capillary Tubes Affected by Gathered Light-Absorbing Particles. MICROMACHINES 2022; 13:mi13050740. [PMID: 35630207 PMCID: PMC9145415 DOI: 10.3390/mi13050740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022]
Abstract
Microbubbles have important applications in optofluidics. The generation and growth of microbubbles is a complicated process in microfluidic channels. In this paper, we use a laser to irradiate light-absorbing particles to generate microbubbles in capillary tubes and investigate the factors affecting microbubble size. The results show that the key factor is the total area of the light-absorbing particles gathered at the microbubble bottom. The larger the area of the particles at bottom, the larger the size of the microbubbles. Furthermore, the area is related to capillary tube diameter. The larger the diameter of the capillary tube, the more particles gathered at the bottom of the microbubbles. Numerical simulations show that the Marangoni convection is stronger in a capillary tube with a larger diameter, which can gather more particles than that in a capillary tube with a smaller diameter. The calculations show that the particles in contact with the microbubbles will be in a stable position due to the surface tension force.
Collapse
|
5
|
Tu J, Yu ACH. Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME FRONTIERS 2022; 2022:9807347. [PMID: 37850169 PMCID: PMC10521752 DOI: 10.34133/2022/9807347] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2023] Open
Abstract
Sonoporation, or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation, is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells. Nevertheless, this emerging drug delivery paradigm has not yet reached widespread clinical use, because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms. Here, we summarize the current observational evidence available on the notion of sonoporation, and we discuss the prevailing understanding of the physical and biological processes related to sonoporation. To facilitate systematic understanding, we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters (ultrasound frequency, pressure, cavitation dose, exposure time), microbubble parameters (size, concentration, bubble-to-cell distance, shell composition), and cellular properties (cell type, cell cycle, biochemical contents). By adopting a science-backed approach to the realization of sonoporation, ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency. This drug delivery approach, when coupled with concurrent advances in ultrasound imaging, has potential to become an effective therapeutic paradigm.
Collapse
Affiliation(s)
- Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Alfred C. H. Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
6
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
7
|
Lowerison MR, Huang C, Kim Y, Lucien F, Chen S, Song P. In Vivo Confocal Imaging of Fluorescently Labeled Microbubbles: Implications for Ultrasound Localization Microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1811-1819. [PMID: 32305910 PMCID: PMC7483886 DOI: 10.1109/tuffc.2020.2988159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report the time kinetics of fluorescently labeled microbubbles (MBs) in capillary-level microvasculature as measured via confocal microscopy and compare these results to ultrasound localization microscopy (ULM). The observed 19.4 ± 4.2 MBs per confocal field-of-view ( [Formula: see text]) are in excellent agreement with the expected count of 19.1 MBs per frame. The estimated time to fully perfuse this capillary network was 193 s, which corroborates the values reported in the literature. We then modeled the capillary network as an empirically determined discrete-time Markov chain with adjustable MB transition probabilities though individual capillaries. The Monte Carlo random walk simulations found perfusion times ranging from 24.5 s for unbiased Markov chains up to 182 s for heterogeneous flow distributions. This pilot study confirms a probability-derived explanation for the long acquisition times required for super-resolution ULM.
Collapse
Affiliation(s)
- Matthew R. Lowerison
- Beckman Institute, University of Illinois at
Urbana-Champaign, Urbana, IL, 61801
- Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Radiology, Mayo Clinic College of Medicine
and Science, Mayo Clinic, Rochester, MN, 55905
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine
and Science, Mayo Clinic, Rochester, MN, 55905
| | - Yohan Kim
- Department of Urology, Mayo Clinic College of Medicine and
Science, Mayo Clinic, Rochester, MN, 55905
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and
Science, Mayo Clinic, Rochester, MN, 55905
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine
and Science, Mayo Clinic, Rochester, MN, 55905
| | - Pengfei Song
- Beckman Institute, University of Illinois at
Urbana-Champaign, Urbana, IL, 61801
- Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Radiology, Mayo Clinic College of Medicine
and Science, Mayo Clinic, Rochester, MN, 55905
- Corresponding Author: Pengfei Song
()
| |
Collapse
|
8
|
Newsome IG, Kierski TM, Dayton PA. Assessment of the Superharmonic Response of Microbubble Contrast Agents for Acoustic Angiography as a Function of Microbubble Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2515-2524. [PMID: 31174922 PMCID: PMC7202402 DOI: 10.1016/j.ultrasmedbio.2019.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 05/07/2023]
Abstract
Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging technique that enables 3-D high-resolution microvascular visualization. This technique utilizes a dual-frequency imaging strategy, transmitting at a low frequency and receiving at a higher frequency, to detect high-frequency contrast agent signatures and separate them from tissue background. Prior studies have illustrated differences in microbubble scatter dependent on microbubble size and composition; however, most previously reported data have utilized a relatively narrow frequency bandwidth centered around the excitation frequency. To date, a comprehensive study of isolated microbubble superharmonic responses with a broadband dual-frequency system has not been performed. Here, the superharmonic signal production of 14 contrast agents with various gas cores, shell compositions, and bubble diameters at mechanical indices of 0.2 to 1.2 was evaluated using a transmit 4 MHz, receive 25 MHz configuration. Results indicate that perfluorocarbon cores or lipid shells with 18- or 20-carbon acyl chains produce more superharmonic signal than sulfur hexafluoride cores or lipid shells with 16-carbon acyl chains, respectively. As microbubble diameter increases from 1 to 4 µm, superharmonic generation decreases. In a comparison of two clinical agents, Definity and Optison, and one preclinical agent, Micromarker, Optison produced the least superharmonic signal. Overall, this work suggests that microbubbles around 1 μm in diameter with perfluorocarbon cores and longer-chained lipid shells perform best for superharmonic imaging at 4 MHz. Studies have found that microbubble superharmonic response follows trends different from those described in prior studies using a narrower frequency bandwidth centered around the excitation frequency. Future work will apply these results in vivo to optimize the sensitivity of acoustic angiography.
Collapse
Affiliation(s)
- Isabel G Newsome
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
Roovers S, Segers T, Lajoinie G, Deprez J, Versluis M, De Smedt SC, Lentacker I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10173-10191. [PMID: 30653325 DOI: 10.1021/acs.langmuir.8b03779] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for local drug delivery applications. Besides being useful drug carriers, microbubbles have demonstrated the ability to enhance cell and tissue permeability and, as a consequence, drug uptake herein. Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Because of the vast number of ultrasound- and microbubble-related parameters that can be altered and the variability in different models, the translation from basic research to (pre)clinical studies has been hindered. This review aims at connecting the knowledge gained from fundamental microbubble studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better understanding of the response of a microbubble upon exposure to ultrasound and its interaction with cells and tissues. More specifically, we address the acoustic settings and microbubble-related parameters (i.e., bubble size and physicochemistry of the bubble shell) that play a key role in microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new techniques that may provide additional control over the treatment, such as monodisperse microbubble formulations, tunable ultrasound scanners, and cavitation detection techniques, are discussed. An in-depth understanding of the aspects presented in this work could eventually lead the way to more efficient and tailored microbubble-assisted ultrasound therapy in the future.
Collapse
Affiliation(s)
- Silke Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| |
Collapse
|
10
|
Song JH, Moldovan A, Prentice P. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2188-2204. [PMID: 31085030 DOI: 10.1016/j.ultrasmedbio.2019.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Non-linear emissions from microbubbles introduced to the vasculature for exposure to focused ultrasound are routinely monitored for assessment of therapy and avoidance of irreversible tissue damage. Yet the bubble-based mechanistic source for these emissions, under subresonant driving at typical therapeutic pressure amplitudes, may not be well understood. In the study described here, dual-perspective high-speed imaging at 210,000 frames per second (fps), and shadowgraphically at 10 Mfps, was used to observe cavitation from microbubbles flowing through a 500-µm polycarbonate capillary exposed to focused ultrasound of 692 kHz at therapeutically relevant pressure amplitudes. The acoustic emissions were simultaneously collected via a broadband calibrated needle hydrophone system. The observations indicate that periodic bubble-collapse shock waves can dominate the non-linear acoustic emissions, including subharmonics at higher driving amplitudes. Contributions to broadband emissions through variance in shock wave amplitude and emission timings are also identified. Possible implications for in vivo microbubble cavitation detection, mechanisms of therapy and the conventional classification of cavitation activity as stable or inertial are discussed.
Collapse
Affiliation(s)
- Jae Hee Song
- CavLab, Medical and Industrial Ultrasonics, University of Glasgow, Glasgow, United Kingdom
| | - Alexandru Moldovan
- Centre for Ultrasound Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Paul Prentice
- CavLab, Medical and Industrial Ultrasonics, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
11
|
Loskutova K, Grishenkov D, Ghorbani M. Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9480193. [PMID: 31392217 PMCID: PMC6662494 DOI: 10.1155/2019/9480193] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Acoustic droplet vaporization (ADV) is the physical process in which liquid undergoes phase transition to gas after exposure to a pressure amplitude above a certain threshold. In recent years, new techniques in ultrasound diagnostics and therapeutics have been developed which utilize microformulations with various physical and chemical properties. The purpose of this review is to give the reader a general idea on how ADV can be implemented for the existing biomedical applications of droplet vaporization. In this regard, the recent developments in ultrasound therapy which shed light on the ADV are considered. Modern designs of capsules and nanodroplets (NDs) are shown, and the material choices and their implications for function are discussed. The influence of the physical properties of the induced acoustic field, the surrounding medium, and thermophysical effects on the vaporization are presented. Lastly, current challenges and potential future applications towards the implementation of the therapeutic droplets are discussed.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Morteza Ghorbani
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
- Mechatronics Engineering Program, Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
12
|
Helfield B. A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:282-300. [PMID: 30413335 DOI: 10.1016/j.ultrasmedbio.2018.09.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/11/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound contrast agent microbubbles have expanded the utility of biomedical ultrasound from anatomic imaging to the assessment of microvascular blood flow characteristics and ultrasound-assisted therapeutic applications. Central to their effectiveness in these applications is their resonant and non-linear oscillation behaviour. This article reviews the salient physics of an oscillating microbubble in an ultrasound field, with particular emphasis on phospholipid-coated agents. Both the theoretical underpinnings of bubble vibration and the experimental evidence of non-linear encapsulated bubble dynamics and scattering are discussed and placed within the context of current and emerging applications.
Collapse
Affiliation(s)
- Brandon Helfield
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Enhanced microbubble contrast agent oscillation following 250 kHz insonation. Sci Rep 2018; 8:16347. [PMID: 30397280 PMCID: PMC6218550 DOI: 10.1038/s41598-018-34494-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
Microbubble contrast agents are widely used in ultrasound imaging and therapy, typically with transmission center frequencies in the MHz range. Currently, an ultrasound center frequency near 250 kHz is proposed for clinical trials in which ultrasound combined with microbubble contrast agents is applied to open the blood brain barrier, since at this low frequency focusing through the human skull to a predetermined location can be performed with reduced distortion and attenuation compared to higher frequencies. However, the microbubble vibrational response has not yet been carefully evaluated at this low frequency (an order of magnitude below the resonance frequency of these contrast agents). In the past, it was assumed that encapsulated microbubble expansion is maximized near the resonance frequency and monotonically decreases with decreasing frequency. Our results indicated that microbubble expansion was enhanced for 250 kHz transmission as compared with the 1 MHz center frequency. Following 250 kHz insonation, microbubble expansion increased nonlinearly with increasing ultrasonic pressure, and was accurately predicted by either the modified Rayleigh-Plesset equation for a clean bubble or the Marmottant model of a lipid-shelled microbubble. The expansion ratio reached 30-fold with 250 kHz at a peak negative pressure of 400 kPa, as compared to a measured expansion ratio of 1.6 fold for 1 MHz transmission at a similar peak negative pressure. Further, the range of peak negative pressure yielding stable cavitation in vitro was narrow (~100 kPa) for the 250 kHz transmission frequency. Blood brain barrier opening using in vivo transcranial ultrasound in mice followed the same trend as the in vitro experiments, and the pressure range for safe and effective treatment was 75-150 kPa. For pressures above 150 kPa, inertial cavitation and hemorrhage occurred. Therefore, we conclude that (1) at this low frequency, and for the large oscillations, lipid-shelled microbubbles can be approximately modeled as clean gas microbubbles and (2) the development of safe and successful protocols for therapeutic delivery to the brain utilizing 250 kHz or a similar center frequency requires consideration of the narrow pressure window between stable and inertial cavitation.
Collapse
|
14
|
Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY) 2018; 43:762-772. [PMID: 29508011 DOI: 10.1007/s00261-018-1516-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbubble ultrasound contrast agents (UCAs) were recently approved by the Food and Drug administration for non-cardiac imaging. The physical principles of UCAs, methods of administration, dosage, adverse effects, and imaging techniques both current and future are described. UCAs consist of microbubbles in suspension which strongly interact with the ultrasound beam and are readily detectable by ultrasound imaging systems. They are confined to the blood pool when administered intravenously, unlike iodinated and gadolinium contrast agents. UCAs have a proven safety record based on over two decades of use, during which they have been used in echocardiography in the U.S. and for non-cardiac imaging in the rest of the world. Adverse effects are less common with UCAs than CT/MR contrast agents. Compared to CT and MR, contrast-enhanced ultrasound has the advantages of real-time imaging, portability, and reduced susceptibility to metal and motion artifact. UCAs are not nephrotoxic and can be used in renal failure. High acoustic amplitudes can cause microbubbles to fragment in a manner that can result in short-term increases in capillary permeability or capillary rupture. These bioeffects can be beneficial and have been used to enhance drug delivery under appropriate conditions. Imaging with a mechanical index of < 0.4 preserves the microbubbles and is not typically associated with substantial bioeffects. Molecularly targeted ultrasound contrast agents are created by conjugating the microbubble shell with a peptide, antibody, or other ligand designed to target an endothelial biomarker associated with tumor angiogenesis or inflammation. These microbubbles then accumulate in the microvasculature at target sites where they can be imaged. Ultrasound contrast agents are a valuable addition to the diagnostic imaging toolkit. They will facilitate cross-sectional abdominal imaging in situations where contrast-enhanced CT and MR are contraindicated or impractical.
Collapse
Affiliation(s)
- Wui K Chong
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Unit 1473 | FCT15.5092, 1400 Pressler Street, Houston, TX, 77030, USA.
| | - Virginie Papadopoulou
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Paul A Dayton
- UNC Biomedical Research Imaging Center, Chapel Hill, NC, 27599, USA
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| |
Collapse
|
15
|
Lin S, Zhang G, Leow CH, Tang MX. Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents. Phys Med Biol 2017; 62:6884-6898. [PMID: 28718774 DOI: 10.1088/1361-6560/aa8076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sub-micron phase change contrast agent (PCCA) composed of a perfluorocarbon liquid core can be activated into gaseous state and form stable echogenic microbubbles for contrast-enhanced ultrasound imaging. It has shown great promise in imaging microvasculature, tumour microenvironment, and cancer cells. Although PCCAs have been extensively studied for different diagnostic and therapeutic applications, the effect of biologically geometrical confinement on the acoustic vaporisation of PCCAs is still not clear. We have investigated the difference in PCCA-produced ultrasound contrast enhancement after acoustic activation with and without a microvessel confinement on a microchannel phantom. The experimental results indicated more than one-order of magnitude less acoustic vaporisation in a microchannel than that in a free environment taking into account the attenuation effect of the vessel on the microbubble scattering. This may provide an improved understanding in the applications of PCCAs in vivo.
Collapse
Affiliation(s)
- Shengtao Lin
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
16
|
Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:221-41. [DOI: 10.1007/978-3-319-22536-4_13] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nat Commun 2015; 6:8968. [PMID: 26597439 PMCID: PMC4673873 DOI: 10.1038/ncomms9968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022] Open
Abstract
Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which can focus light with improved efficiency and sub-ultrasound wavelength resolution. This method ultrasonically destroys microbubbles, and measures the wavefront change to compute and render a suitable time-reversed wavefront solution for focusing. We demonstrate that the TRUME technique can create an optical focus at the site of bubble destruction with a size of ∼2 μm. We further demonstrate a twofold enhancement in addressable focus resolution in a microbubble aggregate target by exploiting the nonlinear pressure-to-destruction response of the microbubbles. The reported technique provides a deep tissue-focusing solution with high efficiency, resolution, and specificity. Focusing light inside biological tissue is challenging due to its strong scattering nature. Here, the authors develop a technique that uses ultrasonically destroyed microbubbles to assist in the computation of a wavefront solution which forms optical foci at the microbubble destruction sites.
Collapse
Affiliation(s)
- Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Mooseok Jang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| |
Collapse
|
18
|
Wallace N, Dicker S, Lewin P, Wrenn SP. Inertial cavitation threshold of nested microbubbles. ULTRASONICS 2015; 58:67-74. [PMID: 25620709 DOI: 10.1016/j.ultras.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively.
Collapse
Affiliation(s)
- N Wallace
- Department of Chemical Engineering, Drexel University, Philadelphia, PA, USA
| | - S Dicker
- Department of Chemical Engineering, Drexel University, Philadelphia, PA, USA
| | - Peter Lewin
- Department of Chemical Engineering, Drexel University, Philadelphia, PA, USA
| | - S P Wrenn
- Department of Chemical Engineering, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014; 72:28-48. [PMID: 24667643 DOI: 10.1016/j.addr.2014.03.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.
Collapse
|
20
|
Helfield BL, Leung BYC, Goertz DE. The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles. Phys Med Biol 2014; 59:1721-45. [DOI: 10.1088/0031-9155/59/7/1721] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|