1
|
Wear KA. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:358-375. [PMID: 33186102 PMCID: PMC8325172 DOI: 10.1109/tuffc.2020.3037946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t 43 ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t 43 ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t 43 ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t 43 , and [Formula: see text] for ARFI and pulsed Doppler signals.
Collapse
|
2
|
Torres G, Czernuszewicz TJ, Homeister JW, Caughey MC, Huang BY, Lee ER, Zamora CA, Farber MA, Marston WA, Huang DY, Nichols TC, Gallippi CM. Delineation of Human Carotid Plaque Features In Vivo by Exploiting Displacement Variance. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:481-492. [PMID: 30762544 PMCID: PMC7952026 DOI: 10.1109/tuffc.2019.2898628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
While in vivo acoustic radiation force impulse (ARFI)-induced peak displacement (PD) has been demonstrated to have high sensitivity and specificity for differentiating soft from stiff plaque components in patients with carotid plaque, the parameter exhibits poorer performance for distinguishing between plaque features with similar stiffness. To improve discrimination of carotid plaque features relative to PD, we hypothesize that signal correlation and signal-to-noise ratio (SNR) can be combined, outright or via displacement variance. Plaque feature detection by displacement variance, evaluated as the decadic logarithm of the variance of acceleration and termed "log(VoA)," was compared to that achieved by exploiting SNR, cross correlation coefficient, and ARFI-induced PD outcome metrics. Parametric images were rendered for 25 patients undergoing carotid endarterectomy, with spatially matched histology confirming plaque composition and structure. On average, across all plaques, log(VoA) was the only outcome metric with values that statistically differed between regions of lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), collagen (COL), and calcium (CAL). Further, log(VoA) achieved the highest contrast-to-noise ratio (CNR) for discriminating between LRNC and IPH, COL and CAL, and grouped soft (LRNC and IPH) and stiff (COL and CAL) plaque components. More specifically, relative to the previously demonstrated ARFI PD parameter, log(VoA) achieved 73% higher CNR between LRNC and IPH and 59% higher CNR between COL and CAL. These results suggest that log(VoA) enhances the differentiation of LRNC, IPH, COL, and CAL in human carotid plaques, in vivo, which is clinically relevant to improving stroke risk prediction and medical management.
Collapse
|
3
|
Shih CC, Chen PY, Ma T, Zhou Q, Shung KK, Huang CC. Development of an intravascular ultrasound elastography based on a dual-element transducer. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180138. [PMID: 29765694 PMCID: PMC5936959 DOI: 10.1098/rsos.180138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 06/03/2023]
Abstract
The ability to measure the elastic properties of plaques and vessels would be useful in clinical diagnoses, particularly for detecting a vulnerable plaque. This study demonstrates the feasibility of the combination of intravascular ultrasound (IVUS) and acoustic radiation force elasticity imaging for detecting the distribution of stiffness within atherosclerotic arteries ex vivo. A dual-frequency IVUS transducer with two elements was used to induce the propagation of the shear wave (by the 8.5 MHz pushing element) which could be simultaneously monitored by the 31 MHz imaging element. The wave-amplitude image and the wave-velocity image were reconstructed by measuring the peak displacement and wave velocity of shear wave propagation, respectively. System performance was verified using gelatin phantoms. The phantom results demonstrate that the stiffness differences of shear modulus of 1.6 kPa can be distinguished through the wave-amplitude and wave-velocity images. The stiffness distributions of the atherosclerotic aorta from a rabbit were obtained, for which the values of peak displacement and the shear wave velocity were 3.7 ± 1.2 µm and 0.38 ± 0.19 m s-1 for the lipid-rich plaques, and 1.0 ± 0.2 µm and 3.45 ± 0.45 m s-1 for the arterial walls, respectively. These results indicate that IVUS elasticity imaging can be used to distinguish the elastic properties of plaques and vessels.
Collapse
Affiliation(s)
- Cho-Chiang Shih
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Teng Ma
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Czernuszewicz TJ, Homeister JW, Caughey MC, Wang Y, Zhu H, Huang BY, Lee ER, Zamora CA, Farber MA, Fulton JJ, Ford PF, Marston WA, Vallabhaneni R, Nichols TC, Gallippi CM. Performance of acoustic radiation force impulse ultrasound imaging for carotid plaque characterization with histologic validation. J Vasc Surg 2017; 66:1749-1757.e3. [PMID: 28711401 DOI: 10.1016/j.jvs.2017.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Stroke is commonly caused by thromboembolic events originating from ruptured carotid plaque with vulnerable composition. This study assessed the performance of acoustic radiation force impulse (ARFI) imaging, a noninvasive ultrasound elasticity imaging method, for delineating the composition of human carotid plaque in vivo with histologic validation. METHODS Carotid ARFI images were captured before surgery in 25 patients undergoing clinically indicated carotid endarterectomy. The surgical specimens were histologically processed with sectioning matched to the ultrasound imaging plane. Three radiologists, blinded to histology, evaluated parametric images of ARFI-induced peak displacement to identify plaque features such as necrotic core (NC), intraplaque hemorrhage (IPH), collagen (COL), calcium (CAL), and fibrous cap (FC) thickness. Reader performance was measured against the histologic standard using receiver operating characteristic curve analysis, linear regression, Spearman correlation (ρ), and Bland-Altman analysis. RESULTS ARFI peak displacement was two-to-four-times larger in regions of NC and IPH relative to regions of COL or CAL. Readers detected soft plaque features (NC/IPH) with a median area under the curve of 0.887 (range, 0.867-0.924) and stiff plaque features (COL/CAL) with median area under the curve of 0.859 (range, 0.771-0.929). FC thickness measurements of two of the three readers correlated with histology (reader 1: R2 = 0.64, ρ = 0.81; reader 2: R2 = 0.89, ρ = 0.75). CONCLUSIONS This study suggests that ARFI is capable of distinguishing soft from stiff atherosclerotic plaque components and delineating FC thickness.
Collapse
Affiliation(s)
- Tomasz J Czernuszewicz
- Joint Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC
| | - Jonathon W Homeister
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC
| | - Melissa C Caughey
- Department of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Yue Wang
- Department of Biostatistics, The University of North Carolina, Chapel Hill, NC
| | - Hongtu Zhu
- Department of Biostatistics, The University of North Carolina, Chapel Hill, NC
| | - Benjamin Y Huang
- Department of Radiology, The University of North Carolina, Chapel Hill, NC
| | - Ellie R Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC
| | - Carlos A Zamora
- Department of Radiology, The University of North Carolina, Chapel Hill, NC
| | - Mark A Farber
- Department of Surgery, The University of North Carolina, Chapel Hill, NC
| | - Joseph J Fulton
- Department of Surgery, The University of North Carolina, Chapel Hill, NC
| | - Peter F Ford
- Department of Surgery, The University of North Carolina, Chapel Hill, NC
| | - William A Marston
- Department of Surgery, The University of North Carolina, Chapel Hill, NC
| | | | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC; Department of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Caterina M Gallippi
- Joint Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC; Department of Radiology, The University of North Carolina, Chapel Hill, NC; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC.
| |
Collapse
|
5
|
de Korte CL, Fekkes S, Nederveen AJ, Manniesing R, Hansen HRHG. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1613-1623. [PMID: 27249826 DOI: 10.1109/tuffc.2016.2572260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
Collapse
|
6
|
Czernuszewicz TJ, Gallippi CM. On the Feasibility of Quantifying Fibrous Cap Thickness With Acoustic Radiation Force Impulse (ARFI) Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1262-75. [PMID: 26955026 PMCID: PMC5084842 DOI: 10.1109/tuffc.2016.2535440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acute cerebrovascular accidents are associated with the rupture of vulnerable atherosclerotic plaques in the carotid arteries. Fibrous cap (FC) thickness has been shown to be an important predictor of plaque rupture but has been challenging to measure accurately with clinical noninvasive imaging modalities. The goals of this investigation were first, to evaluate the feasibility of using transcutaneous acoustic radiation force impulse (ARFI) ultrasound to quantify FC thickness and second, to optimize both imaging and motion-tracking parameters to support such measurements. FCs with varying thickness (0.1-1.0 mm) were simulated using a simple-layered geometry, and their mechanical response to an impulse of radiation force was solved using finite-element method (FEM) modeling. Ultrasound tracking of FEM displacements was performed in Field II utilizing three center frequencies (6, 9, and 12 MHz) and eight motion-tracking kernel lengths ( 0.5λ-4λ). Additionally, FC thickness in two carotid plaques imaged in vivo was measured with ARFI and compared to matched histology. The results of this study demonstrate that 1) tracking pulse frequencies around 12 MHz are necessary to resolve caps around 0.2 mm; 2) large motion-tracking kernel sizes introduce bias into thickness measurements and overestimate the true cap thickness; and 3) color saturation settings on ARFI peak displacement images can impact thickness measurement accuracy substantially.
Collapse
Affiliation(s)
- Tomasz J. Czernuszewicz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Caterina M. Gallippi
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA. Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Shih CC, Lai TY, Huang CC. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results. ULTRASONICS 2016; 70:64-74. [PMID: 27135187 DOI: 10.1016/j.ultras.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 05/13/2023]
Abstract
The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the experimental results reported herein can be applied in ARFI-IVUS imaging applications.
Collapse
Affiliation(s)
- Cho-Chiang Shih
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Czernuszewicz TJ, Homeister JW, Caughey MC, Farber MA, Fulton JJ, Ford PF, Marston WA, Vallabhaneni R, Nichols TC, Gallippi CM. Non-invasive in vivo characterization of human carotid plaques with acoustic radiation force impulse ultrasound: comparison with histology after endarterectomy. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:685-97. [PMID: 25619778 PMCID: PMC4331250 DOI: 10.1016/j.ultrasmedbio.2014.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 08/30/2014] [Accepted: 09/10/2014] [Indexed: 05/03/2023]
Abstract
Ischemic stroke from thromboembolic sources is linked to carotid artery atherosclerotic disease with a trend toward medical management in asymptomatic patients. Extent of disease is currently diagnosed by non-invasive imaging techniques that measure luminal stenosis, but it has been suggested that a better biomarker for determining risk of future thromboembolic events is plaque morphology and composition. Specifically, plaques that are composed of mechanically soft lipid/necrotic regions covered by thin fibrous caps are the most vulnerable to rupture. An ultrasound technique that non-invasively interrogates the mechanical properties of soft tissue, called acoustic radiation force impulse (ARFI) imaging, has been developed as a new modality for atherosclerotic plaque characterization using phantoms and atherosclerotic pigs, but the technique has yet to be validated in vivo in humans. In this preliminary study, in vivo ARFI imaging is presented in a case study format for four patients undergoing clinically indicated carotid endarterectomy and compared with histology. In two type Va plaques, characterized by lipid/necrotic cores covered by fibrous caps, mean ARFI displacements in focal regions were high relative to the surrounding plaque material, suggesting soft features were covered by stiffer layers within the plaques. In two type Vb plaques, characterized by heavy calcification, mean ARFI peak displacements were low relative to the surrounding plaque and arterial wall, suggesting stiff tissue. This pilot study illustrates the feasibility and challenges of transcutaneous ARFI for characterizing the material and structural composition of carotid atherosclerotic plaques via mechanical properties, in humans, in vivo.
Collapse
Affiliation(s)
- Tomasz J Czernuszewicz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jonathon W Homeister
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melissa C Caughey
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mark A Farber
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joseph J Fulton
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peter F Ford
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William A Marston
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caterina M Gallippi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
Haslauer CM, Proffen BL, Johnson VM, Hill A, Murray MM. Gene expression of catabolic inflammatory cytokines peak before anabolic inflammatory cytokines after ACL injury in a preclinical model. JOURNAL OF INFLAMMATION-LONDON 2014; 11:34. [PMID: 25400511 PMCID: PMC4232656 DOI: 10.1186/s12950-014-0034-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 10/08/2014] [Indexed: 12/28/2022]
Abstract
Background The response of the joint to anterior cruciate ligament (ACL) injury has not been fully characterized. In particular, the characterization of both catabolic factors, including interleukin-6 (IL-6), interleukin-8 (IL-8), and markers of ongoing tissue damage (CRP), and anabolic factors, including vascular endothelial growth factor (VEGF), transforming growth factor β-induced (TGFβI), and the presence of CD163+ macrophages, have not been well defined. In this study, we hypothesized ACL injury would catalyze both catabolic and anabolic processes and that these would have different temporal profiles of expression. Methods Adolescent Yucatan minipigs were subjected to ACL transection. Within the joint, gene expression levels of IL-6, IL-8, VEGF, and TGFβI were quantified in the synovium, ligament, and provisional scaffold located between the torn ligament ends at days 1, 5, 9, and 14 post-injury. Macrophage infiltration was also assessed in the joint tissues over the two week period. Serum C-reactive protein (CRP) levels were measured at multiple time points between 1 hour to 14 days after injury. Results Increases in IL-6 and IL-8 gene expression peaked at day 1 after injury in the synovium and ligament. CRP levels were significantly increased at day 3 before returning to pre-injury levels. VEGF and TGFβI gene expression did not significantly increase until day 9 in the synovium and were unchanged in the other tissues. CD163+ macrophages increased in the ligament and synovium until day 9. Conclusion Taken together, these results suggest that the response within the joint is primarily catabolic in the first three days after injury, switching to a more anabolic phase by nine days after injury. The effect of medications which alter these processes may thus depend on the timing of administration after injury.
Collapse
Affiliation(s)
- Carla M Haslauer
- Department of Orthopaedic Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Benedikt L Proffen
- Department of Orthopaedic Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Victor M Johnson
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA USA
| | - Adele Hill
- Department of Orthopaedic Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA ; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Martha M Murray
- Department of Orthopaedic Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|