1
|
Xiao Y, Jin J, Yuan Y, Zhao Y, Li D. A New Estimation Scheme for Improving the Performance of Shear Wave Elasticity Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:289-308. [PMID: 36283938 DOI: 10.1016/j.ultrasmedbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Shear wave velocity (SWV) reconstruction based on time-of-flight (TOF) is widely adopted to realize shear wave elasticity imaging (SWEI). It typically breaks down the reconstruction of a SWV image into many kernels and treats them independently. We hypothesized that information exchange among kernels improves the performance of SWEI. Therefore, we propose the approach of iterative re-weighted least squares based on inter-kernel communication (IKC-IRLS). We also hypothesized that time-to-peak (TTP) is superior to cross-correlation (CC) in visualizing small targets because TTP uses higher shear wave frequencies than CC. To examine the hypotheses, IKC-IRLS was combined with TTP data and compared with four established methods. The five methods were tested by imaging several small-size stiff targets (2.5, 4.0 and 6.4 mm in diameter) using different kernel sizes in the simulation and real experiments. The results indicate that the IKC-IRLS approach can mitigate speckle noise and is robust to TTP outliers. Consequently, the proposed method achieves the highest contrast-to-noise ratio and the lowest mean absolute percentage error of target in almost all tested cases.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jing Jin
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China.
| | - Yu Yuan
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Yue Zhao
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dandan Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Wood BG, Kijanka P, Liu HC, Urban MW. Evaluation of Robustness of Local Phase Velocity Imaging in Homogenous Tissue-Mimicking Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3514-3528. [PMID: 34456084 PMCID: PMC8578323 DOI: 10.1016/j.ultrasmedbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Shear wave elastography (SWE) is a method of evaluating mechanical properties of soft tissues. Most current implementations of SWE report the group velocity for shear wave velocity, which assumes an elastic, isotropic, homogenous and incompressible tissue. Local phase velocity imaging (LPVI) is a novel method of phase velocity reconstruction that allows for accurate evaluation of shear wave velocity at specified frequencies. This method's robustness was evaluated in 11 elastic and 8 viscoelastic phantoms using linear and curvilinear arrays. We acquired data with acoustic radiation force push beams with different focal depths and F-numbers and reconstructed phase velocity images over a wide range of frequencies. Regardless of phantom, push beam focal depth and reconstruction frequency, an F-number around 3.0 was found to produce the largest usable area in the phase velocity reconstructions. For elastic phantoms scanned with a linear array, the optimal focal depth, frequency range and maximum region of interest (ROI) were 20-30 mm, 100-400 Hz and 2.70 cm2, respectively. For viscoelastic phantoms scanned with a linear array, the optimal focal depth, frequency and maximum ROI were 20-30 mm, 100-300 Hz and 1.54 cm2, respectively. For the curvilinear array in the same phantoms, optimal focal depth, frequency range and maximum ROIs were 45-60 mm, 100-400 and 100-300 Hz and 1.54 cm2, respectively. In further work, LPVI reconstructions from inclusion phantoms will be evaluated to simulate non-homogeneous tissues. Additionally, LPVI will be evaluated in larger-volume phantoms to account for wave reflection from the containers when using the curvilinear array.
Collapse
Affiliation(s)
- Benjamin G Wood
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow, Poland
| | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
3
|
Wiseman LM, Urban MW, McGough RJ. A parametric evaluation of shear wave speeds estimated with time-of-flight calculations in viscoelastic media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1349. [PMID: 33003848 PMCID: PMC7482672 DOI: 10.1121/10.0001813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elasticity imaging (SWEI) uses an acoustic radiation force to generate shear waves, and then soft tissue mechanical properties are obtained by analyzing the shear wave data. In SWEI, the shear wave speed is often estimated with time-of-flight (TOF) calculations. To characterize the errors produced by TOF calculations, three-dimensional (3D) simulated shear waves are described by time-domain Green's functions for a Kelvin-Voigt model evaluated for multiple combinations of the shear elasticity and the shear viscosity. Estimated shear wave speeds are obtained from cross correlations and time-to-peak (TTP) calculations applied to shear wave particle velocities and shear wave particle displacements. The results obtained from these 3D shear wave simulations indicate that TTP calculations applied to shear wave particle displacements yield effective estimates of the shear wave speed if noise is absent, but cross correlations applied to shear wave particle displacements are more robust when the effects of noise and shear viscosity are included. The results also show that shear wave speeds estimated with TTP methods and cross correlations using shear wave particle velocities are more sensitive to increases in shear viscosity and noise, which suggests that superior estimates of the shear wave speed are obtained from noiseless or noisy shear wave particle displacements.
Collapse
Affiliation(s)
- Luke M Wiseman
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert J McGough
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
4
|
Wiseman LM, Urban MW, McGough RJ. A parametric evaluation of shear wave speeds estimated with time-of-flight calculations in viscoelastic media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1349. [PMID: 33003848 PMCID: PMC7482672 DOI: 10.1121/10.0001813#suppl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elasticity imaging (SWEI) uses an acoustic radiation force to generate shear waves, and then soft tissue mechanical properties are obtained by analyzing the shear wave data. In SWEI, the shear wave speed is often estimated with time-of-flight (TOF) calculations. To characterize the errors produced by TOF calculations, three-dimensional (3D) simulated shear waves are described by time-domain Green's functions for a Kelvin-Voigt model evaluated for multiple combinations of the shear elasticity and the shear viscosity. Estimated shear wave speeds are obtained from cross correlations and time-to-peak (TTP) calculations applied to shear wave particle velocities and shear wave particle displacements. The results obtained from these 3D shear wave simulations indicate that TTP calculations applied to shear wave particle displacements yield effective estimates of the shear wave speed if noise is absent, but cross correlations applied to shear wave particle displacements are more robust when the effects of noise and shear viscosity are included. The results also show that shear wave speeds estimated with TTP methods and cross correlations using shear wave particle velocities are more sensitive to increases in shear viscosity and noise, which suggests that superior estimates of the shear wave speed are obtained from noiseless or noisy shear wave particle displacements.
Collapse
Affiliation(s)
- Luke M Wiseman
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert J McGough
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
5
|
Kirby MA, Zhou K, Pitre JJ, Gao L, Li D, Pelivanov I, Song S, Li C, Huang Z, Shen T, Wang R, O’Donnell M. Spatial resolution in dynamic optical coherence elastography. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-16. [PMID: 31535538 PMCID: PMC6749618 DOI: 10.1117/1.jbo.24.9.096006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/26/2019] [Indexed: 05/03/2023]
Abstract
Dynamic optical coherence elastography (OCE) tracks elastic wave propagation speed within tissue, enabling quantitative three-dimensional imaging of the elastic modulus. We show that propagating mechanical waves are mode converted at interfaces, creating a finite region on the order of an acoustic wavelength where there is not a simple one-to-one correspondence between wave speed and elastic modulus. Depending on the details of a boundary’s geometry and elasticity contrast, highly complex propagating fields produced near the boundary can substantially affect both the spatial resolution and contrast of the elasticity image. We demonstrate boundary effects on Rayleigh waves incident on a vertical boundary between media of different shear moduli. Lateral resolution is defined by the width of the transition zone between two media and is the limit at which a physical inclusion can be detected with full contrast. We experimentally demonstrate results using a spectral-domain OCT system on tissue-mimicking phantoms, which are replicated using numerical simulations. It is shown that the spatial resolution in dynamic OCE is determined by the temporal and spatial characteristics (i.e., bandwidth and spatial pulse width) of the propagating mechanical wave. Thus, mechanical resolution in dynamic OCE inherently differs from the optical resolution of the OCT imaging system.
Collapse
Affiliation(s)
- Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Kanheng Zhou
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - John J. Pitre
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Ivan Pelivanov, E-mail:
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Chunhui Li
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - Zhihong Huang
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - Tueng Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
6
|
Racedo J, Urban MW. Evaluation of Reconstruction Parameters for 2-D Comb-Push Ultrasound Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:254-263. [PMID: 30507530 PMCID: PMC6375804 DOI: 10.1109/tuffc.2018.2884348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Shear wave elastography (SWE) is a noninvasive ultrasound imaging modality used in the assessment of the mechanical properties of tissues such as the liver, kidney, skeletal muscle, thyroid, and the breast. Among the methods used to perform SWE is the comb-push ultrasound shear elastography method. This method uses multiple focused ultrasound beams to generate push beams with acoustic radiation force. Applying these push beams generates propagating shear waves. The propagation motion is measured with ultrafast ultrasound imaging. The shear wave motion data are directionally filtered, and a 2-D shear wave velocity (SWV) algorithm is applied to create group velocity maps. This algorithm uses a moving window and a specified patch for performing cross-correlations of time-domain signals. We performed a parametric study of how the choice of the patch and window size affected the reconstruction of the SWV in homogeneous and inclusion phantoms. We quantified the mean velocity and coefficient of variation in the homogeneous phantoms. We measured the contrast-to-noise ratio and bias in the inclusion phantoms. In each of these cases, we found that particular combinations of the patch and window provided optimal values of these evaluation metrics for the phantoms tested. This study provides a basis to construct algorithms to produce optimal SWV reconstructions for various clinical applications.
Collapse
Affiliation(s)
- Jorge Racedo
- Department of Biomedical Engineering and Department of Physics, Universidad de los Andes, Bogota D.C., 111711 Colombia ( )
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA and also with the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|