1
|
Liu B, Su M, Zhang Z, Sun L, Yu Y, Qiu W. A Novel Coded Excitation Imaging Platform for Ultra-High Frequency (>100 MHz) Ultrasound Applications. IEEE Trans Biomed Eng 2025; 72:1298-1305. [PMID: 40030372 DOI: 10.1109/tbme.2024.3496843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ultra-high frequency (UHF, >100 MHz) ultrasound imaging has significant potential applications in musculoskeletal anatomy, skin, oral mucosa, and the eyes as a new high-resolution imaging technique. However, large acoustic attenuation of biological tissues greatly limits the depth of penetration of UHF ultrasound. Improving penetration depth while maintaining high-definition images is of clinical importance for UHF ultrasound imaging. Coded excitation imaging is known to be an effective method to increase the penetration depth of high-frequency ultrasound. Nevertheless, the feasibility of this technique has not yet been established in UHF ultrasound imaging. In addition, conventional coded excitation imaging systems are bulky, expensive, and lack flexibility. In this study, we propose a coded excitation imaging platform for UHF ultrasound. The platform integrates a high-performance ultrasound transmitter and a high sampling rate signal receiver to enable UHF ultrasound applications. A UHF ultrasound transducer was developed using LiNbO3 with a center frequency of 121.5 MHz to validate the imaging performance of the platform. High voltage short pulse and chirp coded pulse are used for the imaging, and the data show that the proposed coded method improved the signal-to-noise ratio (SNR) by nearly 10 dB at a similar spatial resolution. The results indicate that this platform has promising applications in UHF ultrasound imaging.
Collapse
|
2
|
Kumari V, Katiyar A, Bhagawati M, Maindarkar M, Gupta S, Paul S, Chhabra T, Boi A, Tiwari E, Rathore V, Singh IM, Al-Maini M, Anand V, Saba L, Suri JS. Transformer and Attention-Based Architectures for Segmentation of Coronary Arterial Walls in Intravascular Ultrasound: A Narrative Review. Diagnostics (Basel) 2025; 15:848. [PMID: 40218198 PMCID: PMC11988294 DOI: 10.3390/diagnostics15070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background: The leading global cause of death is coronary artery disease (CAD), necessitating early and precise diagnosis. Intravascular ultrasound (IVUS) is a sophisticated imaging technique that provides detailed visualization of coronary arteries. However, the methods for segmenting walls in the IVUS scan into internal wall structures and quantifying plaque are still evolving. This study explores the use of transformers and attention-based models to improve diagnostic accuracy for wall segmentation in IVUS scans. Thus, the objective is to explore the application of transformer models for wall segmentation in IVUS scans to assess their inherent biases in artificial intelligence systems for improving diagnostic accuracy. Methods: By employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, we pinpointed and examined the top strategies for coronary wall segmentation using transformer-based techniques, assessing their traits, scientific soundness, and clinical relevancy. Coronary artery wall thickness is determined by using the boundaries (inner: lumen-intima and outer: media-adventitia) through cross-sectional IVUS scans. Additionally, it is the first to investigate biases in deep learning (DL) systems that are associated with IVUS scan wall segmentation. Finally, the study incorporates explainable AI (XAI) concepts into the DL structure for IVUS scan wall segmentation. Findings: Because of its capacity to automatically extract features at numerous scales in encoders, rebuild segmented pictures via decoders, and fuse variations through skip connections, the UNet and transformer-based model stands out as an efficient technique for segmenting coronary walls in IVUS scans. Conclusions: The investigation underscores a deficiency in incentives for embracing XAI and pruned AI (PAI) models, with no UNet systems attaining a bias-free configuration. Shifting from theoretical study to practical usage is crucial to bolstering clinical evaluation and deployment.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (A.K.)
| | - Alok Katiyar
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (A.K.)
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Mahesh Maindarkar
- School of Bioengineering Research and Sciences, MIT Art, Design and Technology University, Pune 412021, India;
| | - Siddharth Gupta
- Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India;
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (V.R.); (I.M.S.); (V.A.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Tisha Chhabra
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India;
| | - Alberto Boi
- Department of Cardiology, University of Cagliari, 09124 Cagliari, Italy; (A.B.); (L.S.)
| | - Ekta Tiwari
- Department of Computer Science, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India;
| | - Vijay Rathore
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (V.R.); (I.M.S.); (V.A.)
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (V.R.); (I.M.S.); (V.A.)
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Vinod Anand
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (V.R.); (I.M.S.); (V.A.)
| | - Luca Saba
- Department of Cardiology, University of Cagliari, 09124 Cagliari, Italy; (A.B.); (L.S.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (V.R.); (I.M.S.); (V.A.)
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun 248002, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune 440008, India
- University Centre for Research & Development, Chandigarh University, Mohali 140413, India
| |
Collapse
|
3
|
Liu X, Li Y, Qin H, Peng C. High-Frequency 64-Element Ring-Annular Array Transducer: Development and Preclinical Validation for Intravascular Ultrasound Imaging. BIOSENSORS 2025; 15:169. [PMID: 40136966 PMCID: PMC11939971 DOI: 10.3390/bios15030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
Intravascular ultrasound (IVUS) imaging has become an essential method for diagnosing coronary artery disease. However, traditional mechanically rotational IVUS catheters encounter issues such as mechanical wear and imaging distortions in curved vessels. The ring-annular IVUS array has gained attention because it offers superior imaging performance without the need for mechanical rotational parts, thereby avoiding rotational imaging distortion. An optimized mechanical micromachining process employing precision dicing technology is proposed in this study, with the objective of achieving higher operating frequencies and minimized outer diameters for a 64-element ring-annular array. This method broadens the range of fabrication options and improves the imaging sensitivity of ring-annular IVUS arrays, as well as eliminating imaging distortion in rotational IVUS catheters, particularly in curved vessels. The probe has a 7.5 Fr (2.5 mm) outer diameter, with key fabrication steps including precision dicing, flexible circuit integration, and Parylene C encapsulation. The ring-annular array has a center frequency of 21.51 MHz with 67.87% bandwidth, with a 56 µm axial resolution and a 276 µm lateral resolution. The imaging performance is further validated by in vitro phantom imaging and ex vivo imaging.
Collapse
Affiliation(s)
| | | | | | - Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Stafford-Williams RM, Colchester RJ, Bodian S, Cardiff S, Maneas E, Zhang EZ, Beard PC, Tiwari MK, Desjardins AE, Alles EJ. Sustained real-time and video-rate interventional optical ultrasound imaging. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036005. [PMID: 40124465 PMCID: PMC11927002 DOI: 10.1117/1.jbo.30.3.036005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 03/25/2025]
Abstract
Significance Minimally invasive surgery offers improved recovery times and reduced complication risk compared with open surgery. However, effective image acquisition probes suitable for deployment in clinical workflows are key to the success of such procedures. Fiber-optic optical ultrasound (OpUS) offers strong potential for interventional image guidance due to its small lateral probe dimensions and high imaging resolution, but to date, such miniature imaging probes have only yielded M-mode (single image line) or still images. Aim Here, we present a motorized actuation approach to fiber-optic interventional OpUS imaging that enables sustained and video-rate imaging while retaining its small form factor. Approach A fabrication method utilizing a commercial laser cutter is presented that yields partially forward-emitting OpUS sources ideally suited for interventional image guidance. These transmitters were incorporated into a miniature imaging probe with a width of just 600 μ m (1.8 mm with protective encapsulation) and combined with a linear actuator to synthesize an imaging aperture at the distal end of the probe through manipulation at its proximal end. Results The presented imaging paradigm achieved real-time, two-dimensional OpUS imaging at frame rates of up to 7 Hz and was capable of high-resolution imaging ( 94 μ m axial and 241 μ m lateral). The imaging performance of the presented imaging system was assessed using various imaging phantoms, and its clinical suitability was confirmed by emulating endobronchial OpUS imaging through a commercial bronchoscope. Conclusions These results constitute the first-ever sustained, real-time dynamic imaging using a side-viewing single-element OpUS probe via rapid actuation, which enables a wide range of applications in minimally invasive surgical guidance.
Collapse
Affiliation(s)
- Robert M. Stafford-Williams
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| | - Richard J. Colchester
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| | - Semyon Bodian
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| | - Seán Cardiff
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
| | - Efthymios Maneas
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| | - Edward Z. Zhang
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
| | - Paul C. Beard
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| | - Manish K. Tiwari
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
- University College London, UCL Mechanical Engineering, Faculty of Engineering Sciences, London, United Kingdom
| | - Adrien E. Desjardins
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| | - Erwin J. Alles
- University College London, Department of Medical Physics & Biomedical Engineering, Faculty of Engineering Sciences, London, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Faculty of Engineering Sciences, London, United Kingdom
| |
Collapse
|
5
|
Aldana-Bitar J, Golub IS, Moore J, Krishnan S, Verghese D, Manubolu VS, Benzing T, Ichikawa K, Hamal S, Kianoush S, Anderson LR, Ramirez NR, Leipsic JA, Karlsberg RP, Budoff MJ. Colchicine and plaque: A focus on atherosclerosis imaging. Prog Cardiovasc Dis 2024; 84:68-75. [PMID: 38423236 DOI: 10.1016/j.pcad.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Colchicine is an anti-inflammatory medication, classically used to treat a wide spectrum of autoimmune diseases. More recently, colchicine has proven itself a key pharmacotherapy in cardiovascular disease (CVD) management, atherosclerotic plaque modification, and coronary artery disease (CAD) treatment. Colchicine acts on many anti-inflammatory pathways, which translates to cardiovascular event reduction, plaque transformation, and plaque reduction. With the FDA's 2023 approval of colchicine for reducing cardiovascular events, a novel clinical pathway opens. This advancement paves the route for CVD management that synergistically merges lipid lowering approaches with inflammation inhibition modalities. This pioneering moment spurs the need for this manuscript's comprehensive review. Hence, this paper synthesizes and surveys colchicine's new role as an atherosclerotic plaque modifier, to provide a framework for physicians in the clinical setting. We aim to improve understanding (and thereby application) of colchicine alongside existing mechanisms for CVD event reduction. This paper examines colchicine's anti-inflammatory mechanism, and reviews large cohort studies that evidence colchicine's blossoming role within CAD management. This paper also outlines imaging modalities for atherosclerotic analysis, reviews colchicine's mechanistic effect upon plaque transformation itself, and synthesizes trials which assess colchicine's nuanced effect upon atherosclerotic transformation.
Collapse
Affiliation(s)
- Jairo Aldana-Bitar
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA.
| | - Ilana S Golub
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Jeff Moore
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Srikanth Krishnan
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; Department of Medicine, Division of Cardiology, University of California Los Angeles, Westwood, CA, USA
| | - Dhiran Verghese
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Venkat S Manubolu
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Travis Benzing
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Keshi Ichikawa
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Sajad Hamal
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Sina Kianoush
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Lauren R Anderson
- Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA
| | - Noah R Ramirez
- Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Canada
| | - Ronald P Karlsberg
- Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA
| | - Matthew J Budoff
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| |
Collapse
|
6
|
Yu J, Kim S. Identification of Coronary Healed Plaque Using a Combined High-Definition 35-65 MHz Intravascular Ultrasound and Near-Infrared Spectroscopy. Korean Circ J 2024; 54:110-112. [PMID: 38346699 PMCID: PMC10864254 DOI: 10.4070/kcj.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Affiliation(s)
- Jiyeon Yu
- Cardiovascular Center, Korea University Ansan Hospital, Ansan, Korea
| | - Sunwon Kim
- Cardiovascular Center, Korea University Ansan Hospital, Ansan, Korea.
| |
Collapse
|
7
|
He Y, Liu X, Zhang J, Peng C. A Backing-Layer-Shared Miniature Dual-Frequency Ultrasound Probe for Intravascular Ultrasound Imaging: In Vitro and Ex Vivo Validations. BIOSENSORS 2023; 13:971. [PMID: 37998146 PMCID: PMC10669229 DOI: 10.3390/bios13110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Intravascular ultrasound (IVUS) imaging has been extensively utilized to visualize atherosclerotic coronary artery diseases and to guide coronary interventions. To receive ultrasound signals within the vessel wall safely and effectively, miniaturized ultrasound transducers that meet the strict size constraints and have a simple manufacturing procedure are highly demanded. In this work, the first known IVUS probe that employs a backing-layer-shared dual-frequency structure and a single coaxial cable is introduced, featuring a small thickness and easy interconnection procedure. The dual-frequency transducer is designed to have center frequencies of 30 MHz and 80 MHz, and both have an aperture size of 0.5 mm × 0.5 mm. The total thickness of the dual-frequency transducer is less than 700 µm. In vitro phantom imaging and ex vivo porcine coronary artery imaging experiments are conducted. The low-frequency transducer achieves spatial resolutions of 40 µm axially and 321 µm laterally, while the high-frequency transducer exhibits axial and lateral resolutions of 17 µm and 247 µm, respectively. A bandpass filter is utilized to separate the ultrasound images. Combining in vitro phantom imaging analysis with ex vivo imaging validation, a comprehensive demonstration of the promising application of the proposed miniature ultrasound probe is established.
Collapse
Affiliation(s)
- Yashuo He
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Xi Liu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Jiayi Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Wang L, Zhao Y, Zheng B, Huo Y, Fan Y, Ma D, Gu Y, Wang P. Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. SCIENCE ADVANCES 2023; 9:eadg8600. [PMID: 37294755 PMCID: PMC10256152 DOI: 10.1126/sciadv.adg8600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Conventional intravascular ultrasound (IVUS) uses piezoelectric transducers to electrically generate and receive ultrasound. However, it remains a challenge to achieve large bandwidth for high resolution without compromising imaging depth. We report an all-optical IVUS (AO-IVUS) imaging system using picosecond laser pulse-pumped carbon composite for ultrasound excitation and π-phase-shifted fiber Bragg gratings for ultrasound detection. Using this all-optical technique, we achieved ultrawide-bandwidth (147%) and high-resolution (18.6 micrometers) IVUS imaging, which is unattainable by conventional technique. Imaging performance has been characterized in phantoms, presenting 18.6-micrometer axial resolution, 124-micrometer lateral resolution, and 7-millimeter imaging depth. Rotational pullback imaging scans are performed in rabbit iliac artery, porcine coronary artery, and rabbit arteries with drug-eluting metal stents, in parallel with commercial intravenous ultrasound scans as reference. Results demonstrated the advantages of high-resolution AO-IVUS in delineating details in vascular structures, showing great potential in clinical applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yongwen Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Bo Zheng
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Yong Huo
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Dinglong Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Gu
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Nagli M, Koch J, Hazan Y, Levi A, Ternyak O, Overmeyer L, Rosenthal A. High-resolution silicon photonics focused ultrasound transducer with a sub-millimeter aperture. OPTICS LETTERS 2023; 48:2668-2671. [PMID: 37186736 DOI: 10.1364/ol.486567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present an all-optical focused ultrasound transducer with a sub-millimeter aperture and demonstrate its capability for high-resolution imaging of tissue ex vivo. The transducer is composed of a wideband silicon photonics ultrasound detector and a miniature acoustic lens coated with a thin optically absorbing metallic layer used to produce laser-generated ultrasound. The demonstrated device achieves axial resolution and lateral resolutions of 12 μm and 60 μm, respectively, well below typical values achieved by conventional piezoelectric intravascular ultrasound. The size and resolution of the developed transducer may enable its use for intravascular imaging of thin fibrous cap atheroma.
Collapse
|
10
|
Multifrequency-based sharpening of focal volume. Sci Rep 2022; 12:22049. [PMID: 36543884 PMCID: PMC9772409 DOI: 10.1038/s41598-022-25886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Systems that emit electromagnetic or sonic waves for diagnostic or interventional applications often have constraints on the size of their aperture, and thus produce an elongated focus in the axial dimension. This extended depth of focus limits imaging resolution and spatial specificity of the delivered energy. Here, we have developed a method that substantially minimizes the depth of focus. The method superimposes beams of distinct frequencies in space and time to create constructive interference at target and amplify deconstructive interference everywhere else, thus sharpening the focus. The method does not require labeling of targets or other manipulations of the medium. Using simulations, we found that the method tightens the depth of focus even for systems with a narrow bandwidth. Moreover, we implemented the method in ultrasonic hardware and found that a 46.1% frequency fractional bandwidth provides an average 7.4-fold reduction in the focal volume of the resulting beams. This method can be readily applied to sharpen the focus of interventional systems and is expected to also improve the axial resolution of existing imaging systems.
Collapse
|
11
|
Oppel N, Paasche G, Bleich A, Lenarz T, Schuon R. Intravascular Ultrasonography (IVUS)-A Tool for Imaging the Eustachian Tube? Bioengineering (Basel) 2022; 9:733. [PMID: 36550939 PMCID: PMC9774784 DOI: 10.3390/bioengineering9120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The Eustachian tube (ET) has a key role in the pathogenesis of otitis media. Until now, there has been a lack of meaningful imaging methods to investigate the ET and its surrounding tissue. The aim of the current study was to investigate the possibilities of imaging the ET using Intravascular Ultrasonography (IVUS). ETs from sheep were scanned ex vivo and in vivo with different IVUS probes. In addition to native ETs, water was also used to improve coupling. Scans were subsequently compared with histological sections and a 3D model of the ET. In addition, ETs with a stenosis induced by a hyaluronic acid depot, after stent insertion, and during lower jaw movement were examined. The IVUS catheter was inserted into the ET lumen without any problems or injuries in all cases. The surrounding structures of the ET were identified in the ultrasound image. In addition, a change in size of the ET lumen due to movement was observed, and the position of the stent and the depot of hyaluronic acid could be examined. With the use of IVUS, a non-invasive possibility to examine the ET over its course with the adjacent structures as well as after different treatments is presented.
Collapse
Affiliation(s)
- Niels Oppel
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gerrit Paasche
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Robert Schuon
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Legutko J, Bryniarski KL, Kaluza GL, Roleder T, Pociask E, Kedhi E, Wojakowski W, Jang IK, Kleczynski P. Intracoronary Imaging of Vulnerable Plaque-From Clinical Research to Everyday Practice. J Clin Med 2022; 11:jcm11226639. [PMID: 36431116 PMCID: PMC9699515 DOI: 10.3390/jcm11226639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The introduction into clinical practice of intravascular imaging, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and their derivatives, allowed for the in vivo assessment of coronary atherosclerosis in humans, including insights into plaque evolution and progression process. Intravascular ultrasound, the most commonly used intravascular modality in many countries, due to its low resolution cannot assess many features of vulnerable plaque such as lipid plaque or thin-cap fibroatheroma. Thus, novel methods were introduced to facilitate this problem including virtual histology intravascular ultrasound and later on near-infrared spectroscopy and OCT. Howbeit, none of the currently used modalities can assess all known characteristics of plaque vulnerability; hence, the idea of combining different intravascular imaging methods has emerged including NIRS-IVUS or OCT-IVUS imaging. All of those described methods may allow us to identify the most vulnerable plaques, which are prone to cause acute coronary syndrome, and thus they may allow us to introduce proper treatment before plaque destabilization.
Collapse
Affiliation(s)
- Jacek Legutko
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Krzysztof L. Bryniarski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Grzegorz L. Kaluza
- Skirball Center for Innovation, Cardiovascular Research Foundation, Orangeburg, NY 10019, USA
| | - Tomasz Roleder
- Department of Cardiology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Elzbieta Pociask
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Elvin Kedhi
- Clinique Hopitaliere Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-635 Katowice, Poland
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, Boston, MA 02115, USA
- Division of Cardiology, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Pawel Kleczynski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
- Correspondence: ; Tel.: +48-12-614-35-01
| |
Collapse
|
13
|
Multilevel structure-preserved GAN for domain adaptation in intravascular ultrasound analysis. Med Image Anal 2022; 82:102614. [PMID: 36115099 DOI: 10.1016/j.media.2022.102614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
The poor generalizability of intravascular ultrasound (IVUS) analysis methods caused by the great diversity of IVUS datasets is hopefully addressed by the domain adaptation strategy. However, existing domain adaptation models underperform in intravascular structural preservation, because of the complex pathology and low contrast in IVUS images. Losing structural information during the domain adaptation would lead to inaccurate analyses of vascular states. In this paper, we propose a Multilevel Structure-Preserved Generative Adversarial Network (MSP-GAN) for transferring IVUS domains while maintaining intravascular structures. On the generator-discriminator baseline, the MSP-GAN integrates the transformer, contrastive restraint, and self-ensembling strategy, for effectively preserving structures in multi-levels, including global, local, and fine levels. For the global-level pathology maintenance, the generator explores long-range dependencies in IVUS images via an incorporated vision transformer. For the local-level anatomy consistency, a region-to-region correspondence is forced between the translated and source images via a superpixel-wise multiscale contrastive (SMC) constraint. For reducing distortions of fine-level structures, a self-ensembling mean teacher generates the pixel-wise pseudo-label and restricts the translated image via an uncertainty-aware teacher-student consistency (TSC) constraint. Experiments were conducted on 20 MHz and 40 MHz IVUS datasets from different medical centers. Ablation studies illustrate that each innovation contributes to intravascular structural preservation. Comparisons with representative domain adaptation models illustrate the superiority of the MSP-GAN in the structural preservation. Further comparisons with the state-of-the-art IVUS analysis accuracy demonstrate that the MSP-GAN is effective in enlarging the generalizability of diverse IVUS analysis methods and promoting accurate vessel and lumen segmentation and stenosis-related parameter quantification.
Collapse
|
14
|
Liu P, de Hoop H, Schwab HM, Lopata RGP. High frame rate multi-perspective cardiac ultrasound imaging using phased array probes. ULTRASONICS 2022; 123:106701. [PMID: 35189524 DOI: 10.1016/j.ultras.2022.106701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) imaging is used to assess cardiac disease by assessing the geometry and function of the heart utilizing its high spatial and temporal resolution. However, because of physical constraints, drawbacks of US include limited field-of-view, refraction, resolution and contrast anisotropy. These issues cannot be resolved when using a single probe. Here, an interleaved multi-perspective 2-D US imaging system was introduced, aiming at improved imaging of the left ventricle (LV) of the heart by acquiring US data from two separate phased array probes simultaneously at a high frame rate. In an ex-vivo experiment of a beating porcine heart, parasternal long-axis and apical views of the left ventricle were acquired using two phased array probes. Interleaved multi-probe US data were acquired at a frame rate of 170 frames per second (FPS) using diverging wave imaging under 11 angles. Image registration and fusion algorithms were developed to align and fuse the US images from two different probes. First- and second-order speckle statistics were computed to characterize the resulting probability distribution function and point spread function of the multi-probe image data. First-order speckle analysis showed less overlap of the histograms (reduction of 34.4%) and higher contrast-to-noise ratio (CNR, increase of 27.3%) between endocardium and myocardium in the fused images. Autocorrelation results showed an improved and more isotropic resolution for the multi-perspective images (single-perspective: 0.59 mm × 0.21 mm, multi-perspective: 0.35 mm × 0.18 mm). Moreover, mean gradient (MG) (increase of 74.4%) and entropy (increase of 23.1%) results indicated that image details of the myocardial tissue can be better observed after fusion. To conclude, interleaved multi-perspective high frame rate US imaging was developed and demonstrated in an ex-vivo experimental setup, revealing enlarged field-of-view, and improved image contrast and resolution of cardiac images.
Collapse
Affiliation(s)
- Peilu Liu
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
| | - Hein de Hoop
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Hans-Martin Schwab
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Richard G P Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
15
|
Kim H, Yoo J, Heo D, Seo YS, Lim HG, Kim HH. High-Attenuation Backing Layer for Miniaturized Ultrasound Imaging Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1960-1969. [PMID: 35377844 DOI: 10.1109/tuffc.2022.3164451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current miniaturized ultrasound transducers suffer from insufficient attenuation from the backing layer due to their limited thickness. The thickness of the backing layer is one of the critical factors determining the device size and transducer performance for miniaturized transducers inserted and operated in a limited space. Glass bubbles, polyamide resin, and tungsten powder are combined to form a new highly attenuative backing material. It has high attenuation (>160 dB/cm at 5 MHz), which is five times greater than silver-based conductive epoxy commonly used for high-frequency ultrasound transducers, appropriate acoustic impedance (4.6 MRayl), and acceptable damping capability. An intravascular ultrasound (IVUS) transducer constructed with the 170 [Formula: see text] of the proposed backing layer demonstrated that the amplitude of the signal returned from the backing layer was 1.8 times smaller, with ring-down attenuated by 6 dB. Wire-phantom imaging revealed that the axial resolution was 30% better with the suggested backing than silver-based conductive epoxy backing. Because of its excellent attenuation capability even at a limited thickness, simple manufacturing process, and easy customization capability, the suggested highly attenuative backing layer may be used for miniaturized ultrasound transducers.
Collapse
|
16
|
García-García HM, Finizio M, Del Val D, Rivero F, Waksman R, Alfonso F. High-definition intravascular ultrasound: current clinical uses. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:1213-1220. [PMID: 38819587 DOI: 10.1007/s10554-022-02526-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022]
Abstract
Intravascular ultrasound (IVUS) provides grayscale images of the entire vessel wall, and its technology has recently been improved, resulting in more accurate tissue characterization. Compared with conventional IVUS, high-definition (HD) IVUS provides better resolution, better image quality, faster acquisition and integration of processing tools for more efficient cath lab workflow. HD-IVUS includes transducers with higher frequencies (≥ 45 MHz), allowing a higher near field resolution combined with enough tissue penetration for a more precise assessment of the entire vessel wall. HD-IVUS preserves the potential advantages of conventional (40 MHz) IVUS over optical coherence tomography by adding a substantially higher spatial resolution. For this reason, this technology has generated increasing interest among interventional cardiologists and researchers to provide better detailed morphological evaluation on complicated plaques in acute coronary syndrome patients and better stent optimization. In this review, we provide the state-of-the-art on this technology and its current clinical applications.
Collapse
Affiliation(s)
- Héctor M García-García
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving Street NW, Suite 4B-1, Washington, DC, 20010, USA.
| | - Michael Finizio
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving Street NW, Suite 4B-1, Washington, DC, 20010, USA
| | - David Del Val
- Department of Cardiology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, IIS-IP, CIBER-CV, Madrid, Spain
| | - Fernando Rivero
- Department of Cardiology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, IIS-IP, CIBER-CV, Madrid, Spain
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving Street NW, Suite 4B-1, Washington, DC, 20010, USA
| | - Fernando Alfonso
- Department of Cardiology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, IIS-IP, CIBER-CV, Madrid, Spain
| |
Collapse
|
17
|
Sahashi Y, Kawasaki M, Okubo M, Kawamura I, Kawase Y, Yoshida A, Tanaka T, Hattori A, Matsuo H, Ozaki Y. Development of 60 MHz integrated backscatter intravascular ultrasound and tissue characterization of attenuated signal coronary plaques that cause myocardial injury after percutaneous coronary intervention. Heart Vessels 2022; 37:1689-1700. [PMID: 35524780 DOI: 10.1007/s00380-022-02080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to develop a 60 MHz integrated backscatter intravascular ultrasound (IB-IVUS) and to evaluate its usefulness for the detection of lipid area with backward attenuation of ultrasound signal (AT) that for the prediction of post-procedural myocardial injury (PMI) after percutaneous coronary intervention (PCI). In a pathological study, images were acquired from 221 cross-sections of 18 coronary arteries from 13 cadavers obtained at autopsy. In the clinical training study, we compared non-targeted plaques in 38 patients by a previous IB-IVUS system (38 MHz) and a new IB-IVUS system (60 MHz). In the clinical testing study, we included 70 consecutive patients who underwent PCI. Serum troponin-I was measured just before and 24 h after PCI to evaluate PMI. As the % microcalcification + % cholesterol cleft area increased, the attenuation of IB values increased (r = 0.56, p < 0.001). The slopes of regression lines of the area of each tissue component between 38 and 60 MHz IB-IVUS were excellent. The lipid pool area with AT tended to be more useful than that of the conventional lipid pool area for the prediction of PMI (p = 0.11). We developed a 60 MHz IB-IVUS imaging system for tissue characterization of coronary plaques. Cutoff value of purple color was the most reliable value for the prediction of PMI.
Collapse
Affiliation(s)
- Yuki Sahashi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan.
| | - Munenori Okubo
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Itta Kawamura
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Akihiro Yoshida
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Arihiro Hattori
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Yukio Ozaki
- Department of Cardiology, Fujita Medical University, Aichi, Japan
| |
Collapse
|
18
|
Collins GC, Brumfiel TA, Bercu ZL, Desai JP, Lindsey BD. Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1428-1441. [PMID: 35143395 PMCID: PMC9013008 DOI: 10.1109/tuffc.2022.3150746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral artery disease (PAD) affects more than 200 million people globally. Minimally invasive endovascular procedures can provide relief and salvage limbs while reducing injury rates and recovery times. Unfortunately, when a calcified chronic total occlusion is encountered, ~25% of endovascular procedures fail due to the inability to advance a guidewire using the view provided by fluoroscopy. To enable a sub-millimeter, robotically steerable guidewire to cross these occlusions, a novel single-element, dual-band transducer is developed that provides simultaneous multifrequency, forward-viewing imaging with high penetration depth and high spatial resolution while requiring only a single electrical connection. The design, fabrication, and acoustic characterization of this device are described, and proof-of-concept imaging is demonstrated in an ex vivo porcine artery after integration with a robotically steered guidewire. Measured center frequencies of the developed transducer were 16 and 32 MHz, with -6 dB fractional bandwidths of 73% and 23%, respectively. When imaging a 0.2-mm wire target at a depth of 5 mm, measured -6 dB target widths were 0.498 ± 0.02 and 0.268 ± 0.01 mm for images formed at 16 and 32 MHz, respectively. Measured SNR values were 33.3 and 21.3 dB, respectively. The 3-D images of the ex vivo artery demonstrate high penetration for visualizing vessel morphology at 16 MHz and ability to resolve small features close to the transducer at 32 MHz. Using images acquired simultaneously at both frequencies as part of an integrated forward-viewing, guidewire-based imaging system, an interventionalist could visualize the best path for advancing the guidewire to improve outcomes for patients with PAD.
Collapse
|
19
|
Current and Future Applications of Artificial Intelligence in Coronary Artery Disease. Healthcare (Basel) 2022; 10:healthcare10020232. [PMID: 35206847 PMCID: PMC8872080 DOI: 10.3390/healthcare10020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) carry significant morbidity and mortality and are associated with substantial economic burden on healthcare systems around the world. Coronary artery disease, as one disease entity under the CVDs umbrella, had a prevalence of 7.2% among adults in the United States and incurred a financial burden of 360 billion US dollars in the years 2016–2017. The introduction of artificial intelligence (AI) and machine learning over the last two decades has unlocked new dimensions in the field of cardiovascular medicine. From automatic interpretations of heart rhythm disorders via smartwatches, to assisting in complex decision-making, AI has quickly expanded its realms in medicine and has demonstrated itself as a promising tool in helping clinicians guide treatment decisions. Understanding complex genetic interactions and developing clinical risk prediction models, advanced cardiac imaging, and improving mortality outcomes are just a few areas where AI has been applied in the domain of coronary artery disease. Through this review, we sought to summarize the advances in AI relating to coronary artery disease, current limitations, and future perspectives.
Collapse
|
20
|
Chen D, Cui X, Zhang Q, Li D, Cheng W, Fei C, Yang Y. A Survey on Analog-to-Digital Converter Integrated Circuits for Miniaturized High Resolution Ultrasonic Imaging System. MICROMACHINES 2022; 13:mi13010114. [PMID: 35056279 PMCID: PMC8779678 DOI: 10.3390/mi13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023]
Abstract
As traditional ultrasonic imaging systems (UIS) are expensive, bulky, and power-consuming, miniaturized and portable UIS have been developed and widely utilized in the biomedical field. The performance of integrated circuits (ICs) in portable UIS obviously affects the effectiveness and quality of ultrasonic imaging. In the ICs for UIS, the analog-to-digital converter (ADC) is used to complete the conversion of the analog echo signal received by the analog front end into digital for further processing by a digital signal processing (DSP) or microcontroller unit (MCU). The accuracy and speed of the ADC determine the precision and efficiency of UIS. Therefore, it is necessary to systematically review and summarize the characteristics of different types of ADCs for UIS, which can provide valuable guidance to design and fabricate high-performance ADC for miniaturized high resolution UIS. In this paper, the architecture and performance of ADC for UIS, including successive approximation register (SAR) ADC, sigma-delta (Σ-∆) ADC, pipelined ADC, and hybrid ADC, have been systematically introduced. In addition, comparisons and discussions of different types of ADCs are presented. Finally, this paper is summarized, and presents the challenges and prospects of ADC ICs for miniaturized high resolution UIS.
Collapse
Affiliation(s)
| | | | | | - Di Li
- Correspondence: (D.L.); (W.C.); Tel.: +86-137-0925-0163 (D.L.); +86-152-3193-6291 (W.C.)
| | - Wenyang Cheng
- Correspondence: (D.L.); (W.C.); Tel.: +86-137-0925-0163 (D.L.); +86-152-3193-6291 (W.C.)
| | | | | |
Collapse
|
21
|
Quang-Huy T, Nguyen TK, Solanki VK, Tran DT. An Enhanced Multi-Frequency Distorted Born Iterative Method for Ultrasound Tomography Based on Fundamental Tone and Overtones. INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH 2022. [DOI: 10.4018/ijirr.289608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conventional Distorted Born Iterative Method (DBIM) using single frequency has low resolution and is prone to creating images with high-contrast subjects. We propose a productive frequency combination method to better result in tomographic ultrasound imaging based on the multi-frequency technique. This study uses the natural mechanism of emitting oscillators' frequencies and uses these frequencies for imaging in iterations. We use a fundamental tone (i.e., the starting frequency f0) for the first iteration in DBIM, then consecutively use its overtones for the next ones. The digital simulation scenarios are tested with other multi-frequency approaches to prove our method's feasibility. We performed 57 different simulation scenarios on the use of multi-frequency information for the DBIM method. As a result, the proposed method for the smallest normalization error (RRE = 0.757). The proposed method's imaging time is not significantly longer than the way of using single frequency information.
Collapse
|
22
|
Liang S, Su M, Liu B, Liu R, Zheng H, Qiu W, Zhang Z. Evaluation of Blood Induced Influence for High-Definition Intravascular Ultrasound (HD-IVUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:98-105. [PMID: 34437062 DOI: 10.1109/tuffc.2021.3108163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-definition intravascular ultrasound (HD-IVUS) utilizing more than 80 MHz frequency to assess atherosclerotic plaque, can theoretically achieve an axial resolution of less than [Formula: see text]. However, the blood is a high-attenuation source at high frequency, which would affect the imaging quality. There has been no research evaluating the blood-induced influence on HD-IVUS imaging. And whether a temporary removal of blood is needed for HD-IVUS is unknown. In this study, an ultrahigh-frequency (100 MHz) ultrasound transducer was developed to evaluate the blood-induced attenuation for HD-IVUS imaging. A series of tungsten-wire phantom images in saline and blood at varying hematocrits were obtained. The images showed that blood did influence the ultrahigh-frequency imaging quality greatly. The signal-to-noise ratio (SNR) decrease by 71.7% in porcine whole blood compared to that in saline at the same depth of 2.3 mm. Moreover, the potential flushing schemes for HD-IVUS were studied in varying hematocrits. Three flushing agents commonly used in intravascular optical coherence tomography (IV-OCT) were investigated, including iohexol, mannitol, and dextran 5% and saline as the control group. The attenuation of blood in varying hematocrits/flushing agents was measured from 90 to 110 MHz. The result indicated dextran 5% was a suitable flushing agent for HD-IVUS due to its less signal attenuation compared to others.
Collapse
|
23
|
Ji B, Hong L, Lan Y. Influences of length and position of drive-stacks on the transmitting-voltage-response of the broadband Tonpilz transducer. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4140. [PMID: 34972275 DOI: 10.1121/10.0008931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Most broadband Tonpilz transducers are achieved by coupling first-order longitudinal mode with other modes introduced by an elaborately designed structure (e.g., flexural mode of the head mass). To further expand the bandwidth is difficult and, even if successful, inevitably makes the structure more complex. Longitudinal modes are the inherent vibration modes of rod-shaped Tonpilz transducers. Using high-order longitudinal modes to achieve broadband performance can retain the simple structure similar to the conventional Tonpilz transducer. However, activating continuous, equal-amplitude longitudinal modes is not easy. The longitudinal length and position of the drive-stacks have significant influences on the generation of resonances and their vibration amplitude. In this paper, these influences are studied using the equivalent circuit method for a rod transducer having two drive-stacks, and finally we provide the drive-stack arrangement that can activate the first-three longitudinal modes to obtain the desired broadband response effectively. We also find that the response value of resonances can be balanced to reduce band fluctuation by adjusting drive lengths. The design procedure for the broadband Tonpilz transducer is proposed. The finite element method is used to design broadband transducers having bandwidth greater than one octave following the procedure. A transducer prototype with a simple structure is fabricated and measured to verify the validity of the proposed method.
Collapse
Affiliation(s)
- Bocheng Ji
- Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
| | - Lianjin Hong
- Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
| | - Yu Lan
- Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
24
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
25
|
Babazadeh Khameneh A, Chabok HR, Nejat Pishkenari H. Optimized integrated design of a high-frequency medical ultrasound transducer with genetic algorithm. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractDesigning efficient acoustic stack and elements for high-frequency (HF) medical ultrasound (US) transducers involves various interrelated parameters. So far, optimizing spatial resolution and acoustic field intensity simultaneously has been a daunting task in the area of HF medical US imaging. Here, we introduce optimized design for a 50-MHz US probe for skin tissue imaging. We have developed an efficient design and simulation approach using Krimholtz, Leedom and Matthaei (KLM) equivalent circuit model and spatial impulse response method by means of Field II software. These KLM model and Field II software are integrated, and a GA algorithm is used to optimize the design of the US transducer to obtain the best imaging performance. As a result, a 50-MHz single element probe is effectively optimized with 5 mm acoustic focal length, 72 $$\upmu {\text{m}}$$
μ
m
lateral, and 42 $$\upmu {\text{m}}$$
μ
m
axial imaging resolution, with an enhancement in imaging resolution over the conventionally designed and simulated probe by 10%. This work has the potential to benefit many applications that require a fast, high-resolution and strong US focus in skin imaging.
Collapse
|
26
|
Kang S, Lee J, Chang JH. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging. ULTRASONICS 2021; 113:106364. [PMID: 33517139 DOI: 10.1016/j.ultras.2021.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Synthetic aperture focusing (SAF) and coherence factor weighting (CFW) have been used to improve the lateral resolution of ultrasound images. Although the two methods are effective for array-based ultrasound imaging, many researchers have also employed the methods for single-element-based imaging including intravascular ultrasound (IVUS) imaging. For single-element-based imaging, CFW is generally calculated from the scanlines obtained by SAF and applied to the scanline obtained after coherent summation of the SAF delayed scanlines, which is called a SAF-CFW method. In the paper, a theoretical model was derived to explore the effectiveness of SAF and CFW for single-element-based imaging, and the model was used to explain that SAF is not effective for IVUS imaging in terms of enhancing the spatial resolution, although it has the advantage of improving a contrast-to-noise ratio (CNR). This means that the SAF-CFW method is not optimal for improving the spatial resolution of IVUS imaging. In contrast, it was found in simulations and experiments that applying CFW to the target scanline itself is beneficial for the spatial resolution rather than a coherent summed scanline for IVUS SAF imaging, but CNR was not as good as SAF and SAF-CFW. As a result of both simulation and experimentation, it could be concluded that focused IVUS transducers without the application of those methods may be more advantageous to improve the spatial and contrast resolution simultaneously, considering the system complexity in the implementation of such imaging methods.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Electronic Engineering, Sogang University, Seoul, South Korea
| | - Junsu Lee
- Department of Electronic Engineering, Sogang University, Seoul, South Korea
| | - Jin Ho Chang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.
| |
Collapse
|
27
|
Lim HG, Kim H, Kim K, Park J, Kim Y, Yoo J, Heo D, Baik J, Park SM, Kim HH. Thermal Ablation and High-Resolution Imaging Using a Back-to-Back (BTB) Dual-Mode Ultrasonic Transducer: In Vivo Results. SENSORS (BASEL, SWITZERLAND) 2021; 21:1580. [PMID: 33668260 PMCID: PMC7956793 DOI: 10.3390/s21051580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
We present a back-to-back (BTB) structured, dual-mode ultrasonic device that incorporates a single-element 5.3 MHz transducer for high-intensity focused ultrasound (HIFU) treatment and a single-element 20.0 MHz transducer for high-resolution ultrasound imaging. Ultrasound image-guided surgical systems have been developed for lesion monitoring to ensure that ultrasonic treatment is correctly administered at the right locations. In this study, we developed a dual-element transducer composed of two elements that share the same housing but work independently with a BTB structure, enabling a mode change between therapy and imaging via 180-degree mechanical rotation. The optic fibers were embedded in the HIFU focal region of ex vivo chicken breasts and the temperature change was measured. Images were obtained in vivo mice before and after treatment and compared to identify the treated region. We successfully acquired B-mode and C-scan images that display the hyperechoic region indicating coagulation necrosis in the HIFU-treated volume up to a depth of 10 mm. The compact BTB dual-mode ultrasonic transducer may be used for subcutaneous thermal ablation and monitoring, minimally invasive surgery, and other clinical applications, all with ultrasound only.
Collapse
Affiliation(s)
- Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
| | - Hyunhee Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Kyungmin Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Yeonggeun Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Jinhee Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
| | - Dasom Heo
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Jinhwan Baik
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea; (H.K.); (J.P.); (J.Y.)
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (K.K.); (Y.K.); (J.B.); (S.-M.P.)
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
28
|
Zhang Q, Tan Q, Liu J, Chen W, Huang J, Lei S, Li Y, Long X, Wang C, Xiao Y, Wu D, Zheng H, Ma T. 1.5-Dimensional Circular Array Transducer for In Vivo Endoscopic Ultrasonography. IEEE Trans Biomed Eng 2021; 68:2930-2939. [PMID: 33531295 DOI: 10.1109/tbme.2021.3056140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Traditional endoscopic ultrasonography (EUS), which uses one-dimensional (1-D) curvilinear or radial/circular transducers, cannot achieve dynamic elevational focusing, and the slice thickness is not sufficient. The purpose of this study was to design and fabricate a 1.5-dimensional (1.5-D) circular array transducer to achieve dynamic elevational focusing in EUS in vivo. METHODS An 84 × 5 element 1.5-D circular array transducer was successfully developed and characterized in this study. It was fabricated with PZT-5H 1-3 composite that attained a high-electromechanical coupling factor and low-acoustic impedance. The acoustic field distribution was measured with different transmission modes to validate the 1.5-D elevational beam focusing capability. The imaging performance of the 84 × 5 element 1.5-D circular array transducer was evaluated by two wire phantoms, an agar-based cyst phantom, an ex vivo swine pancreas, and an in vivo rhesus macaque rectum based on multifocal ray-line imaging method with five-row elevational beam steering. RESULTS It was demonstrated that the transducer exhibited a central frequency of 6.47 MHz with an average bandwidth of 50%, a two-way insertion loss of 23 dB, and crosstalk of <-26 dB around the center frequency. CONCLUSION Dynamic elevational focusing and the enhancement of the slice thickness in EUS were obtained with a 1.5-D circular array transducer. SIGNIFICANCE This study promotes the development of multirow and two-dimensional array EUS probes for a more precise clinical diagnosis and treatment.
Collapse
|
29
|
Collins GC, Jing B, Lindsey BD. High contrast power Doppler imaging in side-viewing intravascular ultrasound imaging via angular compounding. ULTRASONICS 2020; 108:106200. [PMID: 32521337 PMCID: PMC7502537 DOI: 10.1016/j.ultras.2020.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 05/11/2023]
Abstract
The ability to assess likelihood of plaque rupture can determine the course of treatment in coronary artery disease. One indicator of plaque vulnerability is the development of blood vessels within the plaque, or intraplaque neovascularization. In order to visualize these vessels with increased sensitivity in the cardiac catheterization lab, a new approach for imaging blood flow in small vessels using side-viewing intravascular ultrasound (IVUS) is proposed. This approach based on compounding adjacent angular acquisitions was evaluated in tissue mimicking phantoms and ex vivo vessels. In phantom studies, the Doppler CNR increased from 3.3 ± 1.0 to 13 ± 2.6 (conventional clutter filtering) and from 1.9 ± 0.15 to 7.5 ± 1.1 (SVD filtering) as a result of applying angular compounding. When imaging flow at a rate of 5.6 mm/s in 200 µm tubes adjacent to the lumen of ex vivo porcine arteries, the Doppler CNR increased from 5.3 ± 0.95 to 7.2 ± 1.3 (conventional filtering) and from 23 ± 3.3 to 32 ± 6.7 (SVD filtering). Applying these strategies could allow increased sensitivity to slow flow in side-viewing intravascular ultrasound imaging.
Collapse
Affiliation(s)
- Graham C Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States.
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States
| |
Collapse
|
30
|
Zhang Q, Li Y, Liu J, Huang J, Tan Q, Wang C, Xiao Y, Zheng H, Ma T. A PMN-PT Composite-Based Circular Array for Endoscopic Ultrasonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2354-2362. [PMID: 32746191 DOI: 10.1109/tuffc.2020.3005029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Endoscopic ultrasound (EUS), an interventional imaging technology, utilizes a circular array to delineate the cross-sectional morphology of internal organs through the gastrointestinal (GI) track. However, the performance of conventional EUS transducers has scope for improvement because of the ordinary piezoelectric parameters of Pb(Zr, Ti) [Formula: see text] (PZT) bulk ceramic as well as its inferior mechanical flexibility which can cause material cracks during the circular shaping process. To achieve both prominent imaging capabilities and high device reliability, a 128-element 6.8-MHz circular array transducer is developed using a Pb(Mg [Formula: see text]Nb [Formula: see text]) [Formula: see text]-PbTiO3 (PMN-PT) 1-3 composite with a coefficient of high electromechanical coupling ( [Formula: see text]) and good mechanical flexibility. The characterization results exhibit a large average bandwidth of 58%, a high average sensitivity of 100 mVpp, and a crosstalk of less than -37 dB near the center frequency. Imaging performance of the PMN-PT composite-based array transducer is evaluated by a wire phantom, an anechoic cyst phantom, and an ex-vivo swine intestine. This work demonstrates the superior performance of the crucial ultrasonic device based on an advanced PMN-PT composite material and may lead to the development of next-generation biomedical ultrasonic devices for clinical diagnosis and treatment.
Collapse
|
31
|
Wang J, Zheng Z, Chan J, Yeow JTW. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging. MICROSYSTEMS & NANOENGINEERING 2020; 6:73. [PMID: 34567683 PMCID: PMC8433336 DOI: 10.1038/s41378-020-0181-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Intravascular ultrasound (IVUS) is a burgeoning imaging technology that provides vital information for the diagnosis of coronary arterial diseases. A significant constituent that enables the IVUS system to attain high-resolution images is the ultrasound transducer, which acts as both a transmitter that sends acoustic waves and a detector that receives the returning signals. Being the most mature form of ultrasound transducer available in the market, piezoelectric transducers have dominated the field of biomedical imaging. However, there are some drawbacks associated with using the traditional piezoelectric ultrasound transducers such as difficulties in the fabrication of high-density arrays, which would aid in the acceleration of the imaging speed and alleviate motion artifact. The advent of microelectromechanical system (MEMS) technology has brought about the development of micromachined ultrasound transducers that would help to address this issue. Apart from the advantage of being able to be fabricated into arrays with lesser complications, the image quality of IVUS can be further enhanced with the easy integration of micromachined ultrasound transducers with complementary metal-oxide-semiconductor (CMOS). This would aid in the mitigation of parasitic capacitance, thereby improving the signal-to-noise. Currently, there are two commonly investigated micromachined ultrasound transducers, piezoelectric micromachined ultrasound transducers (PMUTs) and capacitive micromachined ultrasound transducers (CMUTs). Currently, PMUTs face a significant challenge where the fabricated PMUTs do not function as per their design. Thus, CMUTs with different array configurations have been developed for IVUS. In this paper, the different ultrasound transducers, including conventional-piezoelectric transducers, PMUTs and CMUTs, are reviewed, and a summary of the recent progress of CMUTs for IVUS is presented.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Zhou Zheng
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Jasmine Chan
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - John T. W. Yeow
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
32
|
Cao Y, Alloosh M, Sturek M, Cheng JX. Highly sensitive lipid detection and localization in atherosclerotic plaque with a dual-frequency intravascular photoacoustic/ultrasound catheter. TRANSLATIONAL BIOPHOTONICS 2020; 2:e202000004. [PMID: 37745902 PMCID: PMC10516318 DOI: 10.1002/tbio.202000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/07/2020] [Indexed: 09/26/2023] Open
Abstract
Intravascular photoacoustic/ultrasound (IVPA/US) is an emerging hybrid imaging modality that provides specific lipid detection and localization, while maintaining co-registered artery morphology, for diagnosis of vulnerable plaque in cardiovascular disease. However, current IVPA/US approaches based on a single-element transducer exhibit compromised performance for lipid detection due to the relatively low contrast of lipid absorption and conflicting detection bands for photoacoustic and ultrasound signals. Here, we present a dual-frequency IVPA/US catheter for highly sensitive detection and precision localization of lipids. The low frequency transducer provides enhanced photoacoustic sensitivity, while the high frequency transducer maintains state-of-the-art spatial resolution for ultrasound imaging. The boosted capability of IVPA/US imaging enables a multi-scale analysis of lipid distribution in swine with coronary atherosclerosis. The dual-frequency IVPA/US catheter has a diameter of 1 mm and flexibility to easily adapt to current catheterization procedures and is a significant step toward clinical diagnosis of vulnerable plaque.
Collapse
Affiliation(s)
- Yingchun Cao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Sturek
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
33
|
Munding CE, Chérin E, Alves N, Goertz DE, Courtney BK, Foster FS. 30/80 MHz Bidirectional Dual-Frequency IVUS Feasibility Evaluated In Vivo and for Stent Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2104-2112. [PMID: 32473846 DOI: 10.1016/j.ultrasmedbio.2020.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Although intravascular ultrasound (IVUS) is an important tool in guiding complex coronary interventions, the resolution of existing commercial IVUS devices is considerably poorer than that of optical coherence tomography. Dual-frequency IVUS (DF IVUS), incorporating a second, higher frequency transducer, has been proposed as a possible method of overcoming this limitation. Although preliminary studies have shown that DF IVUS can produce complementary images, including large-scale morphology and high detail of superficial features, it has not yet been determined that this approach would be feasible in a more clinically relevant environment. The purpose of this study was to demonstrate the first in vivo use of a 30/80 MHz DF IVUS catheter in visualizing coronary vessels in a porcine model. In addition, two commercially available stents were studied in vitro and in vivo. Clear subjective improvement of visualization of superficial structures is demonstrated, and sufficient dynamic range is achieved to image through both the catheter sheath and blood in vivo.
Collapse
Affiliation(s)
- Chelsea E Munding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | | | | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Brian K Courtney
- Sunnybrook Research Institute, Toronto, ON, Canada; Schulich Heart Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Conavi Medical Inc., Toronto, ON, Canada
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
34
|
Choi T, Yu H, Chang S, Ha DH, Cho DW, Jang J, Lee C, Lu G, Chang JH, Zhou Q, Park J. Visibility of Bioresorbable Vascular Scaffold in Intravascular Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1090-1101. [PMID: 31944950 DOI: 10.1109/tuffc.2020.2964322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioresorbable vascular scaffold (BVS) has recently been spotlighted for its unique characteristics of absorbing into blood vessels and eventually disappearing. Although intravascular ultrasound (IVUS) is the most common guiding tool for stent deployment, the echogenicity of BVS struts has changed as the center of stent lumen and scanning rotation is not concentric, which may cause a critical erroneous measurement in practice. This study investigated the physical conditions for dimming the stent brightness in IVUS images using a finite-difference method (FDM) to numerically solve acoustic wave propagation through nonhomogeneous medium. The dimmed brightness is caused by an angled rectangular cross section of a strut and its similar acoustic impedance with water. Imaging frequency is not a major cause. However, the angle between the acoustic beam and the BVS surface is the major cause of the dimmed brightness. As a solution, an approach using a frequency compounding method with signal polarity comparator was proposed to recover the reduced brightness without sacrificing spatial resolutions. Based on the simulation study, the signal level from BVS can be attenuated down by 17 dB when the angle between the acoustic beamline and the surface of BVS is more than 45°. With the proposed frequency compounding approach, the reduced signal can be recovered by 6 dB. In the experimental BVS IVUS imaging, strut brightness was reduced by 18 dB with an angled strut position and recovered by 5 dB with the proposed frequency compounding method. A pig coronary was imaged to demonstrate the performance of the proposed method.
Collapse
|
35
|
Ma X, Cao W. Single-Crystal High-Frequency Intravascular Ultrasound Transducer With 40- μ m Axial Resolution. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:810-816. [PMID: 31794395 DOI: 10.1109/tuffc.2019.2956603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intravascular ultrasound (IVUS) is one of the most useful tools available today to assist intravascular stenting procedures. Having higher resolution is very important for helping doctors to evaluate the nature of atherosclerotic plaques. The current commercial IVUS systems have a spatial resolution of 70- [Formula: see text] in the axial direction and 200- [Formula: see text] in the lateral direction, which are insufficient for accurate diagnosis. We report here a three-matching-layer IVUS transducer design using a 0.72Pb(Mg1/3Nb2/3O3 - 0.28PbTiO3 single crystal, which can improve the axial resolution to [Formula: see text] without sacrificing the penetration depth. Wire phantom imaging and in vitro porcine coronary artery imaging show noticeably better axial resolution and similar penetration depth compared with a commercial IVUS transducer.
Collapse
|
36
|
Gharaibeh Y, Lee J, Prabhu D, Dong P, Zimin VN, Dallan LA, Bezerra H, Gu L, Wilson D. Co-registration of pre- and post-stent intravascular OCT images for validation of finite element model simulation of stent expansion. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11317:1131717. [PMID: 35291699 PMCID: PMC8920319 DOI: 10.1117/12.2550212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intravascular optical coherence tomography (IVOCT) provides high-resolution images of coronary calcifications and detailed measurements of acute stent deployment following stent implantation. Since pre- and post-stent IVOCT image "pull-back" acquisitions start from different locations, registration of corresponding pullbacks is needed for assessing treatment outcomes. In particular, we are interested in assessing finite element model (FEM) prediction of lumen gain following stenting, requiring registration. We used deep learning to segment calcifications in corresponding pre- and post-stent IVOCT pullbacks. We created 1D representations of calcium thickness as a function of the angle of the helical IVOCT scans. Registration of two scans was done by maximizing the cross correlation of these two 1D representations. Registration was accurate, as determined by visual comparisons of 2D image frames. We used our pre-stent calcification segmentations to create a lesion-specific FEM, which took into account balloon size, balloon pressure, and stent measurements. We then compared simulated lumen gain from FEM analysis to actual stent deployment results. Actual lumen gain across ~200 registered pre and post-stent images was 1.52 ± 0.51, while FEM prediction was 1.43 ± 0.41. Comparison between actual and FEM results showed no significant difference (p < 0.001), suggesting accurate prediction of FEM modeling. Registered image data showed good visual agreement regarding lumen gain and stent strut malapposition. Hence, we have developed a platform for evaluation of FEM prediction of lumen gain. This platform can be used to guide development of FEM prediction software, which could ultimately help physicians with stent treatment planning of calcified lesions.
Collapse
Affiliation(s)
- Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - David Prabhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Pengfei Dong
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 68588
- Department of Biomedical and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA 32901
| | - Vladislav N. Zimin
- University Hospitals, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, OH, USA, 44106
| | - Luis A. Dallan
- University Hospitals, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, OH, USA, 44106
| | - Hiram Bezerra
- University Hospitals, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, OH, USA, 44106
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 68588
- Department of Biomedical and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA 32901
| | - David Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA 44106
| |
Collapse
|
37
|
Marteslo JP, Makary MS, Khabiri H, Flanders V, Dowell JD. Intravascular Ultrasound for the Peripheral Vasculature-Current Applications and New Horizons. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:216-224. [PMID: 31780239 DOI: 10.1016/j.ultrasmedbio.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Intravascular ultrasound (IVUS) is a proven and rapidly developing imaging modality that can be used for a multitude of both diagnostic and interventional purposes. By allowing for superior intraluminal characterization, compared with angiography, IVUS has emerged as a technically valuable tool in interventional procedures such as transjugular intrahepatic portosystemic shunt/direct intrahepatic portosystemic shunt, venous interventions (May Thurner stenting, inferior vena cava filter placement, recanalization in the setting of chronic venous thrombosis/insufficiency), percutaneous fenestration in the setting of aortic dissection and angioplasty. Additional applications evaluating coronary arteries and plaque morphology have been described, but are outside the scope of this review. In addition to IVUS's merit as a pre- and intra-procedural guidance modality, there are also several advantages compared to the gold standard of angiography which include decreased need for iodinated contrast, decreased radiation exposure and decreased procedural times in certain cases. With current research, such as that aimed at supraharmonic imaging, further improvements in imaging depth, resolution and contrast to noise ratio are on the horizon.
Collapse
Affiliation(s)
- Jeffrey P Marteslo
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mina S Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hooman Khabiri
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Vince Flanders
- Northwest Radiology, St. Vincent Health, Indianapolis, Indiana, USA
| | - Joshua D Dowell
- Northwest Radiology, St. Vincent Health, Indianapolis, Indiana, USA.
| |
Collapse
|
38
|
Algowhary M, Taha S, Hasan-Ali H, Matsumura A. In vivo measurement of stent length by using intravascular ultrasound. Egypt Heart J 2019; 71:32. [PMID: 31858288 PMCID: PMC6923296 DOI: 10.1186/s43044-019-0036-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background What happens to stent length when deployed in a coronary artery? It is the aim of this study. Results Consecutive 95 balloon-expandable stents (BES) were studied by intravascular ultrasound (IVUS) imaging. The stent length was measured from the longitudinal view in two ways: (1) edge-to-edge length (E-E) measured between distal and proximal stent frames located at one IVUS quadrant and (2) area-to-area length (A-A) measured between distal and proximal stent frames located at two or more IVUS quadrants. IVUS measurements were compared with the manufacturer-stated length (M-L). The median E-E length was significantly longer than M-L, 18.76 mm [interquartile range (IQR) 15.65–23.60] versus 18.00 mm (IQR 15.00–23.00), respectively, p < 0.0001. Also, the median A-A length was significantly longer, 18.36 mm (IQR 15.19–23.47), p < 0.0001, than M-L. Moreover, the E-E length was significantly different from A-A length, p < 0.0001. Among the stent groups, the differences were significantly present in all drug-eluting stent and bare metal stent (BMS) comparisons, p < 0.0001, except the A-A length versus M-L in BMS only. By multivariate analysis, the predictors of difference in stent length were as follows: lesion length, p = 0.01; pre-intervention minimal diameter of the external elastic membrane (EEM), p = 0.03; lesions present in the left anterior descending branch, p = 0.03; and M-L, p = 0.04. Conclusions In the present study, the length of BES measured by IVUS was significantly different from the manufacturer-stated length. In addition to the manufacturer length, other important factors such as lesion length, pre-intervention diameter of EEM, and affected vessel determine the stent length.
Collapse
Affiliation(s)
- Magdy Algowhary
- Department of Cardiovascular Medicine, Faculty of Medicine, Assiut University, Asyut, 71516, Egypt.
| | - Salma Taha
- Department of Cardiovascular Medicine, Faculty of Medicine, Assiut University, Asyut, 71516, Egypt
| | - Hosam Hasan-Ali
- Department of Cardiovascular Medicine, Faculty of Medicine, Assiut University, Asyut, 71516, Egypt
| | - Akihiko Matsumura
- Department of Cardiology, Kameda Medical Center, Higashi-cho 929, Kamogawa, Chiba, 296-8602, Japan
| |
Collapse
|
39
|
Gharaibeh Y, Prabhu D, Kolluru C, Lee J, Zimin V, Bezerra H, Wilson D. Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring. J Med Imaging (Bellingham) 2019; 6:045002. [PMID: 31903407 PMCID: PMC6934132 DOI: 10.1117/1.jmi.6.4.045002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/05/2019] [Indexed: 01/18/2023] Open
Abstract
Major calcifications are of great concern when performing percutaneous coronary interventions because they inhibit proper stent deployment. We created a comprehensive software to segment calcifications in intravascular optical coherence tomography (IVOCT) images and to calculate their impact using the stent-deployment calcification score, as reported by Fujino et al. We segmented the vascular lumen and calcifications using the pretrained SegNet, convolutional neural network, which was refined for our task. We cleaned segmentation results using conditional random field processing. We evaluated the method on manually annotated IVOCT volumes of interest (VOIs) without lesions and with calcifications, lipidous, or mixed lesions. The dataset included 48 VOIs taken from 34 clinical pullbacks, giving a total of 2640 in vivo images. Annotations were determined from consensus between two expert analysts. Keeping VOIs intact, we performed 10-fold cross-validation over all data. Following segmentation noise cleaning, we obtained sensitivities of 0.85 ± 0.04 , 0.99 ± 0.01 , and 0.97 ± 0.01 for calcified, lumen, and other tissue classes, respectively. From segmented regions, we automatically determined calcification depth, angle, and thickness attributes. Bland-Altman analysis suggested strong correlation between manually and automatically obtained lumen and calcification attributes. Agreement between manually and automatically obtained stent-deployment calcification scores was good (four of five lesions gave exact agreement). Results are encouraging and suggest our classification approach could be applied clinically for assessment and treatment planning of coronary calcification lesions.
Collapse
Affiliation(s)
- Yazan Gharaibeh
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - David Prabhu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Chaitanya Kolluru
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Juhwan Lee
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Vladislav Zimin
- University Hospitals Cleveland Medical Center, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, Ohio, United States
| | - Hiram Bezerra
- University Hospitals Cleveland Medical Center, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, Ohio, United States
| | - David Wilson
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Radiology, Cleveland, Ohio, United States
| |
Collapse
|
40
|
Colchester RJ, Little C, Dwyer G, Noimark S, Alles EJ, Zhang EZ, Loder CD, Parkin IP, Papakonstantinou I, Beard PC, Finlay MC, Rakhit RD, Desjardins AE. All-Optical Rotational Ultrasound Imaging. Sci Rep 2019; 9:5576. [PMID: 30944379 PMCID: PMC6447544 DOI: 10.1038/s41598-019-41970-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 11/23/2022] Open
Abstract
Miniaturised high-resolution imaging devices are valuable for guiding minimally invasive procedures such as vascular stent placements. Here, we present all-optical rotational B-mode pulse-echo ultrasound imaging. With this device, ultrasound transmission and reception are performed with light. The all-optical transducer in the probe comprised an optical fibre that delivered pulsed excitation light to an optical head at the distal end with a multi-walled carbon nanotube and polydimethylsiloxane composite coating. This coating was photoacoustically excited to generate a highly directional ultrasound beam perpendicular to the optical fibre axis. A concave Fabry-Pérot cavity at the distal end of an optical fibre, which was interrogated with a tuneable continuous-wave laser, served as an omnidirectional ultrasound receiver. The transmitted ultrasound had a -6 dB bandwidth of 31.3 MHz and a peak-to-peak pressure of 1.87 MPa, as measured at 1.5 mm from the probe. The receiver had a noise equivalent pressure <100 Pa over a 20 MHz bandwidth. With a maximum outer probe diameter of 1.25 mm, the probe provided imaging with an axial resolution better than 50 µm, and a real-time imaging rate of 5 frames per second. To investigate the capabilities of the probe, intraluminal imaging was performed in healthy swine carotid arteries. The results demonstrate that the all-optical probe is viable for clinical rotational ultrasound imaging.
Collapse
Affiliation(s)
- Richard J Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK.
| | - Callum Little
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- Department of Cardiology, Royal Free Hampstead NHS Trust, Pond Street, London, NW3 2QG, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - George Dwyer
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sacha Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- Materials Chemistry Research Centre, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Erwin J Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
| | - Edward Z Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Christopher D Loder
- Department of Cardiology, Royal Free Hampstead NHS Trust, Pond Street, London, NW3 2QG, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioannis Papakonstantinou
- Photonic Innovations Lab, Department of Electronic and Electrical Engineering, University College London, Roberts Building, London, WC1E 7JE, UK
| | - Paul C Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
| | - Malcolm C Finlay
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Health Centre, London, EC1A 7BE, UK
| | - Roby D Rakhit
- Department of Cardiology, Royal Free Hampstead NHS Trust, Pond Street, London, NW3 2QG, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adrien E Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
| |
Collapse
|
41
|
Zhang Q, Pang X, Zhang Z, Su M, Hong J, Zheng H, Qiu W, Lam KH. Miniature Transducer Using PNN-PZT-based Ceramic for Intravascular Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1102-1109. [PMID: 30908214 DOI: 10.1109/tuffc.2019.2906652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the development and performance evaluation of a high-frequency miniature ultrasonic transducer based on a Pb(Ni1/3Nb2/3)O3-Pb(Zr0.3Ti0.7)O3 (PNN-PZT-based) ceramic for intravascular imaging application are reported. The fabricated PNN-PZT-based ceramic possesses ultrahigh relative clamped dielectric permittivity (.S/.0 = 3409) and high electromechanical coupling capability (kt = 0.60). A 42-MHz high-frequency side-looking ultrasonic transducer probe using the PNN-PZT-based ceramic with a miniature aperture of 0.33 mm × 0.33 mm was designed and fabricated, which exhibited a wide -6 dB bandwidth of 79% and an insertion loss of -19.6 dB. High spatial resolution, including the axial resolution of 36 μm and lateral resolution of 141 μm, was determined by imaging a 13-μm tungsten wire phantom. Ex vivo intravascular ultrasound (IVUS) imaging of a porcine coronary artery was performed to show the imaging capability of the miniature transducer. The results demonstrated the great potential of PNN-PZT-based ceramic for high-resolution miniature transducers application.
Collapse
|
42
|
Lee J, Chang JH. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment. IEEE Trans Biomed Eng 2019; 66:3146-3155. [PMID: 30835204 DOI: 10.1109/tbme.2019.2901005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE For accurate diagnosis of atherosclerosis, the high spatial and contrast resolutions of intravascular ultrasound (IVUS) images are a key requirement. Increasing the center frequency of IVUS is a simple solution to meet this requirement. However, this leads to a reduction in imaging depth due to the frequency-dependent attenuation of ultrasound. Here, we report a recently developed dual-element IVUS transducer for tissue harmonic imaging (THI) and frequency compounding to increase the spatial and contrast resolutions of IVUS images, while maintaining the imaging depth to assess the overall morphological change of blood vessels. METHODS One 35-MHz element is used for producing general IVUS images and the other 70-MHz element is for receiving the second harmonic signals induced by the 35-MHz ultrasound. The fundamental and second harmonic signals can also be used for frequency compound imaging to further improve contrast resolution. The spatial and contrast resolutions achieved by the developed transducer were evaluated through wire and tissue-mimicking phantom imaging tests. Additionally, the images of a stent deployed in a tissue-mimicking phantom and an excised pig artery were acquired to assess clinical usefulness of the transducer. RESULTS The results demonstrated that the developed IVUS transducer enables us to simultaneously examine the overall morphological change of blood vessels by the 35-MHz ultrasound images and the near vessel layers such as the intima, the media, and the adventitia by either THI or compound images with high spatial and contrast resolutions. In addition, the developed transducer facilitates the simultaneous acquisition of 35- and 70-MHz fundamental images when needed. CONCLUSION The developed dual-element IVUS transducer makes it possible to fully realize the potential benefits of IVUS in the diagnosis of atherosclerosis.
Collapse
|
43
|
Su M, Zhang Z, Hong J, Huang Y, Mu P, Yu Y, Liu R, Liang S, Zheng H, Qiu W. Cable shared dual-frequency catheter for intravascular ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:849-856. [PMID: 30762542 DOI: 10.1109/tuffc.2019.2898256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study proposes a catheter consisting of dual-frequency transducer for intravascular ultrasound. Both ultrasonic elements with different frequencies were connected to one coaxial cable to make the connection simple. The aperture size of the ultrasound elements were 0.4×0.6 mm2 and 0.3×0.4 mm2 for the low frequency element and high frequency element, respectively. The center frequency and bandwidth of the fabricated low frequency transducer were 33.8 MHz and 49.3%, respectively. Meanwhile, the center frequency and bandwidth of the high frequency transducer were 80.6 MHz and 50.3%, respectively. Imaging evaluations of wire phantom, tissue phantom and vessel tissue demonstrated good imaging capability of the dual-frequency catheter. The spatial resolution are 19 μm axially and 128 μm laterally for the high frequency transducer, and 37 μm axially and 199 μm laterally for the low frequency transducer. Band-pass filters were designed to separate the mixed echo signals. After filtering, the images from different ultrasound elements can be successfully identified, indicating the feasibility of the proposed cable shared dual-frequency imaging strategy. The proposed method has simple structure, good imaging resolution, and large penetration depth, showing good application prospect for intravascular ultrasound.
Collapse
|
44
|
Arkan EF, Degertekin FL. Analysis and Design of High-Frequency 1-D CMUT Imaging Arrays in Noncollapsed Mode. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:382-393. [PMID: 30571620 PMCID: PMC6415772 DOI: 10.1109/tuffc.2018.2887043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-frequency ultrasound imaging arrays are important for a broad range of applications, from small animal imaging to photoacoustics. Capacitive micromachined ultrasonic transducer (CMUT) arrays are particularly attractive for these applications as low noise receiver electronics can be integrated for an overall improved performance. In this paper, we present a comprehensive analysis of high-frequency CMUT arrays based on an experimentally verified CMUT array simulation tool. The results obtained on an example, a 40-MHz 1-D CMUT array for intravascular imaging, are used to obtain key design insights and tradeoffs for receive only and pulse-echo imaging. For the receiver side, thermal mechanical current noise, plane wave pressure sensitivity, and pressure noise spectrum are extracted from simulations. Using these parameters, we find that the receiver performance of CMUT arrays can be close to an ideal piston, independent of gap thickness, and applied dc bias, when coupled to low noise electronics with arrays utilizing smaller membranes performing better. For pulse-echo imaging, thermal mechanical current noise limited signal-to-noise ratio is observed to be dependent on the maximum available voltage and gap thickness. In terms of bandwidth, we find that the Bragg resonance of the array, related to the fill factor, is a significant determinant of the high frequency limit and the fluid loaded single membrane resonance determines the lower limit. Based on these results, we present design guidelines requiring only fluid loaded single membrane simulations and membrane pitch to achieve a desired pulse-echo response. We also provide a design example and discuss limitations of the approach.
Collapse
|
45
|
Magnesium Alloy Matching Layer for High-Performance Transducer Applications. SENSORS 2018; 18:s18124424. [PMID: 30558141 PMCID: PMC6308683 DOI: 10.3390/s18124424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022]
Abstract
In this paper, we report the use of magnesium alloy (AZ31B) as the matching material for PZT-5H ultrasonic transducers. The AZ31B has an acoustic impedance of 10.3 MRayl, which provides a good acoustic impedance match for PZT-5H ultrasonic transducers in water medium based on the double matching layer theory. Two PZT-5H transducers with different center frequencies were designed and fabricated using the AZ31B. The respective center frequencies of the two fabricated transducers were 4.6 MHz and 9.25 MHz. The 4.6 MHz transducer exhibits a -6 dB bandwidth of 79% and two-way insertion loss of -11.11 dB. The 9.25 MHz transducer also shows good performance: -6 dB bandwidth of 71% and two-way insertion loss of -14.43 dB. The properties of the two transducers are superior to those of transducers using a composite matching layer, indicating that the magnesium alloy may be a promising alternative for high-performance transducers.
Collapse
|
46
|
Development of High-Frequency (>60 MHz) Intravascular Ultrasound (IVUS) Transducer by Using Asymmetric Electrodes for Improved Beam Profile. SENSORS 2018; 18:s18124414. [PMID: 30551639 PMCID: PMC6308511 DOI: 10.3390/s18124414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 02/01/2023]
Abstract
In most commercial single-element intravascular ultrasound (IVUS) transducers, with 20 MHz to 40 MHz center frequencies, a conductive adhesive is used to bond a micro-sized cable for the signal line to the surface of the transducer aperture (<1 mm × 1 mm size) where ultrasound beam is generated. Therefore, the vibration of the piezoelectric layer is significantly disturbed by the adhesive with the signal line, thereby causing problems, such as reduced sensitivity, shortened penetration depth, and distorted beam profile. This phenomenon becomes more serious as the center frequency of the IVUS transducer is increased, and the aperture size becomes small. Therefore, we propose a novel IVUS acoustic stack employing asymmetric electrodes with conductive and non-conductive backing blocks. The purpose of this study is to verify the extent of performance degradation caused by the adhesive with the signal line, and to demonstrate how much performance degradation can be minimized by the proposed scheme. Finite element analysis (FEA) simulation was conducted, and the results show that −3 dB, −6 dB, and −10 dB penetration depths of the conventional transducer were shortened by 20%, 25%, and 19% respectively, while those of the proposed transducer were reduced only 3%, 4%, and 0% compared with their ideal transducers which have the same effective aperture size. Besides, the proposed transducer improved the −3 dB, −6 dB, and −10 dB penetration depths by 15%, 12%, and 10% respectively, compared with the conventional transducer. We also fabricated a 60 MHz IVUS transducer by using the proposed technique, and high-resolution IVUS B-mode (brightness mode) images were obtained. Thus, the proposed scheme can be one of the potential ways to provide more uniform beam profile resulting in improving the signal to noise ratio (SNR) in IVUS image.
Collapse
|
47
|
Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Khanna NN, Suri JS. Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. Comput Biol Med 2018; 101:184-198. [DOI: 10.1016/j.compbiomed.2018.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023]
|
48
|
Zhang J, Ren W, Liu Y, Wu X, Fei C, Quan Y, Zhou Q. Fabrication and Characterization of High-Frequency Ultrasound Transducers Based on Lead-Free BNT-BT Tape-Casting Thick Film. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3166. [PMID: 30235869 PMCID: PMC6165567 DOI: 10.3390/s18093166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/04/2022]
Abstract
A lead-free 0.94(Na0.5Bi0.5) TiO₃-0.06 BaTiO₃ (BNT-BT) thick film, with a thickness of 60 μm, has been fabricated using a tape-casting method. The longitudinal piezoelectric constant, clamped dielectric permittivity constant, remnant polarization and coercive field of the BNT-BT thick film were measured to be 150 pC/N, 1928, 13.6 μC/cm², and 33.6 kV/cm, respectively. The electromechanical coupling coefficient kt was calculated to be 0.55 according to the measured electrical impedance spectrum. A high-frequency plane ultrasound transducer was successfully fabricated using a BNT-BT thick film. The performance of the transducer was characterized and evaluated by the pulse-echo testing and wire phantom imaging operations. The BNT-BT thick film transducer exhibits a center frequency of 34 MHz, a -6 dB bandwidth of 26%, an axial resolution of 77 μm and a lateral resolution of 484 μm. The results suggest that lead-free BNT-BT thick film fabricated by tape-casting method is a promising lead-free candidate for high-frequency ultrasonic transducer applications.
Collapse
Affiliation(s)
- Junshan Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- School of Equipment Engineering, Engineering University of People's Armed Police, Xi'an 710086, Shaanxi, China.
| | - Wei Ren
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Yantao Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Xiaoqing Wu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi'an 740071, Shaanxi, China.
- Department of Ophthalmology and Biomedical Engineering, National Institutes of Health (NIH) Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.
| | - Yi Quan
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Qifa Zhou
- Department of Ophthalmology and Biomedical Engineering, National Institutes of Health (NIH) Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
49
|
Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci Rep 2018; 8:13918. [PMID: 30224779 PMCID: PMC6141566 DOI: 10.1038/s41598-018-32235-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Traditional ultrasound imaging techniques are limited in spatial resolution to visualize angiogenic vasa vasorum that is considered as an important marker for atherosclerotic plaque progression and vulnerability. The recently introduced super-resolution imaging technique based on microbubble center localization has shown potential to achieve unprecedented high spatial resolution beyond the acoustic diffraction limit. However, a major drawback of the current super-resolution imaging approach is low temporal resolution because it requires a large number of imaging frames. In this study, a new imaging sequence and signal processing approach for super-resolution ultrasound imaging are presented to improve temporal resolution by employing deconvolution and spatio-temporal-interframe-correlation based data acquisition. In vivo feasibility of the developed technology is demonstrated and evaluated in imaging vasa vasorum in the rabbit atherosclerosis model. The proposed method not only identifies a tiny vessel with a diameter of 41 μm, 5 times higher spatial resolution than the acoustic diffraction limit at 7.7 MHz, but also significantly improves temporal resolution that allows for imaging vessels over cardiac motion.
Collapse
|
50
|
Lee J, Shin EJ, Lee C, Chang JH. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1571-1582. [PMID: 29994203 DOI: 10.1109/tuffc.2018.2844869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue harmonic imaging (THI), an essential mode of commercial ultrasound imaging scanners, can provide images with high spatial and contrast resolutions. For THI, the frequency spectrum of a transducer is generally divided for the transmission of fundamental signal and the reception of its second harmonic. Therefore, it is difficult to use the THI mode for intravascular ultrasound (IVUS) imaging because typical IVUS transducers have a narrow -6-dB fractional bandwidth of about 50%. Due to its small aperture (about 0.5 mm) and the strength of IVUS being too weak, it is difficult to construct a high-quality tissue harmonic image. In this paper, we report a recently developed dual-frequency oblong-shaped-focused IVUS transducer for high-quality intravascular THI; the transducer consists of three elements arranged side by side in the horizontal (i.e., elevation) direction. The two outer elements with a center frequency of 35 MHz are responsible for ultrasound transmission and the center element has a center frequency of 70 MHz for the reception of the second-harmonic signals. All three elements have a spherical shape with a radius of 3 mm to efficiently generate harmonics in the region of interest. This configuration of the developed IVUS transducer was determined to facilitate high-quality THI, which was based on the results of Field II simulation and finite-element analysis. The images of wires and a tissue-mimicking phantom indicated that the tissue harmonic images produced by the developed transducer have not only a high spatial resolution but also a deep imaging depth, compared to the 35- and 70-MHz fundamental images.
Collapse
|