1
|
Salari A, Audoin M, Gueorguiev Tomov B, Yiu BYS, Vilain Thomsen E, Arendt Jensen J. Beamformer for a Lensed Row-Column Array in 3-D Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:238-250. [PMID: 40031539 DOI: 10.1109/tuffc.2025.3526523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Row-column (RC) arrays typically suffer from a limited field of view (FOV), with the imaging area confined to a rectangular region equal to the footprint of the probe. This limitation can be solved by using a diverging lens in front of the probe. Previous studies have introduced a thin lens model for beamforming lensed RC arrays, but this model inaccurately assumes the lens to be infinitely thin, leading to degraded resolution and contrast due to errors in the time of flight (TOF) calculations. This article presents a beamformer based on ray tracing for accurate TOF calculation. A Verasonics Vantage 256 scanner was equipped with a Vermon RC probe with elements, pitch, and a center frequency. A synthetic aperture ultrasound sequence with 96 virtual sources and 32 active elements for each emission with row elements was employed, and all column elements were used for acquiring data. This method was tested with a polystyrene (PS) lens with a spherical shape and polymethyl methacrylate (PMMA) in a bicylindrical shape. Based on pressure field measurements, these two lenses provide a 20° and 33° FOV, respectively. The thin lens model had a lateral resolution of around for the bicylindrical lens, whereas the new method achieves a resolution of around , representing a 4.6-fold improvement. The contrast is enhanced from 23.1 to 29.8 dB for the bicylindrical lens while preserving the FOV.
Collapse
|
2
|
Hansen-Shearer J, Yan J, Lerendegui M, Huang B, Toulemonde M, Riemer K, Tan Q, Tonko J, Weinberg PD, Dunsby C, Tang MX. Ultrafast 3-D Transcutaneous Super Resolution Ultrasound Using Row-Column Array Specific Coherence-Based Beamforming and Rolling Acoustic Sub-aperture Processing: In Vitro, in Rabbit and in Human Study. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1045-1057. [PMID: 38702285 DOI: 10.1016/j.ultrasmedbio.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.
Collapse
|
3
|
Masoumi MH, Kaddoura T, Zemp R. TOBE-Costas Arrays for Fast High-Resolution 3-D Power Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:648-658. [PMID: 38743556 DOI: 10.1109/tuffc.2024.3400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two-dimensional sparse arrays and row-column arrays are both alternatives to 2-D fully addressed arrays with lower channel counts. Row-column arrays have recently demonstrated fast 3-D structural and flow imaging but commonly suffer from high grating lobes or require multiplexing to achieve better quality. Two-dimensional sparse arrays enable full-volume acquisitions for each transmit event, but plane-wave transmissions with them usually lack quality in terms of uniformity of wavefronts. Here, we propose a novel architecture that combines both types of these arrays in one aperture, enabling imaging using row-column or sparse arrays alone or a hybrid imaging scheme where the row-column array is used in transmission and a 2-D sparse array in reception. This hybrid imaging scheme can potentially solve the shortcomings of each of these approaches. The sparse array layout chosen is a Costas array, characterized by having only one element per row and column, facilitating its integration with row-column arrays. We simulate images acquired with TOBE-Costas arrays using the hybrid imaging scheme and compare them to row-column and sparse spiral arrays of equivalent aperture size (128λ × 128λ at 7.5 MHz) in ultrafast plane-wave imaging of point targets and 3-D power Doppler imaging of synthetic flow phantoms. Our simulation results show that TOBE-Costas arrays exhibit superior resolution and lower sidelobe levels compared with plane-wave compounding with row-column arrays. Compared with density-tapered spiral arrays, they provide a larger field of view and finer resolution.
Collapse
|
4
|
Wu X, Lee WN. Row Transmission for High Volume-Rate Ultrasound Imaging With a Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:659-672. [PMID: 38696301 DOI: 10.1109/tuffc.2024.3396269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The widely used Vermon 1024-element matrix array for 3-D ultrasound imaging has three blank rows in the elevational direction, which breaks the elevation periodicity, thus degrading volumetric image quality. To bypass the blank rows in elevation while maintaining the steering capability in azimuth, we proposed a row-transmission (RT) scheme to improve 3-D spatial resolution. Specifically, we divided the full array into four apertures, each with multiple rows along the elevation. Each multirow aperture (MRA) was further divided into subapertures to transmit diverging waves (DWs) sequentially. Coherent DW compounding (CDWC) was realized in azimuth, while the elevation was multielement synthetic aperture (M-SA) imaging by regarding each row as an array of dashed line elements. An in-house spatiotemporal coding strategy, cascaded synthetic aperture (CaSA), was incorporated into the RT scheme as RT-CaSA to increase the signal-to-noise ratio (SNR). We compared the proposed RT with conventional bank-by-bank transmission-reception (Bank) and sparse-random-aperture compounding (SRAC) in a wire phantom and the in vivo human abdominal aorta (AA) to assess the performance of anatomical imaging and aortic wall motion estimation. Phantom results demonstrated superior lateral resolution achieved by our RT scheme (+19.52% and +16.88% versus Bank, +15.32% and +19.72% versus SRAC, in the azimuth-depth and elevation-depth planes, respectively). Our RT-CaSA showed excellent contrast ratios (CRs) (+8.19 and +8.08 dB versus Bank, +6.81 and +5.85 dB versus SRAC, +0.99 and +0.90 dB versus RT) and the highest in vivo aortic wall motion estimation accuracy. The RT scheme was demonstrated to have potential for various matrix array-based 3-D imaging research.
Collapse
|
5
|
Li G, Sun Q, Fu Y, Hou S, Zhang J, Xu KL, Dai JY. A single crystal row-column-array for 3D ultrasound imaging. ULTRASONICS 2024; 139:107289. [PMID: 38492351 DOI: 10.1016/j.ultras.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
In vivo 3D ultrasound imaging with 2D-array transducers is of great importance for both clinical application and biomedical research, but it is complicated in fabrication and also very expensive in hardware due to thousands of electronic channels. In this work, we demonstrate a new fabrication process of 7-MHz 128 + 128 elements row-column-array (RCA) transducer with relaxor ferroelectric PMN-0.28PT single crystal. With piezoelectric single crystal and improved acoustic matching, the optimized performance of -6 dB bandwidth of ∼82 % and insertion loss of -44.6 dB is achieved. The axial and lateral imaging resolutions at different depth of the RCA transducer are quantified by the point spread function (PSF), and the results are respectively 0.20 mm and 0.41 mm at the depth of 7.7 mm, and 0.22 mm and 0.47 mm at the depth of 16.7 mm. The transducer is validated experimentally on a hyperechoic phantom, and 3D view and slices of B-mode images are obtained. The experimental results indicate that our developed RCA transducer can obtain high-quality 3D ultrasound images, demonstrating great potential on ultrafast 3D and functional imaging.
Collapse
Affiliation(s)
- Guo Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China; School of Automation, Xi'an University of Posts &Telecommunications, Xi'an, China.
| | - Qiandong Sun
- Department of Biomedical Engineering, Fudan University, Shanghai, China
| | - Yapeng Fu
- Department of Biomedical Engineering, Fudan University, Shanghai, China
| | - Shilin Hou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiaming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - K L Xu
- Department of Biomedical Engineering, Fudan University, Shanghai, China; Shanghai Poda Medical Technology Co., Ltd., Shanghai, China.
| | - J Y Dai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
6
|
Wang B, Riemer K, Toulemonde M, Yan J, Zhou X, Smith CAB, Tang MX. Broad Elevation Projection Super-Resolution Ultrasound (BEP-SRUS) Imaging With a 1-D Unfocused Linear Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:255-265. [PMID: 38109244 DOI: 10.1109/tuffc.2023.3343992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.
Collapse
|
7
|
Jørgensen LT, Stuart MB, Jensen JA. Transverse oscillation tensor velocity imaging using a row-column addressed array: Experimental validation. ULTRASONICS 2023; 132:106962. [PMID: 36906961 DOI: 10.1016/j.ultras.2023.106962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 05/29/2023]
Abstract
Tensor velocity imaging (TVI) performance with a row-column probe was assessed for constant flow in a straight vessel phantom and pulsatile flow in a carotid artery phantom. TVI, i.e., estimating the 3-D velocity vector as a function of time and spatial position, was performed using the transverse oscillation cross-correlation estimator, and the flow was acquired with a Vermon 128+128 row-column array probe connected to a Verasonics 256 research scanner. The emission sequence used 16 emissions per image, and a TVI volume rate of 234 Hz was obtained for a pulse repetition frequency (fprf) of 15 kHz. The TVI was validated by comparing estimates of the flow rate through several cross-sections with the flow rate set by the pump. For the constant 8 mL/s flow in the straight vessel phantom with relative estimator bias (RB) and standards deviation (RSD) was found in the range of -2.18% to 0.55% and 4.58% to 2.48% in measurements performed with an fprf of 15, 10, 8, and 5 kHz. The pulsatile flow in the carotid artery phantom the was set to an average flow rate of 2.44 mL/s, and the flow was acquired with an fprf of 15, 10, and 8 kHz. The pulsatile flow was estimated from two measurement sites: one at a straight section of the artery and one at the bifurcation. In the straight section, the estimator predicted the average flow rate with an RB value ranging from -7.99% to 0.10% and an RSD value ranging from 10.76% to 6.97%. At the bifurcation, RB and RSD values were between -7.47% to 2.02% and 14.46% to 8.89%. This demonstrates that an RCA with 128 receive elements can accurately capture the flow rate through any cross-section at a high sampling rate.
Collapse
Affiliation(s)
- Lasse Thurmann Jørgensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Matthias Bo Stuart
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
8
|
Liang S, Wang L. A study of wide unfocused wavefront for convex-array ultrasound imaging. ULTRASONICS 2023; 134:107080. [PMID: 37320966 DOI: 10.1016/j.ultras.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Ultrafast ultrasound imaging modalities have attracted a lot of attention in the ultrasound community. It breaks the compromise between the frame rate and the region of interest by insonifying the whole medium with wide unfocused waves. Coherent compounding can be performed to enhance the image quality at a cost of frame rate. Ultrafast imaging has wide clinical applications, such as vector Doppler imaging and shear elastography. On the other hand, the use of unfocused waves is still marginal with convex-array transducers. For convex array, plane wave imaging is limited by the complicated transmission delay calculation, limited field-of-view, and inefficient coherent compounding. In this article, we study three wide unfocused wavefronts, namely, lateral virtual-source defined diverging wave imaging (latDWI), tilt virtual-source defined diverging wave imaging (tiltDWI), and Archimedean-spiral-based imaging (AMI) for convex-array imaging using the full-aperture transmission. The analytical monochromatic wave solutions to this three imaging are given. The mainlobe width and grating lobe position are given explicitly. Theoretical -6 dB beamwidth and synthetic transmit field response are studied. Simulation studies are carried on with the point targets and hypoechoic cysts. Time-of-flight formulas are given explicitly for beamforming. The conclusions are in good agreement with the theory: latDWI provides the finest lateral resolution but generates the severest axial lobe level for scatterers with large obliquities (i.e., for scatterers located at the image border) which degrades the image contrast. This effect gets worsen as the compound number increases. The tiltDWI and AMI give a very close performance on resolution and image contrast. AMI displays better contrast with a small compound number.
Collapse
Affiliation(s)
- Siyi Liang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Jensen JA, Schou M, Jorgensen LT, Tomov BG, Stuart MB, Traberg MS, Taghavi I, Oygaard SH, Ommen ML, Steenberg K, Thomsen EV, Panduro NS, Nielsen MB, Sorensen CM. Anatomic and Functional Imaging Using Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2722-2738. [PMID: 35839193 DOI: 10.1109/tuffc.2022.3191391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming. Resolution can approach the diffraction limit with an isotropic resolution of half a wavelength with low sidelobe levels, and the field of view can be expanded by using convex or lensed RC probes. GPU beamforming allows for three orthogonal planes to be beamformed at 30 Hz, providing near real-time imaging ideal for positioning the probe and improving the operator's workflow. Functional imaging is also attainable using transverse oscillation and dedicated SA sequence for tensor velocity imaging for revealing the full 3-D velocity vector as a function of spatial position and time for both blood velocity and tissue motion estimation. Using RC arrays with commercial contrast agents can reveal super-resolution imaging (SRI) with isotropic resolution below [Formula: see text]. RC arrays can, thus, yield full 3-D imaging at high resolution, contrast, and volumetric rates for both anatomic and functional imaging with the same number of receive channels as current commercial 1-D arrays.
Collapse
|
10
|
Wei L, Boni E, Ramalli A, Fool F, Noothout E, van der Steen AFW, Verweij MD, Tortoli P, De Jong N, Vos HJ. Sparse 2-D PZT-on-PCB Arrays With Density Tapering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2798-2809. [PMID: 36067108 DOI: 10.1109/tuffc.2022.3204118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and reception strategies. To test the concept of sparse spiral array imaging, we have designed, realized, and characterized two prototype probes designed at 2.5-MHz low-frequency (LF) and 5-MHz high-frequency (HF) center frequencies. Both probes share the same electronic design, based on piezoelectric ceramics and rapid prototyping with printed circuit board substrates to wire the elements to external connectors. Different center frequencies were achieved by adjusting the piezoelectric layer thickness. The LF and HF prototype probes had 88% and 95% of working elements, producing peak pressures of 21 and 96 kPa/V when focused at 5 and 3 cm, respectively. The one-way -3-dB bandwidths were 26% and 32%. These results, together with experimental tests on tissue-mimicking phantoms, show that the probes are viable for volumetric imaging.
Collapse
|
11
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
12
|
Favre H, Pernot M, Tanter M, Papadacci C. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5f72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Mapping blood microflows of the whole brain is crucial for early diagnosis of cerebral diseases. Ultrasound localization microscopy (ULM) was recently applied to map and quantify blood microflows in 2D in the brain of adult patients down to the micron scale. Whole brain 3D clinical ULM remains challenging due to the transcranial energy loss which significantly reduces the imaging sensitivity. Large aperture probes with a large surface can increase both resolution and sensitivity. However, a large active surface implies thousands of acoustic elements, with limited clinical translation. In this study, we investigate via simulations a new high-sensitive 3D imaging approach based on large diverging elements, combined with an adapted beamforming with corrected delay laws, to increase sensitivity. First, pressure fields from single elements with different sizes and shapes were simulated. High directivity was measured for curved element while maintaining high transmit pressure. Matrix arrays of 256 elements with a dimension of 10 × 10 cm with small (λ/2), large (4λ), and curved elements (4λ) were compared through point spread functions analysis. A large synthetic microvessel phantom filled with 100 microbubbles per frame was imaged using the matrix arrays in a transcranial configuration. 93% of the bubbles were detected with the proposed approach demonstrating that the multi-lens diffracting layer has a strong potential to enable 3D ULM over a large field of view through the bones.
Collapse
|
13
|
Hansen-Shearer J, Lerendegui M, Toulemonde M, Tang MX. Ultrafast 3-D Ultrasound Imaging Using Row-Column Array-Specific Frame-Multiply-and-Sum Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:480-488. [PMID: 34705641 DOI: 10.1109/tuffc.2021.3122094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Row-column arrays have been shown to be able to generate 3-D ultrafast ultrasound images with an order of magnitude less independent electronic channels than traditional 2-D matrix arrays. Unfortunately, row-column array images suffer from major imaging artifacts due to high sidelobes, particularly when operating at high frame rates. This article proposes a row-column-specific beamforming technique, for orthogonal plane-wave transmissions, row-column-specific frame multiply and sum (RC-FMAS), that exploits the incoherent nature of certain row-column array artifacts. A series of volumetric images is produced using row or column transmissions of 3-D plane waves. The voxelwise geometric mean of the beamformed volumetric images from each row and column pair is taken prior to compounding, which drastically reduces the incoherent imaging artifacts in the resulting image compared to traditional coherent compounding. The effectiveness of this technique was demonstrated in silico and in vitro, and the results show a significant reduction in sidelobe level with over 16-dB improvement in sidelobe to main-lobe energy ratio. Significantly improved contrast was demonstrated with contrast ratio increased by ~10 dB and generalized contrast-to-noise ratio increased by 158% when using the proposed new method compared to the existing delay and sum during in vitro studies. The new technique allowed for higher quality 3-D imaging while maintaining high frame rate potential.
Collapse
|
14
|
Chavignon A, Heiles B, Hingot V, Orset C, Vivien D, Couture O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans Biomed Eng 2021; 69:2132-2142. [PMID: 34932470 DOI: 10.1109/tbme.2021.3137265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasound Localization Microscopy (ULM) provides images of the microcirculation in-depth in living tissue. However, its implementation in two-dimension is limited by the elevation projection and tedious plane-by-plane acquisition. Volumetric ULM alleviates these issues and can map the vasculature of entire organs in one acquisition with isotropic resolution. However, its optimal implementation requires many independent acquisition channels, leading to complex custom hardware. METHODS In this article, we implemented volumetric ultrasound imaging with a multiplexed 32 x 32 probe driven by a single commercial ultrasound scanner. We propose and compare three different sub-aperture multiplexing combinations for localization microscopy in silico and in vitro with a flow of microbubbles in a canal. Finally, we evaluate the approach for micro-angiography of the rat brain.The "light" combination allows a higher maximal volume rate than the "full" combination while maintaining the field of view and resolution. RESULTS In the rat brain, 100,000 volumes were acquired within 7 min with a dedicated ultrasound sequence and revealed vessels down to 31 m in diameter with flows from 4.3 mm/s to 28.4 mm/s. CONCLUSION This work demonstrates the ability to perform a complete angiography with unprecedented resolution in the living rats brain with a simple and light setup through the intact skull. SIGNIFICANCE We foresee that it might contribute to democratize 3D ULM for both preclinical and clinical studies.
Collapse
|
15
|
Stuart MB, Jensen PM, Olsen JTR, Kristensen AB, Schou M, Dammann B, Sorensen HHB, Jensen JA. Real-Time Volumetric Synthetic Aperture Software Beamforming of Row-Column Probe Data. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2608-2618. [PMID: 33830920 DOI: 10.1109/tuffc.2021.3071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two delay-and-sum beamformers for 3-D synthetic aperture imaging with row-column addressed arrays are presented. Both beamformers are software implementations for graphics processing unit (GPU) execution with dynamic apodizations and third-order polynomial subsample interpolation. The first beamformer was written in the MATLAB programming language and the second was written in C/C++ with the compute unified device architecture (CUDA) extensions by NVIDIA. Performance was measured as volume rate and sample throughput on three different GPUs: a 1050 Ti, a 1080 Ti, and a TITAN V. The beamformers were evaluated across 112 combinations of output geometry, depth range, transducer array size, number of virtual sources, floating-point precision, and Nyquist rate or in-phase/quadrature beamforming using analytic signals. Real-time imaging defined as more than 30 volumes per second was attained by the CUDA beamformer on the three GPUs for 13, 27, and 43 setups, respectively. The MATLAB beamformer did not attain real-time imaging for any setup. The median, single-precision sample throughput of the CUDA beamformer was 4.9, 20.8, and 33.5 Gsamples/s on the three GPUs, respectively. The throughput of CUDA beamformer was an order of magnitude higher than that of the MATLAB beamformer.
Collapse
|
16
|
Lou C, Xiao F, Song J, Ding M, Yuchi M. Ultrasound Planar Array Imaging Metric Analysis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2386-2396. [PMID: 33690117 DOI: 10.1109/tuffc.2021.3065103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Planar array design makes the tradeoff between the 3-D ultrasound image quality and the system complexity based on the imaging metrics. The -6 dB mainlobe width (MW), mainlobe-to-sidelobe energy ratio (MSR), peak sidelobe level (PSL), and average sidelobe level (ASL) are the common imaging metrics for linear array design. MW is used for lateral resolution evaluation, while MSR, PSL, and ASL are adopted for contrast resolution evaluation. However, simulation results show that these metrics cannot fully evaluate the planar array performance. This article proposes several new imaging metrics for planar array: averaged mainlobe acoustic energy level and mainlobe energy density curve are the lateral resolution metrics, while mainlobe-to-sidelobe energy density ratio is the contrast resolution metric. The new metrics take into account the influence of the mainlobe area on the planar array performance evaluation. PSF analysis and simulated images show that the proposed metrics can evaluate planar array performance more accurately than the existing metrics. Moreover, uniform planar arrays with different scales and random sparse arrays are tested to show how to use the proposed metrics in planar array design.
Collapse
|
17
|
Cohen R, Fingerhut N, Varray F, Liebgott H, Eldar YC. Sparse Convolutional Beamforming for 3-D Ultrafast Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2444-2459. [PMID: 33755562 DOI: 10.1109/tuffc.2021.3068078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Real-time 3-D ultrasound (US) provides a complete visualization of inner body organs and blood vasculature, crucial for diagnosis and treatment of diverse diseases. However, 3-D systems require massive hardware due to the huge number of transducer elements and consequent data size. This increases cost significantly and limit both frame rate and image quality, thus preventing the 3-D US from being common practice in clinics worldwide. A recent study presented a technique called sparse convolutional beamforming algorithm (SCOBA), which obtains improved image quality while allowing notable element reduction in the context of 2-D focused imaging. In this article, we build upon previous work and introduce a nonlinear beamformer for 3-D imaging, called COBA-3D, consisting of 2-D spatial convolution of the in-phase and quadrature received signals. The proposed technique considers diverging-wave transmission and achieves improved image resolution and contrast compared with standard delay-and-sum beamforming while enabling a high frame rate. Incorporating 2-D sparse arrays into our method creates SCOBA-3D: a sparse beamformer that offers significant element reduction and, thus, allows performing 3-D imaging with the resources typically available for 2-D setups. To create 2-D thinned arrays, we present a scalable and systematic way to design 2-D fractal sparse arrays. The proposed framework paves the way for affordable ultrafast US devices that perform high-quality 3-D imaging, as demonstrated using phantom and ex-vivo data.
Collapse
|
18
|
Li Y, Kolios MC, Xu Y. 3-D Large-Pitch Synthetic Transmit Aperture Imaging With a Reduced Number of Measurement Channels: A Feasibility Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1628-1640. [PMID: 33290216 DOI: 10.1109/tuffc.2020.3043326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A 3-D synthetic transmit aperture ultrasound imaging system with a fully addressed array usually leads to high hardware complexity and cost since each element in the array is individually controlled. To reduce the hardware complexity, we had presented the large-pitch synthetic transmit aperture (LPSTA) ultrasound imaging for 2-D imaging using a 1-D phased array to reduce the number of measurement channels M (the product of number of transmissions, [Formula: see text], and the number of receiving channels in each transmission, [Formula: see text]). In this article, we extend this method to a 2-D matrix array for 3-D imaging. We present both numerical simulations and experimental measurements. We combined L × L adjacent elements into transmission subapertures (SAP) and K × K adjacent elements into receive SAPs in synthetic transmit aperture (STA) imaging. In the image reconstruction, we conducted the first attempt to apply and integrate Gaussian-approximated spatial response function (G-SRF) with delay and sum (DAS) to improve the image contrast, especially for the near-field targets. The imaging performance obtained from G-SRF was also evaluated numerically and compared with the previously presented frequency-domain SRF (Freq-domain SRF). The 3-D large-pitch synthetic transmit aperture (3-D-LPSTA) with G-SRF can provide a computationally efficient solution compared with the standard 3-D-STA method. With approximately 1900-fold reduction in the number of measurement channels, 3-D-LPSTA can provide image contrast comparable with the standard 3-D-STA with a full array and significantly better than using a periodically sparse array with similar complexity. In addition to reducing the system complexity, the 3-D-LPSTA achieves 700-fold reduction in computational complexity and 523-fold reduction in data storage. Finally, we evaluated and implemented the G-SRF using phantom data, which were consistent with the simulation results showing that the G-SRF can improve the image contrast. The results demonstrate that the proposed 3-D-LPSTA shows the great potential for designing an inexpensive ultrasound system to ensure the real-time 3-D clinical ultrasound imaging using large arrays. The limits of the proposed method were also discussed.
Collapse
|
19
|
Latham K, Samson C, Brown J. A New 3-D Imaging Technique Integrating Ultrafast Compounding, Hadamard Encoding, and Reconfigurable Fresnel Lensing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1618-1627. [PMID: 33284754 DOI: 10.1109/tuffc.2020.3042964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crossed electrode arrays address some of the challenges associated with 3-D ultrasound imaging because of the significant reduction in the number of elements ( 2N versus N2 ). However, creating a two-way focused 3-D image in real time is difficult with these arrays because azimuth and elevation dimensions cannot be beamformed at the same time. This work describes a new 3-D imaging technique that uses the flexibility of bias-sensitive substrates to create a high-quality elevation focus on a crossed electrode array. The principle behind this technique is to perform conventional compound imaging with an azimuth set of electrodes while implementing a bias controllable elevation lens with an elevation set of electrodes. On transmit, the biases are chosen to mimic a Fresnel lens. Then, on receive, the Hadamard coding is implemented along the elevation dimension. After decoding, we gain the RF data for each element across the elevation aperture even though there is effectively only one channel in that dimension. A 30-MHz, 128-element crossed electrode relaxor array was fabricated on a 1-3 electrostrictive composite substrate and was used to demonstrate the performance of the imaging technique. The on-axis -6-dB beamwidths were simulated to be 175 and [Formula: see text] in the azimuth and elevation directions, respectively, and the focus remained isotropic in the furthest elevation slice. Images were generated of a wire phantom to confirm the performance of the azimuth and elevational radiation patterns with good agreement between simulation and experiment. High-resolution 3-D volumetric images were generated of an ex vivo rat brain. Images of the cerebellum showed that the white and gray matter tracts could clearly be visualized with isometric resolution in both the azimuth and elevation dimensions.
Collapse
|
20
|
Latham K, Samson C, Woodacre J, Brown J. A 30-MHz, 3-D Imaging, Forward-Looking Miniature Endoscope Based on a 128-Element Relaxor Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1261-1271. [PMID: 32997625 DOI: 10.1109/tuffc.2020.3027907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work describes the design, fabrication, and characterization of a 128-element crossed electrode array in a miniature endoscopic form factor for real-time 3-D imaging. Crossed electrode arrays address some of the key challenges surrounding probe fabrication for 3-D ultrasound imaging by reducing the number of elements required (2N compared with N2). However, there remain practical challenges in packaging a high-frequency crossed electrode array into an endoscopic form factor. A process has been developed that uses a thinly diced strip of flex circuit to bring the back-side connections to common bond surface, which allows the final size of the endoscope to measure only [Formula: see text] mm. An electrostrictive ceramic composite design was developed for the crossed electrode array. A laser dicing system was used to cut the 1-3 composite as well as etch the array electrode pattern. A single quarter wavelength Parylene matching layer made was vacuum deposited to finish the array. The electrical impedance magnitude of array elements on resonance was measured to be 49 Ω with a phase angle of -55.5°. The finished array elements produced pulses with -6-dB two-way bandwidth of 60% with a 34-MHz center frequency. The average measured electrical crosstalk on the nearest neighboring element and next to nearest neighboring element was -37 and -29 dB, respectively. One- and two-way pulse measurements were completed to confirm the pulse polarity and fast switching speed. Preliminary 3-D images were generated of a wire phantom using the previously described simultaneous azimuth and Fresnel elevation (SAFE) compounding imaging technique.
Collapse
|
21
|
Sanders JL, Biliroglu AO, Wu X, Adelegan OJ, Yamaner FY, Oralkan O. A Row-Column (RC) Addressed 2-D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array on a Glass Substrate. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:767-776. [PMID: 32759081 PMCID: PMC8359810 DOI: 10.1109/tuffc.2020.3014780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article presents a row-column (RC) capacitive micromachined ultrasonic transducer (CMUT) array fabricated using anodic bonding on a borosilicate glass substrate. This is shown to reduce the bottom electrode-to-substrate capacitive coupling. This subsequently improves the relative response of the elements when top or bottom electrodes are used as the "signal" (active) electrode. This results in a more uniform performance for the two cases. Measured capacitance and resonant frequency, pulse-echo signal amplitude, and frequency response are presented to support this. Biasing configurations with varying ac and dc arrangements are applied and subsequently explored. Setting the net dc bias voltage across an off element to zero is found to be most effective to minimize spurious transmission. To achieve this, a custom switching circuit was designed and implemented. This circuit was also used to obtain orthogonal B-mode cross-sectional images of a rotationally asymmetric target.
Collapse
|
22
|
Chee AJY, Ishii T, Yiu BYS, Yu ACH. Helical toroid phantom for 3D flow imaging investigations. Phys Med Biol 2021; 66:045029. [PMID: 33586671 DOI: 10.1088/1361-6560/abda99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The medical physics community has hitherto lacked an effective calibration phantom to holistically evaluate the performance of three-dimensional (3D) flow imaging techniques. Here, we present the design of a new omnidirectional, three-component (3-C) flow phantom whose lumen is consisted of a helical toroid structure (4 mm lumen diameter; helically winded for 5 revolutions over a torus with 10 mm radius; 5 mm helix radius). This phantom's intraluminal flow trajectory embraces all combinations of x, y, and z directional components, as confirmed using computational fluid dynamics (CFD) simulations. The phantom was physically fabricated via lost-core casting with polyvinyl alcohol cryogel (PVA) as the tissue mimic. 3D ultrasound confirmed that the phantom lumen expectedly resembled a helical toroid geometry. Pulsed Doppler measurements showed that the phantom, when operating under steady flow conditions (3 ml s-1 flow rate), yielded flow velocity magnitudes that agreed well with those derived from CFD at both the inner torus (-47.6 ± 5.7 versus -52.0 ± 2.2 cm s-1; mean ± 1 S.D.) and the outer torus (49.5 ± 4.2 versus 48.0 ± 1.7 cm s-1). Additionally, 3-C velocity vectors acquired from multi-angle pulsed Doppler showed good agreement with CFD-derived velocity vectors (<7% and 10° difference in magnitude and flow angle, respectively). Ultrasound color flow imaging further revealed that the phantom's axial flow pattern was aligned with the CFD-derived flow profile. Overall, the helical toroid phantom has strong potential as an investigative tool in 3D flow imaging innovation endeavors, such as the development of flow vector estimators and visualization algorithms.
Collapse
Affiliation(s)
- Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, Canada
| | | | | | | |
Collapse
|
23
|
Zubair M, Dickinson RJ. 3D synthetic aperture imaging with a therapeutic spherical random phased array for transcostal applications. Phys Med Biol 2021; 66:035024. [PMID: 33276351 DOI: 10.1088/1361-6560/abd0d0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Experimental validation of a synthetic aperture imaging technique using a therapeutic random phased array is described, demonstrating the dual nature of imaging and therapy of such an array. The transducer is capable of generating both continuous wave high intensity beams for ablating the tumor and low intensity ultrasound pulses to image the target area. Pulse-echo data is collected from the elements of the phased array to obtain B-mode images of the targets. Since therapeutic arrays are optimized for therapy only with concave apertures having low f-number and large directive elements often coarsely sampled, imaging can not be performed using conventional beamforming. We show that synthetic aperture imaging is capable of processing the acquired RF data to obtain images of the field of interest. Simulations were performed to compare different synthetic aperture imaging techniques to identify the best algorithm in terms of spatial resolution. Experimental validation was performed using a 1 MHz, 256-elements, spherical random phased array with 130 mm radius of curvature. The array was integrated with a research ultrasound scanner via custom connectors to acquire raw RF data for variety of targets. Imaging was implemented using synthetic aperture beamforming to produce images of a rib phantom and ex vivo ribs. The array was shown to resolve spherical targets within ±15 mm of either side of the axis in the focal plane and obtain 3D images of the rib phantom up to ±40 mm of either side of the central axis and at a depth of 3-9 cm from the array surface. The lateral and axial full width half maximum was 1.15 mm and 2.75 mm, respectively. This study was undertaken to emphasize that both therapy and image guidance with a therapeutic random phased array is possible and such a system has the potential to address some major limitations in the existing high intensity focused ultrasound (HIFU) systems. The 3D images obtained with a therapeutic array can be used to identify and locate strong scattering objects aiding to image guidance and treatment planning of the HIFU procedure.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioengineering, Imperial College London, United Kingdom
| | | |
Collapse
|
24
|
Qian X, Wodnicki R, Kang H, Zhang J, Tchelepi H, Zhou Q. Current Ultrasound Technologies and Instrumentation in the Assessment and Monitoring of COVID-19 Positive Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2230-2240. [PMID: 32857693 PMCID: PMC7654715 DOI: 10.1109/tuffc.2020.3020055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/23/2020] [Indexed: 05/04/2023]
Abstract
Since the emergence of the COVID-19 pandemic in December of 2019, clinicians and scientists all over the world have faced overwhelming new challenges that not only threaten their own communities and countries but also the world at large. These challenges have been enormous and debilitating, as the infrastructure of many countries, including developing ones, had little or no resources to deal with the crisis. Even in developed countries, such as Italy, health systems have been so inundated by cases that health care facilities became oversaturated and could not accommodate the unexpected influx of patients to be tested. Initially, resources were focused on testing to identify those who were infected. When it became clear that the virus mainly attacks the lungs by causing parenchymal changes in the form of multifocal pneumonia of different levels of severity, imaging became paramount in the assessment of disease severity, progression, and even response to treatment. As a result, there was a need to establish protocols for imaging of the lungs in these patients. In North America, the focus was on chest X-ray and computed tomography (CT) as these are widely available and accessible at most health facilities. However, in Europe and China, this was not the case, and a cost-effective and relatively fast imaging modality was needed to scan a large number of sick patients promptly. Hence, ultrasound (US) found its way into the hands of Chinese and European physicians and has since become an important imaging modality in those locations. US is a highly versatile, portable, and inexpensive imaging modality that has application across a broad spectrum of conditions and, in this way, is ideally suited to assess the lungs of COVID-19 patients in the intensive care unit (ICU). This bedside test can be done with little to no movement of the patients from the unit that keeps them in their isolated rooms, thereby limiting further exposure to other health personnel. This article presents a basic introduction to COVID-19 and the use of the US for lung imaging. It further provides a high-level overview of the existing US technologies that are driving development in current and potential future US imaging systems for lung, with a specific emphasis on portable and 3-D systems.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
- Keck School of MedicineRoski Eye Institute, University of Southern CaliforniaLos AngelesCA90033USA
| | - Robert Wodnicki
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Haochen Kang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Junhang Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Hisham Tchelepi
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Qifa Zhou
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
- Keck School of MedicineRoski Eye Institute, University of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
25
|
Kierski TM, Dayton PA. Perspectives on high resolution microvascular imaging with contrast ultrasound. APPLIED PHYSICS LETTERS 2020; 116:210501. [PMID: 32508345 PMCID: PMC7253217 DOI: 10.1063/5.0012283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 05/13/2023]
Abstract
Recent developments in contrast enhanced ultrasound have demonstrated a potential to visualize small blood vessels in vivo, unlike anything possible with traditional grayscale ultrasound. This Perspective article introduces microvascular imaging strategies and their underlying technology.
Collapse
Affiliation(s)
- Thomas M. Kierski
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Campus Box 7575, Chapel Hill, North Carolina 27599, USA
| | - Paul A. Dayton
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Campus Box 7575, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
26
|
Jensen JA, Ommen ML, Oygard SH, Schou M, Sams T, Stuart MB, Beers C, Thomsen EV, Larsen NB, Tomov BG. Three-Dimensional Super-Resolution Imaging Using a Row-Column Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:538-546. [PMID: 31634831 DOI: 10.1109/tuffc.2019.2948563] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A 3-D super-resolution (SR) pipeline based on data from a row-column (RC) array is presented. The 3-MHz RC array contains 62 rows and 62 columns with a half wavelength pitch. A synthetic aperture (SA) pulse inversion sequence with 32 positive and 32 negative row emissions is used for acquiring volumetric data using the SARUS research ultrasound scanner. Data received on the 62 columns are beamformed on a GPU for a maximum volume rate of 156 Hz when the pulse repetition frequency is 10 kHz. Simulated and 3-D printed point and flow microphantoms are used for investigating the approach. The flow microphantom contains a 100- [Formula: see text] radius tube injected with the contrast agent SonoVue. The 3-D processing pipeline uses the volumetric envelope data to find the bubble's positions from their interpolated maximum signal and yields a high resolution in all three coordinates. For the point microphantom, the standard deviation on the position is (20.7, 19.8, 9.1) [Formula: see text]. The precision estimated for the flow phantom is below [Formula: see text] in all three coordinates, making it possible to locate structures on the order of a capillary in all three dimensions. The RC imaging sequence's point spread function has a size of 0.58 × 1.05 × 0.31 mm3 ( 1.17λ×2.12λ×0.63λ ), so the possible volume resolution is 28900 times smaller than for SA RC B-mode imaging.
Collapse
|
27
|
Yu J, Yoon H, Khalifa YM, Emelianov SY. Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:248-257. [PMID: 31545718 PMCID: PMC7008949 DOI: 10.1109/tuffc.2019.2942557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ultrasound imaging using a matrix array allows real-time multi-planar volumetric imaging. To enhance image quality, the matrix array should provide fast volumetric ultrasound imaging with spatially consistent focusing in the lateral and elevational directions. However, because of the significantly increased data size, dealing with massive and continuous data acquisition is a significant challenge. We have designed an imaging acquisition sequence that handles volumetric data efficiently using a single 256-channel Verasonics ultrasound research platform multiplexed with a 1024-element matrix array. The developed sequence has been applied for building an ultrasonic pupilometer. Our results demonstrate the capability of the developed approach for structural visualization of an ex vivo porcine eye and the temporal response of the modeled eye pupil with moving iris at the volume rate of 30 Hz. Our study provides a fundamental ground for researchers to establish their own volumetric ultrasound imaging platform and could stimulate the development of new volumetric ultrasound approaches and applications.
Collapse
|
28
|
Mattesini P, Ramalli A, Petrusca L, Basset O, Liebgott H, Tortoli P. Spectral Doppler Measurements With 2-D Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:278-285. [PMID: 31562082 DOI: 10.1109/tuffc.2019.2944090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2-D sparse arrays, in which a few hundreds of elements are distributed on the probe surface according to an optimization procedure, represent an alternative to full 2-D arrays, including thousands of elements usually organized in a grid. Sparse arrays have already been used in B-mode imaging tests, but their application to Doppler investigations has not been reported yet. Since the sparsity of the elements influences the acoustic field, a corresponding influence on the mean frequency (Fm), bandwidth (BW), and signal-to-noise ratio (SNR) of the Doppler spectra is expected. This article aims to assess, by simulations and experiments, to what extent the use of a sparse rather than a full gridded 2-D array has an impact on spectral Doppler measurements. Parabolic flows were investigated by a 3 MHz, 1024-element gridded array and by a sparse array; the latter was obtained by properly selecting a subgroup of 256 elements from the full array. Simulations show that the mean Doppler frequency does not change between the sparse and the full array while there are significant differences on the BW (average reduction of 17.2% for the sparse array, due to different apertures of the two probes) and on the signal power (Ps) (22 dB, due to the different number of active elements). These results are confirmed by flow phantom experiments, which also highlight that the most critical difference between sparse and full gridded array in Doppler measurements is in terms of SNR (-16.8 dB).
Collapse
|
29
|
Bouzari H, Engholm M, Nikolov SI, Stuart MB, Thomsen EV, Jensen JA. Imaging Performance for Two Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1209-1221. [PMID: 31056493 DOI: 10.1109/tuffc.2019.2914348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study evaluates the volumetric imaging performance of two prototyped 62 + 62 row-column-addressed (RCA) 2-D array transducer probes using three synthetic aperture imaging (SAI) emission sequences and two different beamformers. The probes are fabricated using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric transducer (PZT) technology. Both have integrated apodization to reduce ghost echoes and are designed with similar acoustical features, i.e., 3-MHz center frequency, λ /2 pitch, and [Formula: see text] active footprint. Raw RF data are obtained using an experimental research ultrasound scanner, SARUS. The SAI sequences are designed for imaging down to 14 cm at a volume rate of 88 Hz. Two beamforming methods, spatial matched filtering and row-column adapted delay-and-sum, are used for beamforming the RF data. The imaging quality is investigated through simulations and phantom measurements. Both probes on average have similar lateral full-width at half-maximum (FWHM) values, but the PZT probe has 20% smaller cystic resolution values and 70% larger contrast-to-noise ratio (CNR) compared to the capacitive micromachined ultrasonic transducer (CMUT) probe. The CMUT probe can penetrate down to 15 cm, and the PZT probe down to 30 cm. The CMUT probe has 17% smaller axial FWHM values. The matched filter focusing shows an improved B-mode image for measurements on a cyst phantom with an improved speckle pattern and better visualization of deeper lying cysts. The results of this study demonstrate the potentials of RCA 2-D arrays against fully addressed 2-D arrays, which are low channel count (e.g., 124 instead of 3844), low acoustic intensity mechanical index (MI ≤ 0.88 and spatial-peak-temporal-average intensity [Formula: see text]), and high penetration depth (down to 30 cm), which makes 3-D imaging at high volume rates possible with equipment in the price range of conventional 2-D imaging.
Collapse
|
30
|
Isla JA, Cegla FB. Simultaneous transmission and reception on all elements of an array: binary code excitation. Proc Math Phys Eng Sci 2019; 475:20180831. [PMID: 31236046 PMCID: PMC6545054 DOI: 10.1098/rspa.2018.0831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Pulse-echo arrays are used in radar, sonar, seismic, medical and non-destructive evaluation. There is a trend to produce arrays with an ever-increasing number of elements. This trend presents two major challenges: (i) often the size of the elements is reduced resulting in a lower signal-to-noise ratio (SNR) and (ii) the time required to record all of the signals that correspond to every transmit-receive path increases. Coded sequences with good autocorrelation properties can increase the SNR while orthogonal sets can be used to simultaneously acquire all of the signals that correspond to every transmit-receive path. However, a central problem of conventional coded sequences is that they cannot achieve good autocorrelation and orthogonality properties simultaneously due to their length being limited by the location of the closest reflectors. In this paper, a solution to this problem is presented by using coded sequences that have receive intervals. The proposed approach can be more than one order of magnitude faster than conventional methods. In addition, binary excitation and quantization can be employed, which reduces the data throughput by roughly an order of magnitude and allows for higher sampling rates. While this concept is generally applicable to any field, a 16-element system was built to experimentally demonstrate this principle for the first time using a conventional medical ultrasound probe.
Collapse
|
31
|
Kirkpatrick JP, Wilcox PD, Smith RA. Row-column Addressed Arrays for Non-destructive Evaluation Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1119-1128. [PMID: 30951465 DOI: 10.1109/tuffc.2019.2909138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Row-column Addressed (RCA) arrays are 2-d arrays formed by two orthogonal overlapping linear arrays made up of elongated elements. This substantially reduces the number of elements in the 2-d array. Modelled data are used to compare RCA arrays in pulse-echo mode to fully populated 2-d arrays for Non-destructive Evaluation (NDE) applications and an improved beamforming algorithm based on the total focusing method is tested. Improved beamforming has led to a less than half-wavelength diameter conical bottom hole being successfully detected experimentally using an RCA array, with a maximum signal-to-noise ratio of 17:0dB (3.s.f). The average difference between the -6dB drop width and the nominal drill bit diameter when sizing flat bottom holes experimentally using RCA arrays is also improved compared to plane B-scan algorithms from (1:29 ± 0:07)mm to (0:23 ± 0:04)mm. These developments demonstrate the advantages of using RCA arrays over conventional fully populated 2-d arrays and provides a basis for their use, and development, in the field of NDE.
Collapse
|
32
|
Brenner K, Ergun AS, Firouzi K, Rasmussen MF, Stedman Q, Khuri-Yakub BP. Advances in Capacitive Micromachined Ultrasonic Transducers. MICROMACHINES 2019; 10:E152. [PMID: 30813447 PMCID: PMC6412242 DOI: 10.3390/mi10020152] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) technology has enjoyed rapid development in the last decade. Advancements both in fabrication and integration, coupled with improved modelling, has enabled CMUTs to make their way into mainstream ultrasound imaging systems and find commercial success. In this review paper, we touch upon recent advancements in CMUT technology at all levels of abstraction; modeling, fabrication, integration, and applications. Regarding applications, we discuss future trends for CMUTs and their impact within the broad field of biomedical imaging.
Collapse
Affiliation(s)
- Kevin Brenner
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
| | - Arif Sanli Ergun
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
- Faculty of Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey.
| | - Kamyar Firouzi
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
| | | | - Quintin Stedman
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
33
|
Cohen R, Eldar YC. Sparse Convolutional Beamforming for Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2390-2406. [PMID: 30296220 DOI: 10.1109/tuffc.2018.2874256] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The standard technique used by commercial medical ultrasound systems to form B-mode images is delay and sum (DAS) beamforming. However, DAS often results in limited image resolution and contrast that are governed by the center frequency and the aperture size of the ultrasound transducer. A large number of elements lead to improved resolution but at the same time increase the data size and the system cost due to the receive electronics required for each element. Therefore, reducing the number of receiving channels while producing high-quality images is of great importance. In this paper, we introduce a nonlinear beamformer called COnvolutional Beamforming Algorithm (COBA), which achieves significant improvement of lateral resolution and contrast. In addition, it can be implemented efficiently using the fast Fourier transform. Based on the COBA concept, we next present two sparse beamformers with closed-form expressions for the sensor locations, which result in the same beam pattern as DAS and COBA while using far fewer array elements. Optimization of the number of elements shows that they require a minimal number of elements that are on the order of the square root of the number used by DAS. The performance of the proposed methods is tested and validated using simulated data, phantom scans, and in vivo cardiac data. The results demonstrate that COBA outperforms DAS in terms of resolution and contrast and that the suggested beamformers offer a sizable element reduction while generating images with an equivalent or improved quality in comparison with DAS.
Collapse
|
34
|
Sanders JL, Wu X, Adelegan OJ, Mahmud MM, Yalcin Yamaner F, Gallippi CM, Oralkan O. A Row-Column (RC) Addressed 2D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array on a Glass Substrate: Preliminary Results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1-4. [PMID: 30440288 DOI: 10.1109/embc.2018.8513028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, we present preliminary characterization results from a 32 x 32 row-column (RC) addressed 2D capacitive micromachined ultrasonic transducer (CMUT) array. The device was fabricated using anodic bonding on a borosilicate glass substrate, which eliminates the substrate - bottom electrode coupling previously observed in traditional CMUT RC arrays fabricated on silicon substrates. The characterization results were compared for the top and bottom electrodes and include impedance measurements, pulseecho impulse responses, and 2D scans of the pressure field using a calibrated hydrophone. The results showed that the array elements behave similarly when ground and hot electrodes were switched between the top and bottom electrodes for all of the measured parameters including device capacitance, center frequency, and pulse-echo response amplitude. The pressure scans verified the highly customizable nature of RC arrays by showing multiple active element configurations. A sample cross-sectional image of a metal target was also demonstrated.
Collapse
|
35
|
Daeichin V, Bera D, Raghunathan S, Shabani Motlagh M, Chen Z, Chen C, Noothout E, Vos HJ, Pertijs M, Bosch JG, de Jong N, Verweij M. Acoustic characterization of a miniature matrix transducer for pediatric 3D transesophageal echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2143-2154. [PMID: 30072206 DOI: 10.1016/j.ultrasmedbio.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
This paper presents the design, fabrication and characterization of a miniature PZT-on-CMOS matrix transducer for real-time pediatric 3-dimensional (3D) transesophageal echocardiography (TEE). This 3D TEE probe consists of a 32 × 32 array of PZT elements integrated on top of an Application Specific Integrated Circuit (ASIC). We propose a partitioned transmit/receive array architecture wherein the 8 × 8 transmitter elements, located at the centre of the array, are directly wired out and the remaining receive elements are grouped into 96 sub-arrays of 3 × 3 elements. The echoes received by these sub-groups are locally processed by micro-beamformer circuits in the ASIC that allow pre-steering up to ±37°. The PZT-on-CMOS matrix transducer has been characterized acoustically and has a centre frequency of 5.8 MHz, -6 dB bandwidth of 67%, a transmit efficiency of 6 kPa/V at 30 mm, and a receive dynamic range of 85 dB with minimum and maximum detectable pressures of 5 Pa and 84 kPa respectively. The properties are very suitable for a miniature pediatric real-time 3D TEE probe.
Collapse
Affiliation(s)
- Verya Daeichin
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands.
| | - Deep Bera
- Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Shreyas Raghunathan
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Maysam Shabani Motlagh
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Zhao Chen
- Electron. Instrum. Lab., Delft University of Technology, Delft, The Netherlands
| | - Chao Chen
- Electron. Instrum. Lab., Delft University of Technology, Delft, The Netherlands
| | - Emile Noothout
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Hendrik J Vos
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Michiel Pertijs
- Electron. Instrum. Lab., Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Martin Verweij
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Wilson AJ. Towards using a focussed phased array of millimetre length scale elements for ultrasound imaging. Phys Med Biol 2018; 63:145009. [PMID: 29926810 DOI: 10.1088/1361-6560/aace07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sparse phased array ultrasound transducers with millimetre length scale elements have previously been proposed for generating hyperthermia but not for imaging. Numerical simulation with a pseudospectral solver was used to investigate: (a) how the position of the maximum pressure in the focal region changed with element diameter and frequency; (b) how the size and position of the focal region changed with focal distance under steering; and (c) the imaging performance of 15 element random arrays. These analyses were performed for both piston-like and non piston-like millimetre diameter elements since previous work has shown a shift in the distance to the maximum pressure in the focal region with the latter. The results for these elements were compared with elements where the diameter was <λ/2. The distance from the array to the position of maximum pressure in the focal region diverged from the value with element diameter <λ/2; values for piston-like elements increased positively whilst values for non piston-like elements increased negatively. With distances expressed in λ, no difference was found for arrays at 1 MHz and 2.5 MHz. For piston-like elements, but not for non piston-like elements, two peaks were found in the focal region which were in-line with the direction of propagation for a focus on the central axis but which rotated to become parallel with the direction of propagation when steering exceeded 20°. The size and position of the focal region under steering was similar for the non piston-like elements and elements with diameter <λ/2. Little difference was found in image quality or the size of the point spread function (PSF) between images at 2.5 MHz with piston-like and non piston-like behaviour for steering angles less than 20° when compared with a linear array of similar size. These results suggest that imaging with random arrays of millimetre length scale elements is possible.
Collapse
Affiliation(s)
- A J Wilson
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom. Department of Research and Development, University Hospital, Coventry CV2 2DX, United Kingdom
| |
Collapse
|
37
|
Bouzari H, Engholm M, Beers C, Stuart MB, Nikolov SI, Thomsen EV, Jensen JA. Curvilinear 3-D Imaging Using Row-Column-Addressed 2-D Arrays With a Diverging Lens: Phantom Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1182-1192. [PMID: 29993372 DOI: 10.1109/tuffc.2018.2836384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A double-curved diverging lens over the flat row-column-addressed (RCA) 2-D array can extend its inherent rectilinear 3-D imaging field of view (FOV) to a curvilinear volume region, which is necessary for applications such as abdominal and cardiac imaging. Two concave lenses with radii of 12.7 and 25.4 mm were manufactured using RTV664 silicone. The diverging properties of the lenses were evaluated based on simulations and measurements on several phantoms. The measured FOV for both lenses in contact with tissue mimicking phantom was less than 15% different from the theoretical predictions, i.e., a curvilinear FOV of and for the 12.7- and 25.4-mm radii lenses. A synthetic aperture imaging sequence with single-element transmissions was designed for imaging down to 140 mm at a volume rate of 88 Hz. The performance was evaluated in terms of signal-to-noise ratio, FOV, and full-width at half-maximum (FWHM) of a focused beam. The penetration depths in a tissue mimicking phantom with 0.5-dB/(cm MHz) attenuation were 100 and 125 mm for the lenses with radii of 12.7 and 25.4 mm. The azimuth, elevation, and radial FWHM at 43-mm depth were (5.8, 5.8, 1) and (6, 6, 1) . The results of this study confirm that the proposed lens approach is an effective method for increasing the FOV, when imaging with RCA 2-D arrays.
Collapse
|
38
|
Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves. Sci Rep 2018; 8:9108. [PMID: 29904182 PMCID: PMC6002520 DOI: 10.1038/s41598-018-27490-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/24/2018] [Indexed: 02/02/2023] Open
Abstract
Three dimensional ultrasound (3-D US) imaging methods based on 2-D array probes are increasingly investigated. However, the experimental test of new 3-D US approaches is contrasted by the need of controlling very large numbers of probe elements. Although this problem may be overcome by the use of 2-D sparse arrays, just a few experimental results have so far corroborated the validity of this approach. In this paper, we experimentally compare the performance of a fully wired 1024-element (32 × 32) array, assumed as reference, to that of a 256-element random and of an “optimized” 2-D sparse array, in both focused and compounded diverging wave (DW) transmission modes. The experimental results in 3-D focused mode show that the resolution and contrast produced by the optimized sparse array are close to those of the full array while using 25% of elements. Furthermore, the experimental results in 3-D DW mode and 3-D focused mode are also compared for the first time and they show that both the contrast and the resolution performance are higher when using the 3-D DW at volume rates up to 90/second which represent a 36x speed up factor compared to the focused mode.
Collapse
|
39
|
Joos P, Poree J, Liebgott H, Vray D, Baudet M, Faurie J, Tournoux F, Cloutier G, Nicolas B, Garcia D, Baudet M, Tournoux F, Joos P, Poree J, Cloutier G, Liebgott H, Faurie J, Vray D, Nicolas B, Garcia D. High-Frame-Rate Speckle-Tracking Echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:720-728. [PMID: 29733276 DOI: 10.1109/tuffc.2018.2809553] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conventional echocardiography is the leading modality for noninvasive cardiac imaging. It has been recently illustrated that high-frame-rate echocardiography using diverging waves could improve cardiac assessment. The spatial resolution and contrast associated with this method are commonly improved by coherent compounding of steered beams. However, owing to fast tissue velocities in the myocardium, the summation process of successive diverging waves can lead to destructive interferences if motion compensation (MoCo) is not considered. Coherent compounding methods based on MoCo have demonstrated their potential to provide high-contrast B-mode cardiac images. Ultrafast speckle-tracking echocardiography (STE) based on common speckle-tracking algorithms could substantially benefit from this original approach. In this paper, we applied STE on high-frame-rate B-mode images obtained with a specific MoCo technique to quantify the 2-D motion and tissue velocities of the left ventricle. The method was first validated in vitro and then evaluated in vivo in the four-chamber view of 10 volunteers. High-contrast high-resolution B-mode images were constructed at 500 frames/s. The sequences were generated with a Verasonics scanner and a 2.5-MHz phased array. The 2-D motion was estimated with standard cross correlation combined with three different subpixel adjustment techniques. The estimated in vitro velocity vectors derived from STE were consistent with the expected values, with normalized errors ranging from 4% to 12% in the radial direction and from 10% to 20% in the cross-range direction. Global longitudinal strain of the left ventricle was also obtained from STE in 10 subjects and compared to the results provided by a clinical scanner: group means were not statistically different ( value = 0.33). The in vitro and in vivo results showed that MoCo enables preservation of the myocardial speckles and in turn allows high-frame-rate STE.
Collapse
|
40
|
Chen K, Lee BC, Thomenius K, Khuri-Yakub BT, Lee HS, Sodini CG. A Column-Row-Parallel Ultrasound Imaging Architecture for 3D Plane-wave Imaging and Tx 2nd-Order Harmonic Distortion (HD2) Reduction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:828-843. [PMID: 29994734 DOI: 10.1109/tuffc.2018.2811393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a Column-Row-Parallel imaging frontend architecture for integrated and low-power 3D medical ultrasound imaging. The Column-Row-Parallel architecture offers linear-scaling interconnection, acquisition and programming time with row-by-row or column-by-column operations, while supporting volumetric imaging functionality and fault-tolerance against possible transducer element defects with per-element controls. The combination of column-parallel selection logic, row-parallel selection logic, and per-element selection logic reaches a balance between flexible imaging aperture definition and manageable imaging data / control interface to a 2D array. A 16×16 CMUT-ASIC Column-Row-Parallel prototype is fabricated and assembled with a flip-chip bonding process. It facilitates the 3D plane-wave coherent compounding algorithm for volumetric imaging with a fast frame rate of 62.5 Hz and 46% improved lateral resolution with 10-angle compounding and a field of view volume of 2.3mm in both azimuth and elevation, 8.5mm in depth. At a hypothetically scaled up 64x64 array size, the frame rate can still be kept at 31.2 Hz for a volume of 40mm in both azimuth and elevation, 150mm in depth. An interleaved checker board pattern with in-phase (I) and quadrature (Q) excitations is also demonstrated for reducing CMUT second harmonic distortion (HD2) emission by up to 25 dB at the loss of 3 dB fundamental energy reduction. The method reduces nonlinear effects from both transducers and circuits and is a wide band technique that is applicable to arbitrary pulse shapes.
Collapse
|
41
|
Zhang Y, Guo Y, Lee WN. Ultrafast Ultrasound Imaging Using Combined Transmissions With Cross-Coherence-Based Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:337-348. [PMID: 28792890 DOI: 10.1109/tmi.2017.2736423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plane-wave-based ultrafast imaging has become the prevalent technique for non-conventional ultrasound imaging. The image quality, especially in terms of the suppression of artifacts, is generally compromised by reducing the number of transmissions for a higher frame rate. We hereby propose a new ultrafast imaging framework that reduces not only the side lobe artifacts but also the axial lobe artifacts using combined transmissions with a new coherence-based factor. The results from simulations, in vitro wire phantoms, the ex vivo porcine artery, and the in vivo porcine heart show that our proposed methodology greatly reduced the axial lobe artifact by 25±5 dB compared with coherent plane-wave compounding (CPWC), which was considered as the ultrafast imaging standard, and suppressed side lobe artifacts by 15 ± 5 dB compared with CPWC and coherent spherical-wave compounding. The reduction of artifacts in our proposed ultrafast imaging framework led to a better boundary delineation of soft tissues than CPWC.
Collapse
|
42
|
Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020200] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Compensated Row-Column Ultrasound Imaging System Using Multilayered Edge Guided Stochastically Fully Connected Random Fields. Sci Rep 2017; 7:10644. [PMID: 28878344 PMCID: PMC5587655 DOI: 10.1038/s41598-017-09534-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2017] [Indexed: 11/08/2022] Open
Abstract
The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number of connections required to address the 2-D array and therefore reducing the amount of data to handle, this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the ghosting artifacts inherent to the row-column method must all be taken into account when building a reconstruction framework. In this research, we build on a previously published system and propose an edge-guided, compensated row-column ultrasound imaging system that incorporates multilayered edge-guided stochastically fully connected conditional random fields to address the limitations of the row-column method. Tests carried out on simulated and real row-column ultrasound images show the effectiveness of our proposed system over other published systems. Visual assessment show our proposed system's potential at preserving edges and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal-to-Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.
Collapse
|
44
|
Imbault M, Chauvet D, Gennisson JL, Capelle L, Tanter M. Intraoperative Functional Ultrasound Imaging of Human Brain Activity. Sci Rep 2017; 7:7304. [PMID: 28779069 PMCID: PMC5544759 DOI: 10.1038/s41598-017-06474-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/14/2017] [Indexed: 12/04/2022] Open
Abstract
The functional mapping of brain activity is essential to perform optimal glioma surgery and to minimize the risk of postoperative deficits. We introduce a new, portable neuroimaging modality of the human brain based on functional ultrasound (fUS) for deep functional cortical mapping. Using plane-wave transmissions at an ultrafast frame rate (1 kHz), fUS is performed during surgery to measure transient changes in cerebral blood volume with a high spatiotemporal resolution (250 µm, 1 ms). fUS identifies, maps and differentiates regions of brain activation during task-evoked cortical responses within the depth of a sulcus in both awake and anaesthetized patients.
Collapse
Affiliation(s)
- Marion Imbault
- Institut Langevin - Ondes et Images, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, INSERM U979, 17 rue Moreau, 75012, Paris, France.
| | - Dorian Chauvet
- Service de neurochirurgie, Groupe Hospitalier Pitié-Salpêtrière, Bâtiment Babinski 47-83 Boulevard de l'Hôpital, 75013, Paris, France.,Service de neurochirurgie, Fondation Rothschild, 29 rue Manin, 75019, Paris, France
| | - Jean-Luc Gennisson
- Institut Langevin - Ondes et Images, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, INSERM U979, 17 rue Moreau, 75012, Paris, France
| | - Laurent Capelle
- Service de neurochirurgie, Groupe Hospitalier Pitié-Salpêtrière, Bâtiment Babinski 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Mickael Tanter
- Institut Langevin - Ondes et Images, ESPCI ParisTech, PSL Research University, CNRS UMR 7587, INSERM U979, 17 rue Moreau, 75012, Paris, France
| |
Collapse
|
45
|
Bouzari H, Engholm M, Beers C, Stuart MB, Nikolov SI, Thomsen EV, Jensen JA. Curvilinear 3-D Imaging Using Row-Column-Addressed 2-D Arrays With a Diverging Lens: Feasibility Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:978-988. [PMID: 28358682 DOI: 10.1109/tuffc.2017.2687521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Constructing a double-curved row-column-addressed (RCA) 2-D array or applying a diverging lens over the flat RCA 2-D array can extend the imaging field-of-view (FOV) to a curvilinear volume without increasing the aperture size, which is necessary for applications, such as abdominal and cardiac imaging. Extended FOV and low channel count of double-curved RCA 2-D arrays make 3-D imaging possible with equipment in the price range of conventional 2-D imaging. This paper proposes a delay-and-sum beamformation scheme specific to double-curved RCA 2-D arrays and validates its focusing ability based on simulations. A synthetic aperture imaging sequence with single element transmissions is designed for imaging down to 14 cm at a volume rate of 88 Hz. Using a diverging lens with an f-number of -1 circumscribing the underlying RCA array, the imaging quality of a double-curved λ/2 -pitch 3-MHz 62 + 62 RCA 2-D array is investigated as a function of depth within a curvilinear FOV of 60 °×60° . The simulated double-curved 2-D array exhibits the same full-width-at-half-maximum values for a point scatterer within its curvilinear FOV at a fixed radial distance compared with a flat 2-D array within its rectilinear FOV. The results of this paper demonstrate that the proposed beamforming approach is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions.
Collapse
|
46
|
Greenlay BA, Zemp RJ. Fabrication of Linear Array and Top-Orthogonal-to-Bottom Electrode CMUT Arrays With a Sacrificial Release Process. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:93-107. [PMID: 28092505 DOI: 10.1109/tuffc.2016.2620425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microfabrication processes for sacrificial-release-based capacitive micromachined ultrasound transducer arrays are provided with an emphasis on top-orthogonal-to-bottom electrode 2-D arrays. These arrays have significant promise for high-quality 3-D imaging with reduced wiring complexity compared with fully wired arrays. The protocols and best practices are outlined in significant detail along with design considerations and notes of caution for pitfalls and factors impacting yield.
Collapse
|
47
|
Roux E, Ramalli A, Liebgott H, Cachard C, Robini MC, Tortoli P. Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:108-125. [PMID: 28092506 DOI: 10.1109/tuffc.2016.2614776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.
Collapse
|
48
|
Roux E, Ramalli A, Tortoli P, Cachard C, Robini MC, Liebgott H. 2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:2138-2149. [PMID: 27913329 DOI: 10.1109/tuffc.2016.2602242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.
Collapse
|
49
|
Holbek S, Christiansen TL, Stuart MB, Beers C, Thomsen EV, Jensen JA. 3-D Vector Flow Estimation With Row-Column-Addressed Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1799-1814. [PMID: 27824562 DOI: 10.1109/tuffc.2016.2582536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric simulation study is conducted, where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean bias ~B and mean standard deviation ~σ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. The 3-D vector flow is estimated in the flow rig for four representative flow directions. In the setup with 90° beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for ( vx, vy, vz ). The estimated peak velocity is 48.5 ± 3 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC-addressed array.
Collapse
|
50
|
The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer. SENSORS 2016; 16:s16101592. [PMID: 27690029 PMCID: PMC5087381 DOI: 10.3390/s16101592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N2 connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed.
Collapse
|