1
|
Liu JD, VanTreeck KE, Marston WA, Papadopoulou V, Rowe SE. Ultrasound-Mediated Antibiotic Delivery to In Vivo Biofilm Infections: A Review. Chembiochem 2024; 25:e202400181. [PMID: 38924307 PMCID: PMC11483220 DOI: 10.1002/cbic.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Bacterial biofilms are a significant concern in various medical contexts due to their resilience to our immune system as well as antibiotic therapy. Biofilms often require surgical removal and frequently lead to recurrent or chronic infections. Therefore, there is an urgent need for improved strategies to treat biofilm infections. Ultrasound-mediated drug delivery is a technique that combines ultrasound application, often with the administration of acoustically-active agents, to enhance drug delivery to specific target tissues or cells within the body. This method involves using ultrasound waves to assist in the transportation or activation of medications, improving their penetration, distribution, and efficacy at the desired site. The advantages of ultrasound-mediated drug delivery include targeted and localized delivery, reduced systemic side effects, and improved efficacy of the drug at lower doses. This review scrutinizes recent advances in the application of ultrasound-mediated drug delivery for treating biofilm infections, focusing on in vivo studies. We examine the strengths and limitations of this technology in the context of wound infections, device-associated infections, lung infections and abscesses, and discuss current gaps in knowledge and clinical translation considerations.
Collapse
Affiliation(s)
- Jamie D. Liu
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kelly E. VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William A. Marston
- Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Tasu JP, Tougeron D, Rols MP. Irreversible electroporation and electrochemotherapy in oncology: State of the art. Diagn Interv Imaging 2022; 103:499-509. [PMID: 36266192 DOI: 10.1016/j.diii.2022.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
Abstract
Thermal tumor ablation techniques including radiofrequency, microwave, LASER, high-intensity focused ultrasound and cryoablation are routinely used to treated liver, kidney, bone, or lung tumors. However, all these techniques are thermal and can therefore be affected by heat sink effect, which can lead to incomplete ablation, and thermal injuries of non-targeted tissues are possible. Under certain conditions, high voltage pulsed electric field can induce formation of pores in the cell membrane. This phenomenon, called electropermeabilization, is also known as "electroporation". Under certain conditions, electroporation can be irreversible, leading to cell death. Irreversible electroporation has demonstrated efficacy for the treatment of liver and prostate cancers, whereas data are scarce regarding pancreatic and renal cancers. During reversible electroporation, transient cell permeability can be used to introduce cytotoxic drugs into tumor cells (commonly bleomycin or cisplatin). Reversible electroporation used in conjunction with cytotoxic drugs shows promise in terms of oncological response, particularly for solid cutaneous and subcutaneous tumors such as melanoma. Irreversible and reversible electroporation are both not thermal ablation techniques and therefore open a new promising horizon for tumor ablation.
Collapse
Affiliation(s)
- Jean-Pierre Tasu
- Department of Diagnosis and interventional radiology, University Hospital of Poitiers, 86021 Poitiers, France; LaTim, UBO and INSERM 1101, University of Brest, 29000 Brest, France.
| | - David Tougeron
- Department of Hepatogastroenterology, University Hospital of Poitiers, 86000 Poitiers, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
3
|
Zeng P, Chen C, Lof J, Stolze E, Li S, Chen X, Pacella J, Villanueva FS, Matsunaga T, Everbach EC, Fei H, Xie F, Porter T. Acoustic Detection of Retained Perfluoropropane Droplets Within the Developing Myocardial Infarct Zone. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2322-2334. [PMID: 36050231 PMCID: PMC9547398 DOI: 10.1016/j.ultrasmedbio.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluoropropane droplets (PDs) cross endothelial barriers and can be acoustically activated for selective myocardial extravascular enhancement following intravenous injection (IVI). Our objective was to determine how to optimally activate extravascular PDs for transthoracic ultrasound-enhanced delineation of a developing scar zone (DSZ). Ultrafast-frame-rate microscopy was conducted to determine the effect of pulse sequence on the threshold of bubble formation from PDs. In vitro studies were subsequently performed at different flow rates to determine acoustic activation and inertial cavitation thresholds for a PD infusion using multipulse fundamental non-linear or single-pulse harmonic imaging. IVIs of PDs were given in 9 rats and 10 pigs following prolonged left anterior descending ischemia to detect and quantify PD kinetics within the DSZ. A multipulse sequence had a lower myocardial index threshold for acoustic activation by ultrafast-frame-rate microscopy. Acoustic activation was observed at a myocardial index ≥0.4 below the inertial cavitation threshold for both pulse sequences. In rats, confocal microscopy and serial acoustic activation imaging detected higher droplet presence (relative to remote regions) within the DSZ at 3 min post-IVI. Transthoracic high-mechanical-index impulses with fundamental non-linear imaging in pigs at this time post-IVI resulted in selective contrast enhancement within the DSZ.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Lof
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth Stolze
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shouqiang Li
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terry Matsunaga
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA; Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | | | - Hongwen Fei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Feng Xie
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Thomas Porter
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
4
|
Falatah HA, Lacerda Q, Chaga M, Wessner CE, Forsberg F, Leeper DB, Eisenbrey JR. Activation of Phase Change Contrast Agents Using Ionizing Radiation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2365-2371. [PMID: 34866197 PMCID: PMC9793720 DOI: 10.1002/jum.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The feasibility of activating phase change contrast agents (PCCA) made from Definity (Lantheus Medical Imaging) using X-rays was investigated. A 10 mL of Definity PCCA (0.1 mL PCCA/mL) were injected into gelatin phantoms and irradiated using doses of 0, 30, 50, and 100 Gy. Size distribution and PCCA activation were measured after irradiation. Definity PCCAs were activated at a threshold of 50 Gy. Changes were visible with microscopy, visual inspection of T-flasks, and ultrasound imaging of gelatin phantoms. Moreover, increasing the radiation dose above 50 Gy appeared to further activate PCCA. These results indicate Definity PCCAs may be useful for ultrasound-based radiation dosimetry.
Collapse
Affiliation(s)
- Hebah A Falatah
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Quezia Lacerda
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Michael Chaga
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Durham PG, Kim J, Eltz KM, Caskey CF, Dayton PA. Polyvinyl Alcohol Cryogels for Acoustic Characterization of Phase-Change Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:954-960. [PMID: 35246338 PMCID: PMC9012345 DOI: 10.1016/j.ultrasmedbio.2022.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 05/03/2023]
Abstract
Phase-change contrast agents (PCCAs) consisting of lipid-encapsulated low-boiling-point perfluorocarbons can be used in conjunction with ultrasound for diagnostic and therapeutic applications. One benefit of PCCAs is site-specific activation, whereby the liquid core is acoustically vaporized into a bubble detectable via ultrasound imaging. For further evaluation of PCCAs in a variety of applications, it is useful to disperse these nanodroplets into an acoustically compatible stationary matrix. However, many traditional phantom preparations require heating, which causes premature thermal activation of low-boiling-point PCCAs. Polyvinyl alcohol (PVA) cryogels do not require heat to set. Here we propose a simple method for the incorporation of the low-boiling-point PCCAs using octafluoropropane (OFP) and decafluorobutane (DFB) into PVA cryogels for a variety of acoustic characterization applications. We determined the utility of the phantoms by activating droplets with a focused transducer, visualizing the lesions with ultrasound imaging. At 1 MHz, droplet activation was consistently observed at 2.0 and 4.0 MPa for OFP and DFB, respectively.
Collapse
Affiliation(s)
- Phillip G Durham
- Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Katherine M Eltz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Dayton
- Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Fan CH, Kao WF, Kang ST, Ho YJ, Yeh CK. Exploring the Acoustic and Dynamic Characteristics of Phase-Change Droplets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1051-1061. [PMID: 33079650 DOI: 10.1109/tuffc.2020.3032441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acoustic droplet vaporization (ADV) provides the on-demand production of bubbles for use in ultrasound (US)-based diagnostic and therapeutic applications. The droplet-to-bubble transition process has been shown to involve localized internal gas nucleation, followed by a volume expansion of threefold to fivefold and inertial bubble oscillation, all of which take place within a few microseconds. Monitoring these ADV processes is important in gauging the mechanical effects of phase-change droplets in a biological environment, but this is difficult to achieve using regular optical observations. In this study, we utilized acoustic characterization [i.e., simultaneous passive cavitation detection (PCD) and active cavitation detection (ACD)] to investigate the acoustic signatures emitted from phase-change droplets ADV and determined their correlations with the physical behaviors observed using high-speed optical imaging. The experimental results showed that activation with three-cycle 5-MHz US pulse resulted in the droplets (diameter: 3.0- [Formula: see text]) overexpanding and undergoing damped oscillation before settling to bubbles with a final diameter. Meanwhile, a broadband shock wave was observed at the beginning of the PCD signal. The intense fluctuations of the ACD signal revealed that the shock wave arose from the inertial cavitation of nucleated small gas pockets in the droplets. It was particularly interesting that another shock-wave signal with a much lower acoustic frequency (< 2 MHz) was observed at about [Formula: see text] after the first half signal. This signal coincided with the reduction of the ACD signal amplitude that indicated the rebound of the transforming bubble. Since internal gas nucleation is a crucial process of ADV, the first half signal may indicate the occurrence of an ADV event, and the second half signal may further reveal the degrees of expansion and oscillation of the bubble. These acoustic signatures provide opportunities for monitoring ADV dynamics based on the detection of acoustic signals.
Collapse
|
7
|
Delayed Echo Enhancement Imaging to Quantify Myocardial Infarct Size. J Am Soc Echocardiogr 2021; 34:898-909. [PMID: 33711458 DOI: 10.1016/j.echo.2021.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Perfluoropropane droplets formulated from commercial microbubbles exhibit different acoustic characteristics than their parent microbubbles, most likely from enhanced endothelial permeability. This enhanced permeability may permit delayed echo-enhancement imaging (DEEI) similar to delayed enhancement magnetic resonance imaging (DE-MRI). We hypothesized this would allow detection and quantification of myocardial scar. METHODS In 15 pigs undergoing 90 minutes of left anterior descending ischemia by either balloon (n = 13) or thrombotic occlusion (n = 2), DE-MRI was performed at 2-24 days postocclusion. Delayed echo-enhancement imaging was performed at 2-4 minutes following an intravenous injection of 1 mL of 50% Definity (Lantheus Medical) compressed into 180 nm droplets; DEEI was attempted in all pigs with single-pulse harmonic imaging at 1.7 transmit/3.4 MHz receive. Myocardial defects observed with DEEI were quantified (percentage of infarct area) and compared with DE-MRI as well as postmortem staining. In six pigs, multipulse low-mechanical index (MI) fundamental nonlinear imaging (FNLI) with intermittent high-MI impulses was performed to determine whether droplet activation within the infarct zone was achievable with a longer pulse duration. RESULTS The range of infarct size area by DE-MRI ranged from 0% to 46% of total left ventricular area. Single-pulse harmonic imaging detected a contrast defect that correlated closely with infarct area by DE-MRI (r = 0.81, P = .0001). The FNLI high-MI impulses resulted in droplet activation in both the infarct and normal zones. Harmonic subtraction of the FNLI images resulted in infarct zone enhancement that also correlated closely with infarct size (r = 0.83; P = .04). Droplets were observed on postmortem transmission electron microscopy within myocytes of the infarct and remote normal zone. CONCLUSION Intravenously Definity nanodroplets can be utilized to detect and quantify infarct zone at the bedside using DEEI techniques.
Collapse
|
8
|
DeRuiter RM, Markley EN, Rojas JD, Pinton GF, Dayton PA. Transient acoustic vaporization signatures unique to low boiling point phase change contrast agents enable super-resolution ultrasound imaging without spatiotemporal filtering. AIP ADVANCES 2020; 10:105124. [PMID: 33094029 PMCID: PMC7575328 DOI: 10.1063/5.0029207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 05/18/2023]
Abstract
The unique activation signal of phase-change contrast agents (PCCAs or droplets) can be separated from the tissue signal and localized to generate super-resolution (SR) ultrasound (US) images. Lipid-shelled, perfluorocarbon PCCAs can be stochastically vaporized (activated) by a plane wave US transmission thereby enabling them to be used as separable targets for ultrasound localization microscopy. The unique signature of droplet vaporization imaging and the transient inherent nature of this signature increases signal contrast and therefore localization confidence, while the poor resolution of the low-frequency vaporization signal is overcome by the super-resolution result. Furthermore, our proposed PCCA SR technique does not require the use of user-dependent and flow-dependent spatio-temporal filtering via singular-value decomposition. Rather, matched filters selected by Fourier-domain analysis are able to identify and localize PCCA activations. Droplet SR was demonstrated in a crossed-microtube water phantom by localizing the activation signals of octafluoropropane nanodroplets (OFP, C3F8, -37 °C boiling point) to resolve 100 µm diameter fluorinated ethylene propylene tubes, which are ordinarily 35% smaller than the native diffraction-limited resolution of the imaging system utilized.
Collapse
Affiliation(s)
| | | | | | | | - P. A. Dayton
- Author to whom correspondence should be addressed:
| |
Collapse
|
9
|
Jing B, Kashyap EP, Lindsey BD. Transcranial activation and imaging of low boiling point phase-change contrast agents through the temporal bone using an ultrafast interframe activation ultrasound sequence. Med Phys 2020; 47:4450-4464. [PMID: 32657429 DOI: 10.1002/mp.14390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE As a cavitation enhancer, low boiling point phase-change contrast agents (PCCA) offer potential for ultrasound-mediated drug delivery in applications including intracerebral hemorrhage or brain tumors. In addition to introducing cavitation, ultrasound imaging also has the ability to provide guidance and monitoring of the therapeutic process by localizing delivery events. However, the highly attenuating skull poses a challenge for achieving an image with useful contrast. In this study, the feasibility of transcranial activation and imaging of low boiling point PCCAs through the human temporal bone was investigated by using a low frequency ultrafast interframe activation ultrasound (UIAU) imaging sequence with singular value decomposition-based denoising. METHODS Lipid-shelled PCCAs filled with decafluorobutane were activated and imaged at 37°C in tissue-mimicking phantoms both without and with an ex vivo human skull using the new UIAU sequence and a low frequency diagnostic transducer array at frequencies from 1.5 to 3.5 MHz. A singular value decomposition-based denoising filter was developed and used to further enhance transcranial image contrast. The contrast-to-tissue ratio (CTR) and contrast enhancement (CE) of UIAU was quantitatively evaluated and compared with the amplitude modulation pulse inversion (AMPI) and vaporization detection imaging (VDI) approaches. RESULTS Image results demonstrate enhanced contrast in the phantom channel with suppressed background when the low boiling point PCCA was activated both without and with an ex vivo human skull using the UIAU sequence. Quantitative results show that without the skull, low frequency UIAU imaging provided significantly higher image contrast (CTR ≥ 18.56 dB and CE ≥ 18.66 dB) than that of AMPI and VDI (P < 0.05). Transcranial imaging results indicated that the CE of UIAU (≥18.80 dB) was significantly higher than AMPI for free-field activation pressures of 5 and 6 MPa. The CE of UIAU is also significantly higher than that of VDI when PCCAs were activated at 2.5 MHz and 3 MHz (P < 0.05). The CTR (23.30 [20.07-25.56] dB) of denoised UIAU increased by 12.58 dB relative to the non-denoised case and was significantly higher than that of AMPI at an activation pressure of 4 MPa (P < 0.05). CONCLUSIONS Results indicate that low boiling point PCCAs can be activated and imaged at low frequencies including imaging through the temporal bone using the UIAU sequence. The UIAU imaging approach provides higher contrast than AMPI and VDI, especially at lower activation pressures with additional removal of electronic noise.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Esha P Kashyap
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
10
|
Aliabouzar M, Lu X, Kripfgans OD, Fowlkes JB, Fabiilli ML. Acoustic Droplet Vaporization in Acoustically Responsive Scaffolds: Effects of Frequency of Excitation, Volume Fraction and Threshold Determination Method. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3246-3260. [PMID: 31561948 PMCID: PMC6823163 DOI: 10.1016/j.ultrasmedbio.2019.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/11/2019] [Accepted: 08/23/2019] [Indexed: 05/03/2023]
Abstract
Ultrasound-induced vaporization of liquid perfluorocarbon (PFC) droplets into microbubbles, termed acoustic droplet vaporization (ADV), has potential therapeutic and diagnostic applications. Recently, we demonstrated how ADV-a threshold-based phenomenon-can modulate the release of biomolecules from composite hydrogels, thereby stimulating regenerative processes, such as angiogenesis. These composite hydrogels, called acoustically responsive scaffolds (ARSs), consist of monodispersed, micron size PFC emulsions embedded within a fibrin matrix. This study investigated the effects of frequency of excitation (2.25, 5, 7.5 and 10 MHz) and volume fraction (0.05%, 0.2% and 1% [v/v]) of monodispersed, double emulsions in the ARSs on the ADV threshold. We determined and compared the ADV thresholds via acoustic methods, including active detection, passive detection and attenuation, as well as an echogenicity-based method using B-mode imaging. The ADV threshold determined via these four techniques showed an increasing trend with frequency of excitation. Further analysis of the wave propagation showed that the amplitudes of high frequency harmonics were diminished in ARSs with high volume fractions of emulsion. The ADV threshold inversely correlated with the volume fraction of emulsion at the lowest excitation frequency. However, at higher frequencies, possibly due to the high acoustic reflectivity of the PFC emulsions, the ADV threshold correlated directly with the volume fraction of the emulsion. Additionally, the ADV efficiency correlated with the supra-threshold acoustic pressure. Overall, these results elucidate fundamental acoustic properties of the ARSs, which can be used in future applications.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaofang Lu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Ghorbani M, Olofsson K, Benjamins JW, Loskutova K, Paulraj T, Wiklund M, Grishenkov D, Svagan AJ. Unravelling the Acoustic and Thermal Responses of Perfluorocarbon Liquid Droplets Stabilized with Cellulose Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13090-13099. [PMID: 31549511 DOI: 10.1021/acs.langmuir.9b02132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The attractive colloidal and physicochemical properties of cellulose nanofibers (CNFs) at interfaces have recently been exploited in the facile production of a number of environmentally benign materials, e.g. foams, emulsions, and capsules. Herein, these unique properties are exploited in a new type of CNF-stabilized perfluoropentane droplets produced via a straightforward and simple mixing protocol. Droplets with a comparatively narrow size distribution (ca. 1-5 μm in diameter) were fabricated, and their potential in the acoustic droplet vaporization process was evaluated. For this, the particle-stabilized droplets were assessed in three independent experimental examinations, namely temperature, acoustic, and ultrasonic standing wave tests. During the acoustic droplet vaporization (ADV) process, droplets were converted to gas-filled microbubbles, offering enhanced visualization by ultrasound. The acoustic pressure threshold of about 0.62 MPa was identified for the cellulose-stabilized droplets. A phase transition temperature of about 22 °C was observed, at which a significant fraction of larger droplets (above ca. 3 μm in diameter) were converted into bubbles, whereas a large part of the population of smaller droplets were stable up to higher temperatures (temperatures up to 45 °C tested). Moreover, under ultrasound standing wave conditions, droplets were relocated to antinodes demonstrating the behavior associated with the negative contrast particles. The combined results make the CNF-stabilized droplets interesting in cell-droplet interaction experiments and ultrasound imaging.
Collapse
Affiliation(s)
- Morteza Ghorbani
- Department of Biomedical Engineering and Health Systems , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
- Mechatronics Engineering Program, Faculty of Engineering and Natural Science , Sabanci University , Istanbul 34956 , Turkey
| | - Karl Olofsson
- Department of Applied Physics , KTH Royal Institute of Technology SE-100 44 Stockholm , Sweden
| | - Jan-Willem Benjamins
- Research Institute of Sweden (RISE) , Chemistry, Materials and Surfaces , Box 5607, SE-114 86 Stockholm , Sweden
| | - Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Thomas Paulraj
- Department of Fiber and Polymer Technology , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Martin Wiklund
- Department of Applied Physics , KTH Royal Institute of Technology SE-100 44 Stockholm , Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Anna J Svagan
- Department of Fiber and Polymer Technology , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| |
Collapse
|
12
|
Fix SM, Koppolu BP, Novell A, Hopkins J, Kierski TM, Zaharoff DA, Dayton PA, Papadopoulou V. Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1762-1776. [PMID: 31003709 PMCID: PMC6701470 DOI: 10.1016/j.ultrasmedbio.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 05/23/2023]
Abstract
The gastrointestinal (GI) tract presents a notoriously difficult barrier for macromolecular drug delivery, especially for biologics. Herein, we demonstrate that ultrasound-stimulated phase change contrast agents (PCCAs) can transiently disrupt confluent colorectal adenocarcinoma monolayers and improve the transepithelial transport of a macromolecular model drug. With ultrasound treatment in the presence of PCCAs, we achieved a maximum of 44 ± 15% transepithelial delivery of 70-kDa fluorescein isothiocyanate-dextran, compared with negligible delivery through sham control monolayers. Among all tested rarefactional pressures (300-600 kPa), dextran delivery efficiency was consistently greatest at 300 kPa. To explore this unexpected finding, we quantified stable and inertial cavitation energy generated by various ultrasound exposure conditions. In general, lower pressures resulted in more persistent cavitation activity during the 30-s ultrasound exposures, which may explain the enhanced dextran delivery efficiency. Thus, a unique advantage of using low boiling point PCCAs for this application is that the same low-pressure pulses can be used to induce vaporization and provide maximal delivery.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bhanu P Koppolu
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Anthony Novell
- IR4M, Université Paris-Saclay, CNRS UMR 8081, 91401 Orsay, France
| | - Jared Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Rojas JD, Dayton PA. Vaporization Detection Imaging: A Technique for Imaging Low-Boiling-Point Phase-Change Contrast Agents with a High Depth of Penetration and Contrast-to-Tissue Ratio. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:192-207. [PMID: 30482709 DOI: 10.1016/j.ultrasmedbio.2018.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 06/09/2023]
Abstract
Phase-change contrast agents (PCCAs) possess advantages over microbubble contrast agents, such as the ability to extravasate and circulate longer in the vasculature that could enhance the diagnostic capabilities of contrast-enhanced ultrasound. PCCAs typically have a liquid perfluorocarbon (PFC) core that can be vaporized into echogenic microbubbles. Vaporization of submicron agents filled with liquid PFCs at body temperature usually requires therapeutic pressures higher than typically used for diagnostic imaging, but low-boiling-point PCCAs using decafluorobutane or octafluoropropane can be vaporized using pressures in the diagnostic imaging regime. Low-boiling-point PCCAs produce a unique acoustic signature that can be separated from tissue and bubble signals to make images with high contrast-to-tissue ratios. In this work, we explore the effect of pulse length and concentration on the vaporization signal of PCCAs and a new technique to capture and use the signals to make high contrast-to-tissue ratio images in vivo. The results indicate that using a short pulse may be ideal for imaging because it does not interact with created bubbles but still produces strong signals for making images. Furthermore, it was found that capturing PCCA vaporization signals produced higher contrast-to-tissue ratio values and better depth of penetration than imaging the bubbles generated by droplet activation using conventional contrast imaging techniques. The resolution of the vaporization signal images is poor because of the low frequency of the signals, but their high sensitivity may be used for applications such as molecular imaging, where the detection of small numbers of contrast agents is important.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
14
|
Wang Y, Sui G, Teng D, Wang Q, Qu J, Zhu L, Ran H, Wang Z, Jin C, Wang H. Low intensity focused ultrasound (LIFU) triggered drug release from cetuximab-conjugated phase-changeable nanoparticles for precision theranostics against anaplastic thyroid carcinoma. Biomater Sci 2019; 7:196-210. [PMID: 30422139 DOI: 10.1039/c8bm00970h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study provides an efficient theranostic strategy for concurrent targeted ultrasound molecular imaging and effective synergistic antitumor therapy.
Collapse
Affiliation(s)
- Yang Wang
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Guoqing Sui
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Dengke Teng
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Qimeihui Wang
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Jia Qu
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Lingyu Zhu
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Haitao Ran
- Institute of Ultrasound imaging of Chongqing Medical University
- Chongqing 400010
- P. R. China
| | - Zhigang Wang
- Institute of Ultrasound imaging of Chongqing Medical University
- Chongqing 400010
- P. R. China
| | - Chunxiang Jin
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Hui Wang
- Department of Ultrasound
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| |
Collapse
|
15
|
Choudhury SA, Xie F, Kutty S, Lof J, Stolze E, Porter TR. Selective infarct zone imaging with intravenous acoustically activated droplets. PLoS One 2018; 13:e0207486. [PMID: 30551125 PMCID: PMC6294612 DOI: 10.1371/journal.pone.0207486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022] Open
Abstract
Background Microbubbles (MB) can be compressed to nanometer-sized droplets and reactivated with diagnostic ultrasound; these reactivated MB possess unique imaging characteristics. Objective We hypothesized that droplets formed from compressing Definity MB may be used for infarct-enhancement imaging. Methods Fourteen rats underwent ligation of their left anterior descending (LAD) artery, and five pigs underwent 90 minute balloon occlusions of their mid LAD. At 48 hours in rats, transthoracic ultrasound was performed at two and four minutes following 200 μL intravenous injections (IVI) of Definity droplets (DD), at which point the MI was increased from 0.5 to 1.5 to assess for a transient contrast enhancement zone (TEZ) within akinetic segments. In pigs, 1.0 mL injections of DD were administered and low frame rate (triggered end systolic or 10 Hz) imaging 2–4 minutes post iVI to selectively activate and image the infarct zone (IZ). Infarct size was defined by delayed enhancement magnetic resonance imaging (DE-MRI) and post-mortem staining (TTC). Results Increasing MI to 1.5 (at two or four minutes after IVI) resulted in a TEZ in rats, which correlated with infarct size (r = 0.94, p<0.001). A TEZ was not seen at 2–4 minutes in any rat (n = 8) following Definity MB injections. Fluorescent staining confirmed DD presence within the infarct zone 10 minutes after intravenous injection. In pigs, selective enhancement within the IZ was achieved by using a low frame rate single pulse harmonic mode; IZ size matched the location seen with DE-MRI and correlated with TTC defect size (r = 0.90, p<0.05). Conclusion DD formulated from commercially available MB can be acoustically activated for selective infarct enhancement imaging.
Collapse
Affiliation(s)
| | - Feng Xie
- University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Shelby Kutty
- University of Nebraska Medical Center, Omaha, NE, United States of America
| | - John Lof
- University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Elizabeth Stolze
- University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Thomas R. Porter
- University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, Li P, Wang D, Wang Z, Chen Y, Ran H. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Am J Cancer Res 2018; 8:1327-1339. [PMID: 29507623 PMCID: PMC5835939 DOI: 10.7150/thno.21492] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release.
Collapse
|
17
|
Choudhury SA, Xie F, Dayton PA, Porter TR. Acoustic Behavior of a Reactivated, Commercially Available Ultrasound Contrast Agent. J Am Soc Echocardiogr 2016; 30:189-197. [PMID: 27939052 DOI: 10.1016/j.echo.2016.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Commercially available microbubbles such as Definity contain octafluoropropane encapsulated in a lipid shell. This perfluorocarbon can be compressed into liquid nanodroplets at room temperatures and activated with transthoracic diagnostic ultrasound. The aim of this study was to determine the size range and acoustic characteristics of Definity nanodroplets (DNDs) compared with Definity microbubbles (DMBs). METHODS An in vitro flow system was used with a diagnostic ultrasound transducer (S5-1, iE33). DMBs were prepared using package insert instructions. DNDs were prepared by cooling DMBs in a -10°C to -15°C isopropyl alcohol bath before hand-pressurizing the solution. The formed DNDs were sized, diluted to 1% solutions, and infused continuously into a phosphate-buffered saline solution running within Silastic tubing. Acoustic intensity (AI) was compared with equivalent dilutions of DMBs at different mechanical indices (MIs) ranging from 0.2 to 1.4 (n = 6 comparisons at each MI) using real-time 56-Hz and triggered 2-Hz frame rates (FRs). A 3-cm-thick tissue-mimicking phantom was used to simulate transthoracic attenuation. In vivo transthoracic studies were performed in four normal pigs infused with 10% intravenous infusions of DMBs or DNDs at real-time and triggered end-systolic FRs to compare differences in myocardial and left ventricular cavity AI. RESULTS DNDs were smaller than DMBs and ranged in size from 50 to 1,000 nm. In vitro studies revealed that at an MI of 0.2 and an FR of 56 Hz, DMBs had high AI (37 ± 2 dB), but AI dropped to 25 ± 2 dB at an MI of 1.0 (P < .001, analysis of variance). In comparison, DNDs had virtually no AI at MIs of 0.2 to 0.6 at both triggered and 56-Hz FRs (1 ± 0 dB), but AI increased to 34 ± 2 dB at an MI of 1.4 using an FR of 56 Hz (P < .001 vs MI of 0.2). AI also persisted longer at 56 Hz with DNDs when using higher MIs. In vivo studies demonstrated higher myocardial AI for DNDs at higher MIs when using real-time FR, most likely from microvascular nanodroplet activation. CONCLUSION These data indicate significant differences in acoustic responses of the commercially available DMBs when administered as an equivalent number of DNDs. The DND formulation may render them more useful for high-MI real-time imaging and other targeted transthoracic diagnostic applications.
Collapse
Affiliation(s)
- Songita A Choudhury
- Department of Cellular & Integrative Physiology, Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Feng Xie
- Division of Cardiology, University of North Carolina, Chapel Hill, North Carolina
| | - Paul A Dayton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Thomas R Porter
- Department of Cellular & Integrative Physiology, Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
18
|
Novell A, Arena CB, Oralkan O, Dayton PA. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:3193. [PMID: 27369143 PMCID: PMC5848826 DOI: 10.1121/1.4953580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 05/05/2023]
Abstract
An ongoing challenge exists in understanding and optimizing the acoustic droplet vaporization (ADV) process to enhance contrast agent effectiveness for biomedical applications. Acoustic signatures from vaporization events can be identified and differentiated from microbubble or tissue signals based on their frequency content. The present study exploited the wide bandwidth of a 128-element capacitive micromachined ultrasonic transducer (CMUT) array for activation (8 MHz) and real-time imaging (1 MHz) of ADV events from droplets circulating in a tube. Compared to a commercial piezoelectric probe, the CMUT array provides a substantial increase of the contrast-to-noise ratio.
Collapse
Affiliation(s)
- Anthony Novell
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Christopher B Arena
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Omer Oralkan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|