1
|
Ding J, Li Y, Jiao Y, Wang N, Cui Y. A method of enhanced shear wave elastography based on Chirp coded excitation. ULTRASONICS 2025; 149:107569. [PMID: 39823683 DOI: 10.1016/j.ultras.2025.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo. Furthermore, the shear waves are usually drowned out by noise at deep locations, which presents a challenge in the detection of shear waves and low signal-to-noise ratios. In this paper, we investigate the feasibility of applying the Chirp coded signal for shear wave excitation (Chirp-SWE) in ARF-based shear wave elastography. The use of Chirp coded excitation of push waveforms was employed to enhance the action of ARF, thereby effectively exciting shear waves. Comparative experiments were carried out with conventional sine long pulses (SWE) and the Barker coded signal (Barker-SWE). The analysis of theoretical and simulation results revealed that Chirp-SWE could increase the excitation energy by approximately 10% compared to conventional SWE and Barker-SWE. The results of the elastic phantom experiments demonstrated that the average peak axial particle velocity obtained by Chirp-SWE was approximately 30%-50% higher, which facilitated the formation of a more stable shear wave. Additionally, it exhibited a higher signal-to-noise ratio during elasticity measurements. The in vitro liver experiments further validated the feasibility of implementing Chirp-SWE in tissues. The results demonstrated the feasibility and advantages of Chirp coded excitation of push waveforms in improving shear wave elastography results. It is expected that this will enhance the accuracy and robustness of soft tissue elastography.
Collapse
Affiliation(s)
- Jingwen Ding
- The School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu 215000, China
| | - Yiheng Li
- The School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu 215000, China
| | - Yang Jiao
- Medical Ultrasound Department for the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Ninghao Wang
- Medical Ultrasound Department for the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yaoyao Cui
- Medical Ultrasound Department for the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
2
|
Afrakhteh S, Demi L. Mitigating high frame rate demands in shear wave elastography using radial basis function-based reconstruction: An experimental phantom study. ULTRASONICS 2025; 148:107542. [PMID: 39674075 DOI: 10.1016/j.ultras.2024.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Shear wave elastography (SWE) is a technique that quantifies tissue stiffness by assessing the speed of shear waves propagating after being excited by acoustic radiation force. SWE allows the quantification of elastic tissue properties and serves as an adjunct to conventional ultrasound techniques, aiding in tissue characterization. To capture this transient propagation of the shear wave, the ultrasound device must be able to reach very high frame rates. METHODOLOGY In this paper, our aim is to relax the high frame rate requirement for SWE imaging. To this end, we propose lower frame rate SWE imaging followed by employing a 2-dimensional (2D) radial basis functions (RBF)-based interpolation. More specifically, the process involves obtaining low frame rate data and then temporal upsampling to reach a synthetic high frame rate data by inserting the 'UpS-1' image frames with missing values between two successive image frames (UpS: Upsampling rate). Finally, we apply the proposed interpolation technique to reconstruct the missing values within the incomplete high frame rate data. RESULTS AND CONCLUSION The results obtained from employing the proposed model on two experimental datasets indicate that we can relax the frame rate requirement of SWE imaging by a factor of 4 while maintaining shear wave speed (SWS), group velocity, and phase velocity estimates closely align with the high frame rate SWE model so that the error is less than 3%. Furthermore, analysis of the structural similarity index (SSIM) and root mean squared error (RMSE) on the 2D-SWS maps highlights the efficacy of the suggested technique in enhancing local SWS estimates, even at a downsampling (DS) factor of 4. For DS≤4, the SSIM values between the 2D-SWS maps produced by the proposed technique and those generated by the original high frame rate data consistently remain above 0.94. Additionally, the RMSE values is below 0.37 m/s, indicating promising performance of the proposed technique in reconstruction of SWS values.
Collapse
Affiliation(s)
- Sajjad Afrakhteh
- Department of Information Engineering and Computer Science, University of Trento, Italy.
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Italy
| |
Collapse
|
3
|
Abboud Y, Gaddam S. The Role of Endoscopic Ultrasound-Guided Shear Wave Elastography in Pancreatic Diseases. Diagnostics (Basel) 2024; 14:2329. [PMID: 39451652 PMCID: PMC11507009 DOI: 10.3390/diagnostics14202329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Elastography is a non-invasive imaging modality that has been developed for the evaluation of the stiffness of various organs. It is categorized into two main types: strain elastography and shear wave elastography. While strain elastography offers valuable information on the mechanical properties of the organ being studied, it is limited by the qualitative nature of its measurements and its reliance on operator skills. On the other hand, shear wave elastography overcomes these limitations as it provides a quantitative assessment of tissue stiffness, offers more reproducibility, and is less operator-dependent. Endoscopic ultrasound-guided shear wave elastography (EUS-SWE) is an emerging technique that overcomes the limitations of transabdominal ultrasound in the evaluation of the pancreas. A growing body of literature has demonstrated its safety and feasibility in the evaluation of pancreatic parenchyma. This article provides a comprehensive review of the current state of the literature on EUS-SWE, including its technical aspects, clinical applications in the evaluation of various pancreatic conditions, technological limitations, and future directions.
Collapse
Affiliation(s)
- Yazan Abboud
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
| | - Srinivas Gaddam
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Cai B, Li T, Bo L, Li J, Sullivan R, Sun C, Huberty W, Tian Z. Development of a piezo stack - laser Doppler vibrometer sensing approach for characterizing shear wave dispersion and local viscoelastic property distributions. MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2024; 214:111389. [PMID: 38737197 PMCID: PMC11086746 DOI: 10.1016/j.ymssp.2024.111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Laser Doppler vibrometry and wavefield analysis have recently shown great potential for nondestructive evaluation, structural health monitoring, and studying wave physics. However, there are limited studies on these approaches for viscoelastic soft materials, especially, very few studies on the laser Doppler vibrometer (LDV)-based acquisition of time-space wavefields of dispersive shear waves in viscoelastic materials and the analysis of these wavefields for characterizing shear wave dispersion and evaluating local viscoelastic property distributions. Therefore, this research focuses on developing a piezo stack-LDV system and shear wave time-space wavefield analysis methods for enabling the functions of characterizing the shear wave dispersion and the distributions of local viscoelastic material properties. Our system leverages a piezo stack to generate shear waves in viscoelastic materials and an LDV to acquire time-space wavefields. We introduced space-frequency-wavenumber analysis and least square regression-based dispersion comparison to analyze shear wave time-space wavefields and offer functions including extracting shear wave dispersion relations from wavefields and characterizing the spatial distributions of local wavenumbers and viscoelastic properties (e.g., shear elasticity and viscosity). Proof-of-concept experiments were performed using a synthetic gelatin phantom. The results show that our system can successfully generate shear waves and acquire time-space wavefields. They also prove that our wavefield analysis methods can reveal the shear wave dispersion relation and show the spatial distributions of local wavenumbers and viscoelastic properties. We expect this research to benefit engineering and biomedical research communities and inspire researchers interested in developing shear wave-based technologies for characterizing viscoelastic materials.
Collapse
Affiliation(s)
- Bowen Cai
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
- Advanced Composites Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Rani Sullivan
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chuangchuang Sun
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wayne Huberty
- Advanced Composites Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Rosselló JM, Izak Ghasemian S, Ohl CD. High-speed ultrasound imaging of bubbly flows and shear waves in soft matter. SOFT MATTER 2024; 20:823-836. [PMID: 38167938 DOI: 10.1039/d3sm01546g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this methods paper, we explore the capabilities of high-speed ultrasound imaging (USI) to study fast varying and complex multi-phase structures in liquids and soft materials. Specifically, we assess the advantages and the limitations of this imaging technique through three distinct experiments involving rapid dynamics: the underwater flow induced by an external jet, the dissolution of sub-micron bubbles in water, and the propagation of shear waves in a soft elastic material. The phenomena were simultaneously characterized using optical microscopy and USI. In water, we use compounded USI for tracking a multi-phase flow produced by a jetting bubble diving into a liquid pool at speeds around 20 m s-1. These types of jets are produced by focusing a single laser pulse below the liquid surface. Upon breakup, they create a bubbly flow that exhibits high reflectivity to the ultrasound signal, enabling the visualization of the subsequent turbulent flow. In a second experiment, we demonstrate the potential of USI for recording the diffusive shrinkage of micro- and nanobubbles in water that could not be optically resolved. Puncturing an elastic material with a liquid jet creates shear waves that can be utilized for elastography measurements. We analysed the shape and speed of shear waves produced by different types of jetting bubbles in industrial gelatin. The wave characteristics were simultaneously determined by implementing particle velocimetry in optical and ultrasound measurements. For the latter, we employed a novel method to create homogeneously distributed micro- and nanobubbles in gelatin by illuminating it with a collimated laser beam.
Collapse
Affiliation(s)
- Juan Manuel Rosselló
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Saber Izak Ghasemian
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
6
|
Dayavansha EGS, Gross GJ, Ehrman MC, Grimm PD, Mast TD. Reconstruction of shear wave speed in tissue-mimicking phantoms from aliased pulse-echo imaging of high-frequency wavefields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4128. [PMID: 34972294 DOI: 10.1121/10.0008901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Quantitative elasticity estimation in medical and industrial applications may benefit from advancements in reconstruction of shear wave speed with enhanced resolution. Here, shear wave speed is reconstructed from pulse-echo ultrasound imaging of elastic waves induced by high-frequency (>400 Hz), time-harmonic mechanical excitation. Particle displacement in shear wavefields is mapped from measured interframe phase differences with compensation for timing of multiple scan lines, then processed by spatial Fourier analysis to estimate the predominant wave speed and analyzed by algebraic wavefield inversion to reconstruct wave speed maps. Reconstructions of shear wave speed from simulated wavefields illustrate the accuracy and spatial resolution available with both methods, as functions of signal-to-noise ratio and sizes of windows used for Fourier analysis or wavefield smoothing. The methods are applied to shear wavefields with frequencies up to six times the Nyquist rate, thus extending the frequency range measurable by a given imaging system. Wave speed measurements in tissue-mimicking phantoms are compared with supersonic shear imaging and mechanical tensile testing, demonstrating feasibility of the wavefield measurement and wave speed reconstruction methods employed.
Collapse
Affiliation(s)
| | - Gary J Gross
- The Procter & Gamble Company, Mason, Ohio 45040, USA
| | | | - Peter D Grimm
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
7
|
Miyazaki Y, Usawa M, Kawai S, Yee J, Muto M, Tagawa Y. Dynamic mechanical interaction between injection liquid and human tissue simulant induced by needle-free injection of a highly focused microjet. Sci Rep 2021; 11:14544. [PMID: 34267280 PMCID: PMC8282861 DOI: 10.1038/s41598-021-94018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the fluid-tissue interaction of needle-free injection by evaluating the dynamics of the cavity induced in body-tissue simulant and the resulting unsteady mechanical stress field. Temporal evolution of cavity shape, stress intensity field, and stress vector field during the injection of a conventional injection needle, a proposed highly focused microjet (tip diameter much smaller than capillary nozzle), and a typical non-focused microjet in gelatin were measured using a state-of-the-art high-speed polarization camera, at a frame rate up to 25,000 f.p.s. During the needle injection performed by an experienced nurse, high stress intensity lasted for an order of seconds (from beginning of needle penetration until end of withdrawal), which is much longer than the order of milliseconds during needle-free injections, causing more damage to the body tissue. The cavity induced by focused microjet resembled a funnel which had a narrow tip that penetrated deep into tissue simulant, exerting shear stress in low intensity which diffused through shear stress wave. Whereas the cavity induced by non-focused microjet rebounded elastically (quickly expanded into a sphere and shrank into a small cavity which remained), exerting compressive stress on tissue simulant in high stress intensity. By comparing the distribution of stress intensity, tip shape of the focused microjet contributed to a better performance than non-focused microjet with its ability to penetrate deep while only inducing stress at lower intensity. Dynamic mechanical interaction revealed in this research uncovered the importance of the jet shape for the development of minimally invasive medical devices.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masashi Usawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Shuma Kawai
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Jingzu Yee
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masakazu Muto
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiyuki Tagawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
| |
Collapse
|
8
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
9
|
Pasyar P, Arabalibeik H, Mohammadi M, Rezazadeh H, Sadeghi V, Askari M, Mirbagheri A. Ultrasound elastography using shear wave interference patterns: a finite element study of affecting factors. Phys Eng Sci Med 2021; 44:253-263. [PMID: 33591540 DOI: 10.1007/s13246-021-00975-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022]
Abstract
Elastography as one of the non-invasive medical imaging techniques which can help determine the stiffness of organs and other structures is currently attracting more attention. An interesting imaging rate-independent technique which has been discussed in literature uses shear wave interference patterns (SWIP). In this method, two external continuous harmonic vibration sources were used to induced SWIP and the resulting tissue displacements are mapped using ultrasonic imaging called sonoelastography. In this paper, a finite element model (FEM) of viscoelastic soft tissue with circular stiffer lesion inside, is simulated for testing the effect of stimulation characteristics on the propagation of SWIPs and shear speed map reconstruction. Also, we proposed an elastography probe, including miniature vibration sources and ultrasound transducer, which can be appropriate for experimental tests. The elastographic average speed ratio (ASR) and some scores like Dice coefficient, related to the binary image of shear speed map, are calculated for quantitatively measuring the effect of different contributing harmonic vibration parameters. Results show that the potential of providing useful diagnostic information can be improved if the preferable parameters are considered for implementation. According to these results the ASR, Dice and Jaccard scores would diverge from the ground truth of FEA if the parameter level is not selected correctly. Particularly, the Dice and Jaccard coefficients are obtained about 0.9 and 0.8, respectively, for the best vibration parameters level choice.
Collapse
Affiliation(s)
- Pezhman Pasyar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabalibeik
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mohammadi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Rezazadeh
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Sadeghi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Askari
- Department of Mechanical Engineering, Tehran University, Tehran, Iran
| | - Alireza Mirbagheri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Gu LH, Gu GX, Wan P, Li FH, Xia Q. The utility of two-dimensional shear wave elastography and texture analysis for monitoring liver fibrosis in rat model. Hepatobiliary Pancreat Dis Int 2021; 20:46-52. [PMID: 32536521 DOI: 10.1016/j.hbpd.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver fibrosis is a common pathological change caused by a variety of etiologies. Early diagnosis and timely treatment can reverse or delay disease progression and improve the prognosis. This study aimed to assess the potential utility of two-dimensional shear wave elastography and texture analysis in dynamic monitoring of the progression of liver fibrosis in rat model. METHODS Twenty rats were divided into control group (n = 4) and experimental groups (n = 4 per group) with carbon tetrachloride administration for 2, 3, 4, and 6 weeks. The liver stiffness measurement was performed by two-dimensional shear wave elastography, while the optimal texture analysis subsets to distinguish fibrosis stage were generated by MaZda. The results of elastography and texture analysis were validated through comparing with histopathology. RESULTS Liver stiffness measurement was 6.09 ± 0.31 kPa in the control group and 7.10 ± 0.41 kPa, 7.80 ± 0.93 kPa, 8.64 ± 0.93 kPa, 9.91 ± 1.13 kPa in the carbon tetrachloride induced groups for 2, 3, 4, 6 weeks, respectively (P < 0.05). By texture analysis, histogram and co-occurrence matrix had the most frequency texture parameters in staging liver fibrosis. Receiver operating characteristic curve of liver elasticity showed that the sensitivity and specificity were 95.0% and 92.5% to discriminate liver fibrosis and non-fibrosis, respectively. In texture analysis, five optimal parameters were selected to classify liver fibrosis and non-fibrosis. CONCLUSIONS Two-dimensional shear wave elastography showed potential applications for noninvasive monitoring of the progression of hepatic fibrosis, even in mild fibrosis. Texture analysis can further extract and quantify the texture features in ultrasonic image, which was a supplementary to further visual information and acquired high diagnostic accuracy for severe fibrosis.
Collapse
Affiliation(s)
- Li-Hong Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Guang-Xiang Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Feng-Hua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
11
|
Wang Y, He Q, Luo J. Fast Randomized Singular Value Decomposition-Based Clutter Filtering for Shear Wave Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2363-2377. [PMID: 32746194 DOI: 10.1109/tuffc.2020.3005426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanical properties of soft tissues can be quantitatively characterized through the estimation of shear wave velocity (SWV) using various motion estimation methods, such as the commonly used block matching (BM) methods. However, such methods suffer from slow computational speed and many tunable parameters. In order to solve these problems, Butterworth filter-based clutter filter wave imaging (BW-CFWI) is recently proposed to detect the mechanical wave propagation by highlighting the tissue velocity induced by mechanical wave, without using any motion estimation methods. In this study, in order to improve the SWV estimation performance of the clutter filter wave imaging (CFWI) method, we propose singular value decomposition (SVD)-based clutter filter for CFWI (SVD-CFWI) and further accelerate it using a randomized SVD (rSVD)-based clutter filter (rSVD-CFWI). Homogeneous phantoms with different Young's moduli are used to investigate the influences of the cutoff order of singular value and iteration time on the performance of SWV estimation. An elasticity phantom with stepped cylindrical inclusions is tested for comparison of rSVD-CFWI, SVD-CFWI, BW-CFWI, and normalized cross-correlation (NCC)-based BM (NCC-BM). The performances of the proposed methods are also evaluated on data acquired from the bicipital muscle in vivo. The results of phantom experiments show that rSVD-CFWI and SVD-CFWI reconstruct SWV maps with improved shape of the inclusions. For the softest inclusion with a diameter of 10.40 mm, the contrast-to-noise ratios (CNRs) between the inclusions and background obtained with rSVD-CFWI (3.78 dB) and SVD-CFWI (3.71 dB) are higher than those obtained with BW-CFWI (0.55 dB) and NCC-BM (0.70 dB). For the stiffest inclusion with a diameter of 10.40 mm, higher CNRs are also achieved by rSVD-CFWI (5.68 dB) and SVD-CFWI (5.07 dB) than by BW-CFWI (2.92 dB) and NCC-BM (2.36 dB). In the in-vivo experiments, more homogeneous SWV maps and smaller standard deviations of SWVs are obtained with rSVD-CFWI and SVD-CFWI than with BW-CFWI and NCC-BM. Besides, RSVD-CFWI has lower computational complexity than SVD-CFWI and NCC-BM and has lower memory space requirement than SVD-CFWI. The computational speed of rSVD-CFWI is comparable to that of BW-CFWI and over 10 times higher than that of SVD-CFWI. Therefore, RSVD-CFWI is demonstrated to be a competitive tool for fast shear wave imaging.
Collapse
|
12
|
Pasyar P, Masjoodi S, Montazeriani Z, Makkiabadi B. A digital viscoelastic liver phantom for investigation of elastographic measurements. Comput Biol Med 2020; 127:104078. [PMID: 33126121 DOI: 10.1016/j.compbiomed.2020.104078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
To develop elastography imaging technologies and implement image reconstruction algorithms, testing is done with phantoms. Although the validation step is usually taken using real data and physical phantoms, their geometry as well as composition, biomechanical parameters, and details of applying stress cannot be modified readily. Such considerations have gained increasing importance with the growth of elastography techniques as one of the non-invasive medical imaging modalities, which can map the elastic properties and stiffness of soft tissues. In this article, we develop a digital viscoelastic phantom using computed tomography (CT) imaging data and several application software tools based on illustrations of normal liver anatomy so as to investigate the biomechanics of elastography via finite element modeling (FEM). Here we discuss how to create this phantom step by step, demonstrate typical shear wave elastography (SWE) experiments of applying transient stress to the liver model, and calculate quantitative measurements. In particular, shear wave velocities are investigated through a parametric study designed based on tissue stiffness and distance from the applied stress. According to the results of FEM analysis, low errors were obtained for shear wave velocity estimation for both mechanical stress (~2-5%) and acoustic radiation force (~3-7%). Results show that our model is a powerful framework and benchmark for simulating and implementing different algorithms in shear wave elastography, which can serve as a guide for upcoming researches and assist scientists to optimize their subsequent experiments in terms of design.
Collapse
Affiliation(s)
- Pezhman Pasyar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Masjoodi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Zahra Montazeriani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Modified high-resolution wavenumber analysis for detection of pulse wave velocity using coefficient of variation of arterial wall acceleration waveforms. J Med Ultrason (2001) 2020; 47:167-177. [PMID: 31894429 DOI: 10.1007/s10396-019-00998-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE In high-resolution wavenumber analysis for detection of pulse wave velocity (PWV), phase information of analytic signals is used to estimate the wavenumber. However, the phase information could be affected by the adjacent signals in the temporal direction. Therefore, we propose a modified high-resolution wavenumber analysis technique using real acceleration waveforms of the arterial wall. METHOD In the modified wavenumber analysis, we propose a new evaluation function that corresponds to the inverse of the squared coefficient of variation. The accuracy of estimation of PWV was investigated by performing simulations, and the feasibility was also examined in an in vivo experiment. RESULTS In the simulation experiments, the estimation accuracy using the proposed method was comparable to that using the previous method using phase information. However, when the pulse wave included the reflection components, the PWV estimated using the proposed method was more stable than that estimated using the previous method. Also, in the in vivo experiments, at opening of the aortic valve, the velocity estimated by the proposed method was almost equal to that estimated by the previous method (previous: 2.97 ± 1.2 m/s, proposed: 4.82 ± 1.4 m/s). Meanwhile, when the reflection components were present, the estimated PWV values yielded by the previous and proposed methods were - 1.13 and - 3.50 ± 0.9 m/s, respectively. The PWVs at those two time points estimated by the previous method were quite different, and the PWV estimate was considered to be more affected by the reflected waves. CONCLUSION The results of the simulations and in vivo experiments indicated that the modified high-resolution wavenumber analysis method was less affected by the reflected waves and more accurate in estimation of PWVs of both the forward and reflected waves.
Collapse
|
14
|
Bhatt M, Moussu MAC, Chayer B, Destrempes F, Gesnik M, Allard L, Tang A, Cloutier G. Reconstruction of Viscosity Maps in Ultrasound Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1065-1078. [PMID: 30990181 DOI: 10.1109/tuffc.2019.2908550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions. In this study, a frequency-shift method based framework is presented for the reconstruction of viscosity by analyzing the spectral properties of acoustic radiation force-induced shear waves. The aim of the study was to investigate the feasibility of viscosity reconstruction maps in homogeneous as well as heterogeneous samples. Experiments were performed in four in vitro phantoms, two ex vivo porcine liver samples, two ex vivo fatty duck liver samples, and one in vivo fatty goose liver. Successful viscosity maps were reconstructed in homogeneous and heterogeneous phantoms with embedded mechanical inclusions having different geometries. Quantitative values of viscosity obtained for two porcine liver tissues, two fatty duck liver samples, and one goose fatty liver were (mean ± SD) 0.61 ± 0.21, 0.52 ± 0.35; 1.28 ± 0.54, 1.36 ± 0.73, and 1.67 ± 0.70 Pa.s, respectively.
Collapse
|
15
|
Carbente RP, Maia JM, Assef AA. Image reconstruction utilizing median filtering applied to elastography. Biomed Eng Online 2019; 18:22. [PMID: 30866955 PMCID: PMC6417019 DOI: 10.1186/s12938-019-0641-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The resources of ultrafast technology can be used to add another analysis to ultrasound imaging: assessment of tissue viscoelasticity. Ultrafast image formation can be utilized to find transitory shear waves propagating in soft tissue, which permits quantification of the mechanical properties of the tissue via elastography. This technique permits simple and noninvasive diagnosis and monitoring of disease. METHODS This article presents a method to estimate the viscoelastic properties and rigidity of structures using the ultrasound technique known as shear wave elasticity imaging (SWEI). The Verasonics Vantage 128 research platform and L11-4v transducer were used to acquire radio frequency signals from a model 049A elastography phantom (CIRS, USA), with subsequent processing and analysis in MATLAB. RESULTS The images and indexes obtained reflect the qualitative measurements of the different regions of inclusions in the phantom and the respective alterations in the viscoelastic properties of distinct areas. Comparison of the results obtained with this proposed technique and other commonly used techniques demonstrates the characteristics of median filtering in smoothing variations in velocity to form elastographic images. The results from the technique proposed in this study are within the margins of error indicated by the phantom manufacturer for each type of inclusion; for the phantom base and for type I, II, III, and IV inclusions, respectively, in kPa and percentage errors, these are 25 (24.0%), 8 (37.5%), 14 (28.6%), 45 (17.8%), and 80 (15.0%). The values obtained using the method proposed in this study and mean percentage errors were 29.18 (- 16.7%), 10.26 (- 28.2%), 15.64 (- 11.7%), 45.81 (- 1.8%), and 85.21 (- 6.5%), respectively. CONCLUSIONS The new technique to obtain images uses a distinct filtering function which considers the mean velocity in the region around each pixel, in turn allowing adjustments according to the characteristics of the phantom inclusions within the ultrasound and optimizing the resulting elastographic images.
Collapse
Affiliation(s)
- Rubem P Carbente
- Electrical Engineering Department and the Graduate School of Electrical Engineering (DAELT), Federal University of Technology-Paraná (UTFPR), Curitiba, PR, Brazil.
| | - Joaquim M Maia
- Electrical/Electronic Engineering Department and the Graduate School of Electrical Engineering and Applied Computer Sciences (DAELT-DAELN-CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba, PR, Brazil
| | - Amauri A Assef
- Electrical/Electronic Engineering Department and the Graduate School of Electrical Engineering and Applied Computer Sciences (DAELT-DAELN-CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba, PR, Brazil
| |
Collapse
|
16
|
He Y, Xiang X, Zhu BH, Qiu L. Shear wave elastography evaluation of the median and tibial nerve in diabetic peripheral neuropathy. Quant Imaging Med Surg 2019; 9:273-282. [PMID: 30976551 DOI: 10.21037/qims.2019.02.05] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background To evaluate the value of shear wave elastography (SWE) in the detection of diabetic peripheral neuropathy (DPN) of the median and tibial nerves. Methods The study included 40 DPN patients, 40 diabetic mellitus (DM) patients without DPN, and 40 healthy subjects. High-resolution ultrasonography (US) and SWE were performed on the median nerve (MN) and tibial nerve (TN), and cross-sectional area (CSA) and nerve stiffness were measured. ROC analysis was also performed. Results The patients with DPN demonstrated higher stiffness of the median and tibial nerve compared with that of healthy volunteers and DM patients (P<0.001). Bilateral analysis showed that there was no significant difference in nerve stiffness between the left and right median nerves and tibial nerves in DPN patients (P>0.05). The stiffness of median nerve and tibial nerve in each one side also had no significant difference in patients with DPN (P>0.05). The CSA of the tibial nerve in the DPN group was significantly larger than that in the other groups (P<0.001), while there was no significant difference of median nerve CSA among the three groups (P>0.05). The area under curve (AUC) of SWE (MN: 0.899, TN: 0.927) to diagnose DPN was significantly greater than that of CSA (TN: 0.798). The optimal cut-off value in SWE of the tibial nerve and median nerve for diagnosis of DPN was 4.11 and 4.06 m/s, respectively, with a good sensitivity and specificity. Conclusions Median and tibial nerve stiffness was significantly higher in patients with DPN. These findings suggest that SWE-based stiffness measurement of the nerve was a better method than CSA, and it can be used as another effective assistant method in the diagnosis of DPN.
Collapse
Affiliation(s)
- Ying He
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bi-Hui Zhu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Rosen D, Jiang J. Fourier-Domain Shift Matching: A Robust Time-of-Flight Approach for Shear Wave Speed Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:729-740. [PMID: 29733277 PMCID: PMC6190720 DOI: 10.1109/tuffc.2018.2811738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our primary objective of this work was to design and test a new time-of-flight (TOF) method that allows measurements of shear wave speed (SWS) following impulsive excitation in soft tissues. Particularly, under the assumption of the local plane shear wave, this work named the Fourier-domain shift matching (FDSM) method, estimates SWS by aligning a series of shear waveforms either temporally or spatially using a solution space deduced by characteristic curves of the well-known 1-D wave equation. The proposed SWS estimation method was tested using computer-simulated data, and tissue-mimicking phantom and ex vivo tissue experiments. Its performance was then compared with three other known TOF methods: lateral time-to-peak (TTP) method with robust random sampling consensus (RANSAC) fitting method, Radon sum transformation method, and a modified cross correlation method. Hereafter, these three TOF methods are referred to as the TTP-RANSAC, Radon sum, and X-corr methods, respectively. In addition to an adapted form of the 2-D Fourier transform (2-D FT)-based method in which the (group) SWS was approximated by averaging phase SWS values was considered for comparison. Based on data evaluated, we found that the overall performance of the above-mentioned temporal implementation of the proposed FDSM method was most similar to the established Radon sum method (correlation = 0.99, scale factor = 1.03, and mean difference = 0.07 m/s), and the 2-D FT (correlation = 0.98, scale factor = 1.00, and mean difference = 0.10 m/s) at high signal quality. However, results obtained from the 2-D FT method diverged (correlation = 0.201) from these of the proposed temporal implementation in the presence of diminished signal quality, whereas the agreement between the Radon sum approach and the proposed temporal implementation largely remained the same (correlation = 0.98).
Collapse
|
18
|
Ormachea J, Castaneda B, Parker KJ. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:963-977. [PMID: 29477745 DOI: 10.1016/j.ultrasmedbio.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field.
Collapse
Affiliation(s)
- Juvenal Ormachea
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Benjamin Castaneda
- Laboratorio de Imagenes Medicas, Pontificia Universidad Catolica del Peru, Lima, Peru
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
19
|
Parker KJ, Ormachea J, Zvietcovich F, Castaneda B. Reverberant shear wave fields and estimation of tissue properties. Phys Med Biol 2017; 62:1046-1061. [DOI: 10.1088/1361-6560/aa5201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|