1
|
Zhao Y, Feng Y, Wu L. Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound. ULTRASONICS SONOCHEMISTRY 2025; 113:107234. [PMID: 39854984 PMCID: PMC11803872 DOI: 10.1016/j.ultsonch.2025.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Acoustic droplet vaporization (ADV) plays a crucial role in ultrasound-related biomedical applications. While previous models have examined the stages of nucleation, growth, and oscillation in isolation, which may limit their ability to fully describe the entire ADV process. To address this, our study developed an integrated model that unifies these three stages of ADV, stimulated by a continuous nonlinear dual-frequency ultrasound wave. Using this integrated model, we investigated the influence of nonlinear dual-frequency ultrasound parameters on ADV dynamics and bioeffects by incorporating tissue viscoelasticity through parametric studies. Our results demonstrated that the proposed model accurately captured the entire ADV process, ensuring continuous vapor bubble formation and evolution throughout the phase transition process. Moreover, the applied unified theory for bubble dynamics can simulate intense bubble collapse with high Mach Number as a result of the nonlinear effects of dual-frequency ultrasound. In addition, cavitation-associated mechanical and thermal damage appeared to be more strongly correlated with rapid bubble collapse than with maximum bubble size. Our research also revealed that the mechanical and thermal effects could be regulated independently to some extent by adjusting dual-frequency ultrasound parameters, as they presented differing sensitivities to frequency and acoustic power. Importantly, dual-frequency combinations such as 1.5 MHz + 3 MHz (fundamental and second harmonic), which exhibit a higher Degree of Nonlinearity (DoN) can extend bubble lifespan, offering a potential pathway to the efficacy of ultrasound treatments.
Collapse
Affiliation(s)
- Yubo Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi'an Jiaotong University Xi'an People's Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi'an Jiaotong University Xi'an People's Republic of China
| | - Liang Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi'an Jiaotong University Xi'an People's Republic of China.
| |
Collapse
|
2
|
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Maxwell AD, Vlaisavljevich E. Cavitation-induced pressure saturation: a mechanism governing bubble nucleation density in histotripsy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad3721. [PMID: 38518377 PMCID: PMC11212395 DOI: 10.1088/1361-6560/ad3721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective.Histotripsy is a noninvasive focused ultrasound therapy that mechanically disintegrates tissue by acoustic cavitation clouds. In this study, we investigate a mechanism limiting the density of bubbles that can nucleate during a histotripsy pulse. In this mechanism, the pressure generated by the initial bubble expansion effectively negates the incident pressure in the vicinity of the bubble. From this effect, the immediately adjacent tissue is prevented from experiencing the transient tension to nucleate bubbles. Approach.A Keller-Miksis-type single-bubble model was employed to evaluate the dependency of this effect on ultrasound pressure amplitude and frequency, viscoelastic medium properties, bubble nucleus size, and transducer geometric focusing. This model was further combined with a spatial propagation model to predict the peak negative pressure field as a function of position from a cavitating bubble.Main results. The single-bubble model showed the peak negative pressure near the bubble surface is limited to the inertial cavitation threshold. The predicted bubble density increased with increasing frequency, tissue viscosity, and transducer focusing angle. The simulated results were consistent with the trends observed experimentally in prior studies, including changes in density with ultrasound frequency and transducerF-number.Significance.The efficacy of the therapy is dependent on several factors, including the density of bubbles nucleated within the cavitation cloud formed at the focus. These results provide insight into controlling the density of nucleated bubbles during histotripsy and the therapeutic efficacy.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States of America
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States of America
| |
Collapse
|
4
|
Simon A, Edsall C, Maxwell A, Vlaisavljevich E. Effects of pulse repetition frequency on bubble cloud characteristics and ablation in single-cycle histotripsy. Phys Med Biol 2024; 69:025018. [PMID: 38041873 DOI: 10.1088/1361-6560/ad11a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/01/2023] [Indexed: 12/04/2023]
Abstract
Objective. Histotripsy is a cavitation-based ultrasound ablation method in development for multiple clinical applications. This work investigates the effects of pulse repetition frequency (PRF) on bubble cloud characteristics and ablative capabilities for histotripsy using single-cycle pulsing methods.Approach.Bubble clouds produced by a 500 kHz histotripsy system at PRFs from 0.1 to 1000 Hz were visualized using high-speed optical imaging in 1% agarose tissue phantoms at peak negative pressures,p-, of 2-36 MPa.Main results.Results showed a decrease in the cavitation cloud threshold with increasing PRF, ranging from 26.7 ± 0.5 MPa at 0.1 Hz to 15.0 ± 1.9 MPa at 1000 Hz. Bubble cloud analysis showed cavitation clouds generated at low PRFs (0.1-1 Hz) were characterized by consistently dense bubble clouds (41.7 ± 2.8 bubbles mm-2at 0.1 Hz), that closely matched regions of the focus above the histotripsy intrinsic threshold. Bubble clouds formed at higher PRFs measured lower cloud densities (23.1 ± 4.0 bubbles mm-2at 1000 Hz), with the lowest density measured for 10 Hz (8.8 ± 4.1 bubbles mm-2). Furthermore, higher PRFs showed increased pulse-to-pulse correlation, characteristic of cavitation memory effects; however, bubble clouds still filled the entire volume of the focus due to their initial density and enhanced bubble expansion from the restimulation of residual nuclei at the higher PRFs. Histotripsy ablation assessed through lesion analysis in red blood cell (RBC) phantoms showed higher PRFs generated lesions with lower adherence to the initial focal region compared to low PRF ablations; however, no trend of decreasing ablation efficiency with PRF was observed, with similar efficiencies observed for all the PRFs tested in this study.Significance.Notably, this result is different than what has previously been shown for shock-scattering histotripsy, which has shown decreased ablation efficiencies at higher PRFs. Overall, this study demonstrates the essential effects of PRF on single-cycle histotripsy procedures that should be considered to help guide future histotripsy pulsing strategies.
Collapse
Affiliation(s)
- Alex Simon
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Connor Edsall
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Adam Maxwell
- Department of Urology, University of Washington, Seattle, WA, United States of America
| | - Eli Vlaisavljevich
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
5
|
Thomas GPL, Khokhlova TD, Sapozhnikov OA, Khokhlova VA. Enhancement of Boiling Histotripsy by Steering the Focus Axially During the Pulse Delivery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:865-875. [PMID: 37318967 PMCID: PMC10671942 DOI: 10.1109/tuffc.2023.3286759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Boiling histotripsy (BH) is a pulsed high-intensity focused ultrasound (HIFU) method relying on the generation of high-amplitude shocks at the focus, localized enhanced shock-wave heating, and bubble activity driven by shocks to induce tissue liquefaction. BH uses sequences of 1-20 ms long pulses with shock fronts of over 60 MPa amplitude, initiates boiling at the focus of the HIFU transducer within each pulse, and the remainder shocks of the pulse then interact with the boiling vapor cavities. One effect of this interaction is the creation of a prefocal bubble cloud due to reflection of shocks from the initially generated mm-sized cavities: the shocks are inverted when reflected from a pressure-release cavity wall resulting in sufficient negative pressure to reach intrinsic cavitation threshold in front of the cavity. Secondary clouds then form due to shock-wave scattering from the first one. Formation of such prefocal bubble clouds has been known as one of the mechanisms of tissue liquefaction in BH. Here, a methodology is proposed to enlarge the axial dimension of this bubble cloud by steering the HIFU focus toward the transducer after the initiation of boiling until the end of each BH pulse and thus to accelerate treatment. A BH system comprising a 1.5 MHz 256-element phased array connected to a Verasonics V1 system was used. High-speed photography of BH sonications in transparent gels was performed to observe the extension of the bubble cloud resulting from shock reflections and scattering. Volumetric BH lesions were then generated in ex vivo tissue using the proposed approach. Results showed up to almost threefold increase of the tissue ablation rate with axial focus steering during the BH pulse delivery compared to standard BH.
Collapse
|
6
|
McCune EP, Lee SA, Konofagou EE. Interdependence of Tissue Temperature, Cavitation, and Displacement Imaging During Focused Ultrasound Nerve Sonication. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:600-612. [PMID: 37256815 PMCID: PMC10332467 DOI: 10.1109/tuffc.2023.3280455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Focused ultrasound (FUS) peripheral neuromodulation has been linked to nerve displacement caused by the acoustic radiation force; however, the roles of cavitation and temperature accumulation on nerve modulation are less clear, as are the relationships between these three mechanisms of action. Temperature directly changes tissue stiffness and viscosity. Viscoelastic properties have been shown to affect cavitation thresholds in both theoretical and ex vivo models, but the direct effect of temperature on cavitation has not been investigated in vivo. Here, cavitation and tissue displacement were simultaneously mapped in response to baseline tissue temperatures of either 30 °C or 38 °C during sciatic nerve sonication in mice. In each mouse, the sciatic nerve was repeatedly sonicated at 1.1-MHz, 4-MPa peak-negative pressure, 5-ms pulse duration, and either 15- or 30-Hz pulse repetition frequency (PRF) for 10 s at each tissue temperature. Cavitation increased by 1.8-4.5 dB at a tissue temperature of 38 °C compared to 30 °C, as measured both by passive cavitation images and cavitation doses. Tissue displacement also increased by 1.3- [Formula: see text] at baseline temperatures of 38 °C compared to 30 °C. Histological findings indicated small increases in red blood cell extravasation in the 38 °C baseline temperature condition compared to 30 °C at both PRFs. A strong positive correlation was found between the inertial cavitation dose and displacement imaging noise, indicating the potential ability of displacement imaging to simultaneously detect inertial cavitation in vivo. Overall, tissue temperature was found to modulate both in vivo cavitation and tissue displacement, and thus, both tissue temperature and cavitation can be monitored during FUS to ensure both safety and efficiency.
Collapse
|
7
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
de Andrade MO, Haqshenas R, Pahk KJ, Saffari N. Mechanisms of nuclei growth in ultrasound bubble nucleation. ULTRASONICS SONOCHEMISTRY 2022; 88:106091. [PMID: 35839705 PMCID: PMC9287806 DOI: 10.1016/j.ultsonch.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This paper interrogates the intersections between bubble dynamics and classical nucleation theory (CNT) towards constructing a model that describes intermediary nucleation events between the extrema of cavitation and boiling. We employ Zeldovich's hydrodynamic approach to obtain a description of bubble nuclei that grow simultaneously via hydrodynamic excitation by the acoustic field and vapour transport. By quantifying the relative dominance of both mechanisms, it is then possible to discern the extent to which viscosity, inertia, surface tension and vapour transport shape the growth of bubble nuclei through non-dimensional numbers that naturally arise within the theory. The first non-dimensional number Φ12/Φ2 is analogous to the Laplace number, representing the balance between surface tension and inertial constraints to viscous effects. The second non-dimensional number δ represents how enthalpy transport into the bubble can reduce nucleation rates by cooling the surrounding liquid. This formulation adds to the current understanding of ultrasound bubble nucleation by accounting for bubble dynamics during nucleation, quantifying the physical distinctions between "boiling" and "cavitation" bubbles through non-dimensional parameters, and outlining the characteristic timescales of nucleation according to the growth mechanism of bubbles throughout the histotripsy temperature range. We observed in our simulations that viscous effects control the process of ultrasound nucleation in water-like media throughout the 0-120 °C temperature range, although this dominance decreases with increasing temperatures. Enthalpy transport was found to reduce nucleation rates for increasing temperatures. This effect becomes significant at temperatures above 30 °C and favours the creation of fewer nuclei that are larger in size. Conversely, negligible enthalpy transport at lower temperatures can enable the nucleation of dense clusters of small nuclei, such as cavitation clouds. We find that nuclei growth as modelled by the Rayleigh-Plesset equation occurs over shorter timescales than as modelled by vapour-dominated growth. This suggests that the first stage of bubble nuclei growth is hydrodynamic, and vapour transport effects can only be observed over longer timescales. Finally, we propose that this framework can be used for comparison between different experiments in bubble nucleation, towards standardisation and dosimetry of protocols.
Collapse
Affiliation(s)
| | - Reza Haqshenas
- UCL Mechanical Engineering, University College London, London, United Kingdom
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Nader Saffari
- UCL Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
9
|
Bader KB, Makin IRS, Abramowicz JS. Ultrasound for Aesthetic Applications: A Review of Biophysical Mechanisms and Safety. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1597-1607. [PMID: 34709673 DOI: 10.1002/jum.15856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Aesthetic ultrasound is used for fat reduction and to improve skin appearance. In this review, the fundamental mechanisms by which ultrasound can alter tissue are outlined. The technologies that are commercially available or under development are discussed. Finally, recommendations are made for safe and effective use of aesthetic ultrasound.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Inder Raj S Makin
- School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - Jacques S Abramowicz
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
11
|
Li Z, Zou Q, Qin D. Enhancing cavitation dynamics and its mechanical effects with dual-frequency ultrasound. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Acoustic cavitation and its mechanical effects (e.g. stress and strain) play a primary role in ultrasound applications. Introducing encapsulated microbubbles as cavitation nuclei and utilizing dual-frequency ultrasound excitation are highly effective approaches to reduce cavitation thresholds and enhance cavitation effects. However, the cavitation dynamics of encapsulated microbubbles and the resultant stress/strain in viscoelastic tissues under dual-frequency excitation are poorly understood, especially for the enhancement effects caused by a dual-frequency approach. The goal of this study was to numerically investigate the dynamics of a lipid-coated microbubble and the spatiotemporal distributions of the stress and strain under dual-frequency excitation. Approach. The Gilmore–Zener bubble model was coupled with a shell model for the nonlinear changes of both shell elasticity and viscosity to accurately simulate the cavitation dynamics of lipid-coated microbubbles in viscoelastic tissues. Then, the spatiotemporal evolutions of the cavitation-induced stress and strain in the surrounding tissues were characterized quantitatively. Finally, the influences of some paramount parameters were examined to optimize the outcomes. Main results. We demonstrated that the cavitation dynamics and associated stress/strain were prominently enhanced by a dual-frequency excitation, highlighting positive correlations between the maximum bubble expansion and the maximum stress/strain. Moreover, the results showed that the dual-frequency ultrasound with smaller differences in its frequencies and pressure amplitudes could enhance the bubble oscillations and stress/strain more efficiently, whereas the phase difference manifested small influences under these conditions. Additionally, the dual-frequency approach seemed to show a stronger enhancement effect with the shell/tissue viscoelasticity increasing to a certain extent. Significance. This study might contribute to optimizing the dual-frequency operation in terms of cavitation dynamics and its mechanical effects for high-efficient ultrasound applications.
Collapse
|
12
|
Ponomarchuk EM, Rosnitskiy PB, Khokhlova TD, Buravkov SV, Tsysar SA, Karzova MM, Tumanova KD, Kunturova AV, Wang YN, Sapozhnikov OA, Trakhtman PE, Starostin NN, Khokhlova VA. Ultrastructural Analysis of Volumetric Histotripsy Bio-effects in Large Human Hematomas. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2608-2621. [PMID: 34116880 PMCID: PMC8355095 DOI: 10.1016/j.ultrasmedbio.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Large-volume soft tissue hematomas are a serious clinical problem, which, if untreated, can have severe consequences. Current treatments are associated with significant pain and discomfort. It has been reported that in an in vitro bovine hematoma model, pulsed high-intensity focused ultrasound (HIFU) ablation, termed histotripsy, can be used to rapidly and non-invasively liquefy the hematoma through localized bubble activity, enabling fine-needle aspiration. The goals of this study were to evaluate the efficiency and speed of volumetric histotripsy liquefaction using a large in vitro human hematoma model. Large human hematoma phantoms (85 cc) were formed by recalcifying blood anticoagulated with citrate phosphate dextrose/saline-adenine-glucose-mannitol solution. Typical boiling histotripsy pulses (10 or 2 ms) or hybrid histotripsy pulses using higher-amplitude and shorter pulses (0.4 ms) were delivered at 1% duty cycle while continuously translating the HIFU focus location. Histotripsy exposures were performed under ultrasound guidance with a 1.5-MHz transducer (8-cm aperture, F# = 0.75). The volume of liquefied lesions was determined by ultrasound imaging and gross inspection. Untreated hematoma samples and samples of the liquefied lesions aspirated using a fine needle were analyzed cytologically and ultrastructurally with scanning electron microscopy. All exposures resulted in uniform liquid-filled voids with sharp edges; liquefaction speed was higher for exposures with shorter pulses and higher shock amplitudes at the focus (up to 0.32, 0.68 and 2.62 mL/min for 10-, 2- and 0.4-ms pulses, respectively). Cytological and ultrastructural observations revealed completely homogenized blood cells and fibrin fragments in the lysate. Most of the fibrin fragments were less than 20 μm in length, but a number of fragments were up to 150 μm. The lysate with residual debris of that size would potentially be amenable to fine-needle aspiration without risk for needle clogging in clinical implementation.
Collapse
Affiliation(s)
- Ekaterina M Ponomarchuk
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Pavel B Rosnitskiy
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Sergey V Buravkov
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A Tsysar
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria M Karzova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kseniya D Tumanova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna V Kunturova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Y-N Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Oleg A Sapozhnikov
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Pavel E Trakhtman
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Nicolay N Starostin
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Vera A Khokhlova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Smallcomb M, Elliott J, Khandare S, Butt AA, Vidt ME, Simon JC. Focused Ultrasound Mechanical Disruption of Ex Vivo Rat Tendon. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2981-2986. [PMID: 33891552 PMCID: PMC8547257 DOI: 10.1109/tuffc.2021.3075375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Around 30 million tendon injuries occur annually in the U.S. costing $ 114 billion. Conservative therapies, like dry needling, promote healing in chronically injured tendons by inducing microdamage but have mixed success rates. Focused ultrasound (fUS) therapy can noninvasively fractionate tissues through the creation, oscillation, and collapse of bubbles in a process termed histotripsy; however, highly collagenous tissues, like tendon, have shown resistance to mechanical fractionation. This study histologically evaluates whether fUS mechanical disruption is achievable in tendons. Ex vivo rat tendons (45 Achilles and 44 supraspinatus) were exposed to 1.5-MHz fUS operating with 0.1-10 ms pulses repeated at 1-100 Hz for 15-60 s with peak positive pressures <89 MPa and peak negative pressures <26 MPa; other tendons were exposed to dry needling or sham. Immediately after treatment, tendons were flash-frozen and stained with hematoxylin and eosin (H&E) or alpha-nicotinamide adenine dinucleotide diaphorase ( α -NADH-d) and evaluated by two reviewers blinded to the exposure conditions. Results showed successful creation of bubbles for all fUS-treated samples; however, not all samples showed histological injury. When the injury was detected, parameter sets with shorter pulses (0.1-1 ms), lower acoustic pressures, or reduced treatment times showed mechanical disruption in the form of fiber separation and fraying with little to no thermal injury. Longer pulses or treatment times showed a combination of mechanical and thermal injury. These findings suggest that mechanical disruption is achievable in tendons within a small window of acoustic parameters, supporting the potential of fUS therapy in tendon treatment.
Collapse
|
14
|
Pahk KJ. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study. ULTRASONICS SONOCHEMISTRY 2021; 77:105699. [PMID: 34371476 PMCID: PMC8358471 DOI: 10.1016/j.ultsonch.2021.105699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 05/27/2023]
Abstract
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and -3.7 to -14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
15
|
Latifi M, Hay A, Carroll J, Dervisis N, Arnold L, Coutermarsh-Ott SL, Kierski KR, Klahn S, Allen IC, Vlaisavljevich E, Tuohy J. Focused ultrasound tumour ablation in small animal oncology. Vet Comp Oncol 2021; 19:411-419. [PMID: 34057278 DOI: 10.1111/vco.12742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
The cancer incidence rates for humans and animals remain high, and efforts to improve cancer treatment are crucial. Cancer treatment for solid tumours includes both treatment of the primary tumour and of metastasis. Surgery is commonly employed to resect primary and metastatic tumours, but is invasive, and is not always the optimal treatment modality. Prevention and treatment of metastatic disease often utilizes a multimodal approach, but metastasis remains a major cause of death for both human and veterinary cancer patients. Focused ultrasound (FUS) tumour ablation techniques represent a novel non-invasive approach to treating cancer. FUS ablation is precise, thus sparing adjacent critical structures while ablating the tumour. FUS ablation can occur in a thermal or non-thermal fashion. Thermal FUS ablation, also known as high intensity focused ultrasound (HIFU) ablation, destroys tumour cells via heat, whereas non-thermal FUS, known as histotripsy, ablates tumour cells via mechanical disintegration of tissue. Not only can HIFU and histotripsy ablate tumours, they also demonstrate potential to upregulate the host immune system towards an anti-tumour response. The aim of this report is provide a description of HIFU and histotripsy tumour ablation, with a focus on the basic principles of their ablation mechanisms and their clinical applicability in the field of veterinary oncology.
Collapse
Affiliation(s)
- Max Latifi
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA.,Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Alayna Hay
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Jennifer Carroll
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Nikolaos Dervisis
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Lauren Arnold
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sheryl L Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Katharine R Kierski
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Shawna Klahn
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Joanne Tuohy
- Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, Virginia, USA
| |
Collapse
|
16
|
Mancia L, Rodriguez M, Sukovich JR, Haskel S, Xu Z, Johnsen E. Acoustic Measurements of Nucleus Size Distribution at the Cavitation Threshold. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1024-1031. [PMID: 33422304 DOI: 10.1016/j.ultrasmedbio.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
An understanding of the acoustic cavitation threshold is essential for minimizing cavitation bio-effects in diagnostic ultrasound and for controlling cavitation-mediated tissue ablation in focused ultrasound procedures. The homogeneous cavitation threshold is an intrinsic material property of recognized importance to biomedical ultrasound as well as a variety of other applications requiring cavitation control. However, measurements of the acoustic cavitation threshold in water differ from those predicted by classic nucleation theories. This persistent discrepancy is explained by combining recently developed methods for acoustically nucleating single bubbles at threshold with numerical modeling to obtain a nucleus size distribution consistent with first-principles estimates for ion-stabilized nuclei. We identify acoustic cavitation at threshold as a reproducible subtype of heterogeneous cavitation with a characteristic nucleus size distribution. Knowledge of the nucleus size distribution could inspire new approaches to achieving cavitation control in water, tissue and a variety of other media.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Mauro Rodriguez
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Haskel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
An Analysis of Acoustic Cavitation Thresholds of Water Based on the Incubation Time Criterion Approach. FLUIDS 2021. [DOI: 10.3390/fluids6040134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Researchers are still working on the development of models that facilitate the accurate estimation of acoustic cavitation threshold. In this paper, we have analyzed the possibility of using the incubation time criterion to calculate the threshold of the onset of acoustic cavitation depending on the ultrasound frequency, hydrostatic pressure, and temperature of a liquid. This criterion has been successfully used by earlier studies to calculate the dynamic strength of solids and has recently been proposed in an adapted version for calculating the cavitation threshold. The analysis is carried out for various experimental data for water presented in the literature. Although the criterion assumes the use of macroparameters of a liquid, we also considered the possibility of taking into account the size of cavitation nuclei and its influence on the calculation result. We compared the results of cavitation threshold calculations done using the incubation time criterion of cavitation and the classical nucleation theory. Our results showed that the incubation time criterion more qualitatively models the results of experiments using only three parameters of the liquid. We then discussed a possible relationship between the parameters of the two approaches. The results of our study showed that the criterion under consideration has a good potential and can be conveniently used for applications where there are special requirements for ultrasound parameters, maximum negative pressure, and liquid temperature.
Collapse
|
18
|
Mancia L, Yang J, Spratt JS, Sukovich JR, Xu Z, Colonius T, Franck C, Johnsen E. Acoustic cavitation rheometry. SOFT MATTER 2021; 17:2931-2941. [PMID: 33587083 DOI: 10.1039/d0sm02086a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018, 112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties of polyacrylamide hydrogel under high strain-rates from 103 to 108 s-1. While promising, laser-induced cavitation involves plasma formation and optical breakdown during nucleation, a process that could alter local material properties before measurements are obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels. Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubble radius histories in 0.3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel concentration and high strain-rate loading. Our findings demonstrate the utility of applying IMR and data assimilation methods with single-bubble acoustic cavitation data for measurement of viscoelastic properties.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Pahk KJ, Lee S, Gélat P, de Andrade MO, Saffari N. The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect. ULTRASONICS SONOCHEMISTRY 2021; 70:105312. [PMID: 32866882 PMCID: PMC7786583 DOI: 10.1016/j.ultsonch.2020.105312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 05/13/2023]
Abstract
Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of -28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sunho Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | | | - Nader Saffari
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
20
|
Mancia L, Rodriguez M, Sukovich J, Xu Z, Johnsen E. Single–bubble dynamics in histotripsy and high–amplitude ultrasound: Modeling and validation. ACTA ACUST UNITED AC 2020; 65:225014. [DOI: 10.1088/1361-6560/abb02b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Holmes HR, Haywood M, Hutchison R, Zhang Q, Edsall C, Hall TL, Baisch D, Holliday J, Vlaisavljevich E. Focused ultrasound extraction (FUSE) for the rapid extraction of DNA from tissue matrices. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hal R. Holmes
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
- Conservation X Labs Seattle WA USA
| | - Morgan Haywood
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Qian Zhang
- Department of Forest Resources and Environmental Conservation Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Connor Edsall
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Timothy L. Hall
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Jason Holliday
- Department of Forest Resources and Environmental Conservation Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
- Center for Engineered Health, Virginia Tech Institute for Critical Technology and Applied Science Blacksburg VA USA
| |
Collapse
|
22
|
Simulation Study on the Influence of Multifrequency Ultrasound on Transient Cavitation Threshold in Different Media. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Through the introduction of multifrequency ultrasound technology, remarkable results have been achieved in tissue ablation and other aspects. By using the nonlinear dynamic equation of spherical bubble, the effects of the combination mode of multifrequency ultrasound, the peak negative pressure and its duration, the phase angle difference, and the polytropic index on the transient cavitation threshold in four different media of water, blood, brain, and liver are simulated and analyzed. The simulation results show that under the same frequency difference and initial bubble radius, the transient cavitation threshold of the high-frequency, triple-frequency combination is higher than that of the low-frequency, triple-frequency combination. When the lowest frequency of triple frequencies is the same, the larger the frequency difference, the higher the transient cavitation threshold. When the initial bubble radius is small, the frequency difference has little effect on the transient cavitation threshold of the triple-frequency combination. With the increase of initial bubble radius, the influence of frequency difference on the transient cavitation threshold of the higher frequency combination of triple frequency is more obvious than that of the lower frequency combination of triple frequency. When the duration of peak negative pressure or peak negative pressure of the multifrequency combined ultrasound is longer than that of the single-frequency ultrasound, the transient cavitation threshold of the multifrequency combined ultrasound is lower than that of the single-frequency ultrasound; on the contrary, the transient cavitation threshold of the multifrequency combined ultrasound is higher than that of the single-frequency ultrasound. When the phase angle difference of multifrequency excitation is zero, the corresponding transient cavitation threshold is the lowest, while the change of the polytropic index has almost no effect on the transient cavitation threshold for the multifrequency combination. The research results can provide a reference for multifrequency ultrasound to reduce the transient cavitation threshold, which is of great significance for the practical application of cavitation.
Collapse
|
23
|
Bollen V, Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB. In Vitro Thrombolytic Efficacy of Single- and Five-Cycle Histotripsy Pulses and rt-PA. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:336-349. [PMID: 31785841 PMCID: PMC6930350 DOI: 10.1016/j.ultrasmedbio.2019.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 05/04/2023]
Abstract
Although primarily known as an ablative modality, histotripsy can increase the efficacy of lytic therapy in a retracted venous clot model. Bubble cloud oscillations are the primary mechanism of action for histotripsy, and the type of bubble activity is dependent on the pulse duration. A retracted human venous clot model was perfused with and without the thrombolytic recombinant tissue plasminogen activator (rt-PA). The clot was exposed to histotripsy pulses of single- or five-cycle duration and peak negative pressures of 0-30 MPa. Bubble activity within the clot was monitored via passive cavitation imaging. The combination of histotripsy and rt-PA was more efficacious than rt-PA alone for single- and five-cycle pulses with peak negative pressures of 25 and 20 MPa, respectively. For both excitation schemes, the detected acoustic emissions correlated with the degree of thrombolytic efficacy. These results indicate that rt-PA and single- or multicycle histotripsy pulses enhance thrombolytic therapy.
Collapse
Affiliation(s)
- Viktor Bollen
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Samuel A Hendley
- Graduate Program of Medical Physics, University of Chicago, Chicago, Illinois, USA
| | - Jonathan D Paul
- Department of Medicine-Cardiology, University of Chicago, Chicago, Illinois, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA; Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
24
|
Horiba T, Ogasawara T, Takahira H. Cavitation inception pressure and bubble cloud formation due to the backscattering of high-intensity focused ultrasound from a laser-induced bubble. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:1207. [PMID: 32113276 DOI: 10.1121/10.0000649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/12/2020] [Indexed: 05/26/2023]
Abstract
Cavitation bubble cloud formation due to the backscattering of high-intensity focused ultrasound (HIFU) from a laser-induced bubble in various water temperatures and dissolved oxygen (DO) has been investigated. A laser-induced bubble generated near the geometrical focus of HIFU is utilized to yield intense negative pressure by the backscattering. Optical observation with a high-speed video camera and pressure measurement with a fiber-optic probe hydrophone are conducted simultaneously to understand the forming process of a bubble cloud and corresponding pressure field by the backscattering. Optical observation shows that a bubble cloud grows stepwise forming multiple layers composed of tiny cavitation bubbles, and the cavitation inception position is consistent with the local minimum pressure position simulated with the ghost fluid method. The bubble cloud grows larger in the opposite direction of HIFU propagation, and the absolute value of the cavitation inception pressure decreases with an increase in water temperature. The linear correlation between cavitation inception pressure and water temperature agrees with that given by Vlaisavljevich, Xu, Maxwell, Mancia, Zhang, Lin, Duryea, Sukovich, Hall, Johnsen, and Cain [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1064-1077 (2016)]. However DO has minor dependence on the cavitation inception pressure when DO is degassed sufficiently. Furthermore, the gas nucleus size that might exist in the experiment has been estimated by using bubble dynamics.
Collapse
Affiliation(s)
- Taisei Horiba
- Department of Mechanical Engneering, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Toshiyuki Ogasawara
- Department of Mechanical Engneering, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Hiroyuki Takahira
- Department of Mechanical Engneering, Osaka Prefecture University, Sakai, 599-8531, Japan
| |
Collapse
|
25
|
Mancia L, Vlaisavljevich E, Yousefi N, Rodriguez M, Ziemlewicz TJ, Lee FT, Henann D, Franck C, Xu Z, Johnsen E. Modeling tissue-selective cavitation damage. Phys Med Biol 2019; 64:225001. [PMID: 31639778 PMCID: PMC6925591 DOI: 10.1088/1361-6560/ab5010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The destructive growth and collapse of cavitation bubbles are used for therapeutic purposes in focused ultrasound procedures and can contribute to tissue damage in traumatic injuries. Histotripsy is a focused ultrasound procedure that relies on controlled cavitation to homogenize soft tissue. Experimental studies of histotripsy cavitation have shown that the extent of ablation in different tissues depends on tissue mechanical properties and waveform parameters. Variable tissue susceptibility to the large stresses, strains, and strain rates developed by cavitation bubbles has been suggested as a basis for localized liver tumor treatments that spare large vessels and bile ducts. However, field quantities developed within microns of cavitation bubbles are too localized and transient to measure in experiments. Previous numerical studies have attempted to circumvent this challenge but made limited use of realistic tissue property data. In this study, numerical simulations are used to calculate stress, strain, and strain rate fields produced by bubble oscillation under histotripsy forcing in a variety of tissues with literature-sourced viscoelastic and acoustic properties. Strain field calculations are then used to predict a theoretical damage radius using tissue ultimate strain data. Simulation results support the hypothesis that differential tissue responses could be used to design tissue-selective treatments. Results agree with studies correlating tissue ultimate fractional strain with resistance to histotripsy ablation and are also consistent with experiments demonstrating smaller lesion size under exposure to higher frequency waveforms. Methods presented in this study provide an approach for modeling tissue-selective cavitation damage in general.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States of America. University of Michigan Medical School, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
de Andrade MO, Haqshenas SR, Pahk KJ, Saffari N. The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation. ULTRASONICS SONOCHEMISTRY 2019; 55:262-272. [PMID: 30952547 DOI: 10.1016/j.ultsonch.2019.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A phenomenological implementation of Classical Nucleation Theory (CNT) is employed to investigate the connection between high intensity focused ultrasound (HIFU) pressure and temperature fields with the energetic requirements of bubble nucleation. As a case study, boiling histotripsy in tissue-mimicking phantoms is modelled. The physics of key components in the implementation of CNT in HIFU conditions such as the derivation of nucleation pressure thresholds and approximations regarding the surface tension of the liquid are reviewed and discussed. Simulations show that the acoustic pressure is the ultimate trigger for millisecond bubble nucleation in boiling histotripsy, however, HIFU heat deposition facilitates nucleation by lowering nucleation pressure thresholds. Nucleation thus occurs preferentially at the regions of highest heat deposition within the HIFU field. This implies that bubble nucleation subsequent to millisecond HIFU heat deposition can take place at temperatures below 100 °C as long as the focal HIFU peak negative pressure exceeds the temperature-dependent nucleation threshold. It is also found that the magnitude of nucleation pressure thresholds decreases with decreasing frequencies. Overall, results indicate that it is not possible to separate thermal and mechanical effects of HIFU in the nucleation of bubbles for timescales of a few milliseconds. This methodology provides a promising framework for studying time and space dependencies of the energetics of bubble nucleation within a HIFU field.
Collapse
Affiliation(s)
| | - Seyyed Reza Haqshenas
- UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nader Saffari
- UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
27
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
28
|
Wilson CT, Hall TL, Johnsen E, Mancia L, Rodriguez M, Lundt JE, Colonius T, Henann DL, Franck C, Xu Z, Sukovich JR. Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media. Phys Rev E 2019; 99:043103. [PMID: 31108707 DOI: 10.1103/physreve.99.043103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 04/30/2023]
Abstract
Experimental observations of the growth and collapse of acoustically and laser-nucleated single bubbles in water and agarose gels of varying stiffness are presented. The maximum radii of generated bubbles decreased as the stiffness of the media increased for both nucleation modalities, but the maximum radii of laser-nucleated bubbles decreased more rapidly than acoustically nucleated bubbles as the gel stiffness increased. For water and low stiffness gels, the collapse times were well predicted by a Rayleigh cavity, but bubbles collapsed faster than predicted in the higher stiffness gels. The growth and collapse phases occurred symmetrically (in time) about the maximum radius in water but not in gels, where the duration of the growth phase decreased more than the collapse phase as gel stiffness increased. Numerical simulations of the bubble dynamics in viscoelastic media showed varying degrees of success in accurately predicting the observations.
Collapse
Affiliation(s)
- Chad T Wilson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Mauro Rodriguez
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan E Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Tim Colonius
- Department of Mechanical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - David L Henann
- Department of Mechanical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
29
|
Wang YN, Khokhlova TD, Buravkov S, Chernikov V, Kreider W, Partanen A, Farr N, Maxwell A, Schade GR, Khokhlova VA. Mechanical decellularization of tissue volumes using boiling histotripsy. Phys Med Biol 2018; 63:235023. [PMID: 30511651 DOI: 10.1088/1361-6560/aaef16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High intensity focused ultrasound (HIFU) is rapidly advancing as an alternative therapy for non-invasively treating specific cancers and other pathological tissues through thermal ablation. A new type of HIFU therapy-boiling histotripsy (BH)-aims at mechanical fractionation of into subcellular fragments, with a range of accompanying thermal effects that can be tuned from none to substantial depending on the requirements of the application. The degree of mechanical tissue damage induced by BH has been shown to depend on the tissue type, with collagenous structures being most resistant, and cellular structures being most sensitive. This has been reported for single BH lesions, but has not been replicated in large volumes. Such tissue selectivity effect has potential uses involving tissue decellularization for biofabrication technologies as well as mechanical ablation by BH while sparing critical structures. The goal of this study was to investigate tissue decellularization effect in larger, clinically relevant liquefied volumes of tissue, and to evaluate the accumulated thermal effect in the volumetric lesions under different exposure parameters. All BH exposures were performed with a 256-element 1.2 MHz array of a magnetic resonance imaging-guided HIFU (MR-HIFU) clinical system (Sonalleve V1, Profound Medical Inc, Mississauga, Canada). The volumetric BH lesions were produced in degassed ex vivo bovine liver using 1-10 ms long pulses with in situ shock amplitudes of 75-100 MPa at the focus and pulse repetition frequencies (PRFs) of 1-10 Hz covering a range of effects from pure mechanical homogenization to thermal ablation. Multimodal analysis of the lesions was then performed, including microstructure (histological), ultrastructure (electron microscopy), and molecular (biochemistry) methods. Results show a range of tissue effects in terms of the degree of tissue selectivity and the amount of heat generated in large BH lesions, thereby demonstrating potential for treatments tailored to different clinical applications.
Collapse
Affiliation(s)
- Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pahk KJ, Gélat P, Sinden D, Dhar DK, Saffari N. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2848-2861. [PMID: 28965719 DOI: 10.1016/j.ultrasmedbio.2017.08.938] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 05/28/2023]
Abstract
The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Department of Mechanical Engineering, University College London, London, UK
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London, UK
| | - David Sinden
- Acoustics Group, National Physical Laboratory, Teddington, UK
| | - Dipok Kumar Dhar
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London, UK.
| |
Collapse
|
31
|
Mancia L, Vlaisavljevich E, Xu Z, Johnsen E. Predicting Tissue Susceptibility to Mechanical Cavitation Damage in Therapeutic Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1421-1440. [PMID: 28408061 DOI: 10.1016/j.ultrasmedbio.2017.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 05/25/2023]
Abstract
Histotripsy is a developing focused ultrasound procedure that uses cavitation bubbles to mechanically homogenize soft tissue. To better understand the mechanics of tissue damage, a numerical model of single-bubble dynamics was used to calculate stress, strain and strain rate fields produced by a cavitation bubble exposed to a tensile histotripsy pulse. The explosive bubble growth and its subsequent collapse were found to depend on the properties of the surrounding material and on the histotripsy pulse. Stresses far greater than gigapascals were observed close to the bubble wall, but attenuated by four to six orders of magnitude within 50 μm from the bubble wall, with at least two orders of magnitude attenuation occurring within the first 10 μm from the bubble. Elastic stresses were found to dominate close to the bubble wall, whereas viscous stresses tended to persist farther into the surroundings. A non-dimensional parameter combining tissue, waveform and bubble properties was identified that dictates the dominant stress (viscous vs. elastic) as a function of distance from the bubble nucleus. In a cycle of bubble growth and collapse, characteristic times at which mechanical damage is likely to occur and dominant mechanisms acting at each time were identified.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|