1
|
Bonciani G, Guidi F, Tortoli P, Giangrossi C, Dallai A, Boni E, Ramalli A. A Heterogeneous Ultrasound Open Scanner for the Real-Time Implementation of Computationally Demanding Imaging Methods. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:100-108. [PMID: 39365713 DOI: 10.1109/tuffc.2024.3474091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Ultrasound (US) open scanners have recently boosted the development and validation of novel imaging techniques. They are usually split into hardware- or software-oriented systems, depending on whether they process the echo data using embedded field programmable gate arrays (FPGAs)/digital signal processors (DSPs) or a graphics processing unit (GPU) on a host personal computer (PC). The goal of this work was to realize a high-performance heterogeneous open scanner capable of leveraging the strengths of both hardware- and software-oriented systems. The elaboration power of the 256-channel ultrasound advanced open platform (ULA-OP 256) was further enhanced by embedding a compact co-processing (CP) GPU system-on-module (SoM). By carefully avoiding latencies and overheads through low-level optimization work, an efficient peripheral component interconnect express (PCIe) communication interface was established between the GPU and the processing devices onboard the ULA-OP 256. As a proof of concept of the enhanced system, the high frame rate (HFR) color flow mapping (CFM) technique was implemented on the GPU SoM and tested. Compared to a previous DSP-based implementation, higher real-time frame rates were achieved together with unprecedented flexibility in setting crucial parameters such as the ensemble length (EL). For example, by setting EL =64 and a continuous-time high-pass filter (HPF), the flow was investigated with high temporal and spatial resolution in the femoral vein bifurcation (frame rate =1.1 kHz) and carotid artery bulb (4.3 kHz), highlighting the flow disturbances due to valve aperture and secondary velocity components, respectively. The results of this work promote the development of other computational-expensive processing algorithms in real time and may inspire the next generation of the US high-performance heterogeneous scanners.
Collapse
|
2
|
Martín Tempestti J, Kim S, Lindsey BD, Veneziani A. A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries. Cardiovasc Eng Technol 2024; 15:647-666. [PMID: 39103664 DOI: 10.1007/s13239-024-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements. METHODS Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS. RESULTS Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods. CONCLUSION The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.
Collapse
Affiliation(s)
| | - Saeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Dr, Atlanta, 30322, GA, USA
- Department of Computer Science, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Amin Naji M, Taghavi I, Vilain Thomsen E, Bent Larsen N, Arendt Jensen J. Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1844-1854. [PMID: 38896528 DOI: 10.1109/tuffc.2024.3416512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% % (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% %. Moreover, the results of vessel diameters, ranging from FWHMy to FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.
Collapse
|
4
|
He L, Eastburn M, Smirk J, Zhao H. Smart Chemical Sensor and Biosensor Networks for Healthcare 4.0. SENSORS (BASEL, SWITZERLAND) 2023; 23:5754. [PMID: 37420917 DOI: 10.3390/s23125754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Driven by technological advances from Industry 4.0, Healthcare 4.0 synthesizes medical sensors, artificial intelligence (AI), big data, the Internet of things (IoT), machine learning, and augmented reality (AR) to transform the healthcare sector. Healthcare 4.0 creates a smart health network by connecting patients, medical devices, hospitals, clinics, medical suppliers, and other healthcare-related components. Body chemical sensor and biosensor networks (BSNs) provide the necessary platform for Healthcare 4.0 to collect various medical data from patients. BSN is the foundation of Healthcare 4.0 in raw data detection and information collecting. This paper proposes a BSN architecture with chemical sensors and biosensors to detect and communicate physiological measurements of human bodies. These measurement data help healthcare professionals to monitor patient vital signs and other medical conditions. The collected data facilitates disease diagnosis and injury detection at an early stage. Our work further formulates the problem of sensor deployment in BSNs as a mathematical model. This model includes parameter and constraint sets to describe patient body characteristics, BSN sensor features, as well as biomedical readout requirements. The proposed model's performance is evaluated by multiple sets of simulations on different parts of the human body. Simulations are designed to represent typical BSN applications in Healthcare 4.0. Simulation results demonstrate the impact of various biofactors and measurement time on sensor selections and readout performance.
Collapse
Affiliation(s)
- Lawrence He
- Princeton High School, Princeton, NJ 08540, USA
| | | | - James Smirk
- Princeton High School, Princeton, NJ 08540, USA
| | - Hong Zhao
- Gildart Haase School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| |
Collapse
|
5
|
Liang S, Lu M. Advanced Fourier migration for Plane-Wave vector flow imaging. ULTRASONICS 2023; 132:107001. [PMID: 37094522 DOI: 10.1016/j.ultras.2023.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Ultrafast ultrasound imaging modalities have been studied extensively in the ultrasound community. It breaks the compromise between the frame rate and the region of interest by imaging the whole medium with wide unfocused waves. Continuously available data allow monitoring fast transient dynamics at hundreds to thousands of frames per second. This feature enables a more accurate and robust velocity estimation in vector flow imaging (VFI). On the other hand, the huge amount of data and real-time processing demands are still challenging in VFI. A solution is to provide a more efficient beamforming approach with smaller computation complexity than the conventional time-domain beamformer like delay-and-sum (DAS). Fourier-domain beamformers are shown to be more computationally efficient and can provide equally good image quality as DAS. However, previous studies generally focus on B-mode imaging. In this study, we propose a new framework for VFI which is based on two advanced Fourier migration methods, namely, slant stack migration (SSM) and ultrasound Fourier slice beamform (UFSB). By carefully modifying the beamforming parameters, we successfully apply the cross-beam technique within the Fourier beamformers. The proposed Fourier-based VFI is validated in simulation studies, in vitro, and in vivo experiments. The velocity estimation is evaluated via bias and standard deviation and the results are compared with conventional time-domain VFI using the DAS beamformer. In the simulation, the bias is 6.4%, -6.2%, and 5.7%, and the standard deviation is 4.3%, 2.4%, and 3.9% for DAS, UFSB, and SSM, respectively. In vitro studies reveal a bias of 4.5%, -5.3%, and 4.3% and a standard deviation of 3.5%, 1.3%, and 1.6% from DAS, UFSB, and SSM, respectively. The in vivo imaging of the basilic vein and femoral bifurcation also generate similar results using all three methods. With the proposed Fourier beamformers, the computation time can be shortened by up to 9 times and 14 times using UFSB and SSM.
Collapse
Affiliation(s)
- Siyi Liang
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| | - Minhua Lu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
| |
Collapse
|
6
|
Hasegawa H, Omura M, Nagaoka R, Saito K. Two-Dimensional Wavenumber Analysis Implemented in Ultrasonic Vector Doppler Method with Focused Transmit Beams. SENSORS (BASEL, SWITZERLAND) 2022; 22:9787. [PMID: 36560161 PMCID: PMC9781179 DOI: 10.3390/s22249787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The multi-angle Doppler method was introduced for the estimation of velocity vectors by measuring axial velocities from multiple directions. We have recently reported that the autocorrelation-based velocity vector estimation could be ameliorated significantly by estimating the wavenumbers in two dimensions. Since two-dimensional wavenumber estimation requires a snapshot of an ultrasonic field, the method was first implemented in plane wave imaging. Although plane wave imaging is predominantly useful for examining blood flows at an extremely high temporal resolution, it was reported that the contrast in a B-mode image obtained with a few plane wave emissions was lower than that obtained with focused beams. In this study, the two-dimensional wavenumber analysis was first implemented in a framework with focused transmit beams. The simulations showed that the proposed method achieved an accuracy in velocity estimation comparable to that of the method with plane wave imaging. Furthermore, the performances of the methods implemented in focused beam and plane wave imaging were compared by measuring human common carotid arteries in vivo. Image contrasts were analyzed in normal and clutter-filtered B-mode images. The method with focused beam imaging achieved a better contrast in normal B-mode imaging, and similar velocity magnitudes and angles were obtained by both the methods with focused beam and plane wave imaging. In contrast, the method with plane wave imaging gave a better contrast in a clutter-filtered B-mode image and smaller variances in velocity magnitudes than those with focused beams.
Collapse
Affiliation(s)
- Hideyuki Hasegawa
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Masaaki Omura
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Ryo Nagaoka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Kozue Saito
- Department of Neurology, Stroke Center, Nara Medical University, Nara 634-8522, Japan
| |
Collapse
|
7
|
Blanken N, Wolterink JM, Delingette H, Brune C, Versluis M, Lajoinie G. Super-Resolved Microbubble Localization in Single-Channel Ultrasound RF Signals Using Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2532-2542. [PMID: 35404813 DOI: 10.1109/tmi.2022.3166443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, super-resolution ultrasound imaging with ultrasound localization microscopy (ULM) has received much attention. However, ULM relies on low concentrations of microbubbles in the blood vessels, ultimately resulting in long acquisition times. Here, we present an alternative super-resolution approach, based on direct deconvolution of single-channel ultrasound radio-frequency (RF) signals with a one-dimensional dilated convolutional neural network (CNN). This work focuses on low-frequency ultrasound (1.7 MHz) for deep imaging (10 cm) of a dense cloud of monodisperse microbubbles (up to 1000 microbubbles in the measurement volume, corresponding to an average echo overlap of 94%). Data are generated with a simulator that uses a large range of acoustic pressures (5-250 kPa) and captures the full, nonlinear response of resonant, lipid-coated microbubbles. The network is trained with a novel dual-loss function, which features elements of both a classification loss and a regression loss and improves the detection-localization characteristics of the output. Whereas imposing a localization tolerance of 0 yields poor detection metrics, imposing a localization tolerance corresponding to 4% of the wavelength yields a precision and recall of both 0.90. Furthermore, the detection improves with increasing acoustic pressure and deteriorates with increasing microbubble density. The potential of the presented approach to super-resolution ultrasound imaging is demonstrated with a delay-and-sum reconstruction with deconvolved element data. The resulting image shows an order-of-magnitude gain in axial resolution compared to a delay-and-sum reconstruction with unprocessed element data.
Collapse
|
8
|
Gargani L, Baldini M, Berchiolli R, Bort IR, Casolo G, Chiappino D, Cosottini M, D'Angelo G, De Santis M, Erba P, Fabiani I, Fabiani P, Gabbriellini I, Galeotti GG, Ghicopulos I, Goncalves I, Lapi S, Masini G, Morizzo C, Napoli V, Nilsson J, Orlandi G, Palombo C, Pieraccini F, Ricci S, Siciliano G, Slart RHJA, De Caterina R. Detecting the vulnerable carotid plaque: the Carotid Artery Multimodality imaging Prognostic study design. J Cardiovasc Med (Hagerstown) 2022; 23:466-473. [PMID: 35763768 DOI: 10.2459/jcm.0000000000001314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Carotid artery disease is highly prevalent and a main cause of ischemic stroke and vascular dementia. There is a paucity of information on predictors of serious vascular events. Besides percentage diameter stenosis, international guidelines also recommend the evaluation of qualitative characteristics of carotid artery disease as a guide to treatment, but with no agreement on which qualitative features to assess. This inadequate knowledge leads to a poor ability to identify patients at risk, dispersion of medical resources, and unproven use of expensive and resource-consuming techniques, such as magnetic resonance imaging, positron emission tomography, and computed tomography. OBJECTIVES The Carotid Artery Multimodality imaging Prognostic (CAMP) study will: prospectively determine the best predictors of silent and overt ischemic stroke and vascular dementia in patients with asymptomatic subcritical carotid artery disease by identifying the noninvasive diagnostic features of the 'vulnerable carotid plaque'; assess whether 'smart' use of low-cost diagnostic methods such as ultrasound-based evaluations may yield at least the same level of prospective information as more expensive techniques. STUDY DESIGN We will compare the prognostic/predictive value of all proposed techniques with regard to silent or clinically manifest ischemic stroke and vascular dementia. The study will include ≥300 patients with asymptomatic, unilateral, intermediate degree (40-60% diameter) common or internal carotid artery stenosis detected at carotid ultrasound, with a 2-year follow-up. The study design has been registered on Clinicaltrial.gov on December 17, 2020 (ID number NCT04679727).
Collapse
Affiliation(s)
- Luna Gargani
- Institute of Clinical Physiology, National Research Council
| | | | - Raffaella Berchiolli
- Vascular Surgery Unit, Cardio Thoracic and Vascular Department, University of Pisa
| | | | | | | | | | | | - Mariella De Santis
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Paola Erba
- Department of Nuclear Medicine, University of Pisa, Pisa, Italy
- Medical Imaging Center, Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Plinio Fabiani
- Internal Medicine, S.M. Annunziata Hospital, Florence, Italy
| | - Ilaria Gabbriellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gian Giacomo Galeotti
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Irene Ghicopulos
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Isabel Goncalves
- Department of Clinical Sciences - Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Simone Lapi
- BMS Multispecialistic Biobank-Biobank Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriele Masini
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Carmela Morizzo
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Vinicio Napoli
- Diagnostic and Interventional Radiology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Jan Nilsson
- Department of Clinical Sciences - Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Giovanni Orlandi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Palombo
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | | | - Stefano Ricci
- Department of Information Engineering (DINFO), University of Florence, Florence, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Raffaele De Caterina
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The spread of high frame rate and 3-D imaging techniques has raised pressing requirements for ultrasound systems. In particular, the processing power and data transfer rate requirements may be so demanding to hinder the real-time (RT) implementation of such techniques. This paper first analyzes the general requirements involved in RT ultrasound systems. Then, it identifies the main bottlenecks in the receiving section of a specific RT scanner, the ULA-OP 256, which is one of the most powerful available open scanners and may therefore be assumed as a reference. This case study has evidenced that the “star” topology, used to digitally interconnect the system’s boards, may easily saturate the data transfer bandwidth, thus impacting the achievable frame/volume rates in RT. The architecture of the digital scanner was exploited to tackle the bottlenecks by enabling a new “ring“ communication topology. Experimental 2-D and 3-D high-frame-rate imaging tests were conducted to evaluate the frame rates achievable with both interconnection modalities. It is shown that the ring topology enables up to 4400 frames/s and 510 volumes/s, with mean increments of +230% (up to +620%) compared to the star topology.
Collapse
|
10
|
Madhavanunni A, Panicker MR. A nonlinear beamforming for enhanced spatiotemporal sensitivity in high frame rate ultrasound flow imaging. Comput Biol Med 2022; 147:105686. [DOI: 10.1016/j.compbiomed.2022.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
11
|
Hasegawa H, Omura M, Nagaoka R. On the Investigation of Autocorrelation-Based Vector Doppler Method With Plane Wave Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1301-1311. [PMID: 35171769 DOI: 10.1109/tuffc.2022.3152186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although color flow imaging is one of the representative applications of the Doppler method, it can estimate only the velocity component in the direction of ultrasonic propagation, that is, the axial velocity component. The vector Doppler method with high-frame-rate plane wave imaging overcomes such a limitation by estimating the blood flow velocity vectors using the axial velocities obtained by emitting plane waves in multiple directions. The autocorrelation technique can be used for the estimation of the axial velocity using the phase shift of an ultrasonic echo signal between two transmit-receive events. The technique also requires the frequency of the received echo signal. Although the center frequency of the emitted ultrasonic signal is commonly used in the estimation of axial velocities, the center frequency should be estimated from the received signals. In this study, a method for the estimation of the center frequency designed particularly for the high-frame-rate plane wave imaging was developed. The proposed method estimates the wavenumbers of the received signal in lateral and vertical directions to estimate the wavenumber in the axial direction, from which the center frequency was estimated. The beam steering angle was also estimated from the wavenumbers in the two directions. The effect of the proposed method was validated in simulations. The absolute bias error (ABE) and root-mean squared error in estimated velocity vectors obtained by plane wave imaging with three beam steering angles (-15°, 0°, and 15°) were reduced from 9.27% and 14.80% to 1.15% and 8.75%, respectively, by the proposed method. The applicability of the proposed method to in vivo measurements was also demonstrated using the in vivo recordings of human common carotid arteries. Physiologically consistent blood flow velocity distributions were obtained with respect to three subjects using the proposed method.
Collapse
|
12
|
Abstract
Medical imaging is considered one of the most important advances in the history of medicine and has become an essential part of the diagnosis and treatment of patients. Earlier prediction and treatment have been driving the acquisition of higher image resolutions as well as the fusion of different modalities, raising the need for sophisticated hardware and software systems for medical image registration, storage, analysis, and processing. In this scenario and given the new clinical pipelines and the huge clinical burden of hospitals, these systems are often required to provide both highly accurate and real-time processing of large amounts of imaging data. Additionally, lowering the prices of each part of imaging equipment, as well as its development and implementation, and increasing their lifespan is crucial to minimize the cost and lead to more accessible healthcare. This paper focuses on the evolution and the application of different hardware architectures (namely, CPU, GPU, DSP, FPGA, and ASIC) in medical imaging through various specific examples and discussing different options depending on the specific application. The main purpose is to provide a general introduction to hardware acceleration techniques for medical imaging researchers and developers who need to accelerate their implementations.
Collapse
|
13
|
Open-Source FPGA Coprocessor for the Doppler Emulation of Moving Fluids. MICROMACHINES 2021; 12:mi12121549. [PMID: 34945399 PMCID: PMC8705441 DOI: 10.3390/mi12121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Embedded systems are nowadays employed in a wide range of application, and their capability to implement calculation-intensive algorithms is growing quickly and constantly. This result is obtained by the exploitation of powerful embedded processors that are often connected to coprocessors optimized for a particular application. This work presents an open-source coprocessor dedicated to the real-time generation of a synthetic signal that mimics the echoes produced by a moving fluid when investigated by ultrasounds. The coprocessor is implemented in a Field Programmable Gate Array (FPGA) device and integrated in an embedded system. The system can replace the complex and inaccurate flow-rigs employed in laboratorial tests of Doppler ultrasound systems and methods. This paper details the coprocessor and its standard interfaces, and shows how it can be integrated in the wider architecture of an embedded system. Experiments showed its capability to emulate a fluid flowing in a pipe when investigated by an echographic Doppler system.
Collapse
|
14
|
Kim S, Jing B, Lindsey BD. Forward-viewing estimation of 3D blood flow velocity fields by intravascular ultrasound: Influence of the catheter on velocity estimation in stenoses. ULTRASONICS 2021; 117:106558. [PMID: 34461527 PMCID: PMC8448960 DOI: 10.1016/j.ultras.2021.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Coronary artery disease is the most common type of cardiovascular disease, affecting > 18 million adults, and is responsible for > 365 k deaths per year in the U.S. alone. Wall shear stress (WSS) is an emerging indicator of likelihood of plaque rupture in coronary artery disease, however, non-invasive estimation of 3-D blood flow velocity and WSS is challenging due to the requirement for high spatial resolution at deep penetration depths in the presence of significant cardiac motion. Thus we propose minimally-invasive imaging with a catheter-based, 3-D intravascular forward-viewing ultrasound (FV US) transducer and present experiments to quantify the effect of the catheter on flow disturbance in stenotic vessel phantoms with realistic velocities and luminal diameters for both peripheral (6.33 mm) and coronary (4.74 mm) arteries. An external linear array ultrasound transducer was used to quantify 2-D velocity fields in vessel phantoms under various conditions of catheter geometry, luminal diameter, and position of the catheter relative to the stenosis at a frame rate of 5000 frames per second via a particle imaging velocimetry (PIV) approach. While a solid catheter introduced an underestimation of velocity measurement by > 20% relative to the case without a catheter, the hollow catheter introduced < 10% velocity overestimation, indicating that a hollow catheter design allowing internal blood flow reduces hemodynamic disturbance. In addition, for both peripheral and coronary arteries, the hollow catheter introduced < 3% deviation in flow velocity at the minimum luminal area compared to the control case. Finally, an initial comparison was made between velocity measurements acquired using a low frequency, catheter-based, 3-D intravascular FV US transducer and external linear array measurements, with relative error < 12% throughout the region of interest for a flow rate of 150 mL/min. While further system development is required, results suggest intravascular ultrasound characterization of blood flow velocity fields in stenotic vessels could be feasible with appropriate catheter design.
Collapse
Affiliation(s)
- Saeyoung Kim
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, 801 Ferst Dr., Atlanta, GA 30332, USA; Georgia Institute of Technology, Interdisciplinary BioEngineering Graduate Program, 315 Ferst Dr., Atlanta, GA 30332, USA
| | - Bowen Jing
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Brooks D Lindsey
- Georgia Institute of Technology, Interdisciplinary BioEngineering Graduate Program, 315 Ferst Dr., Atlanta, GA 30332, USA; Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Matera R, Ricci S. Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study. SENSORS 2021; 21:s21175877. [PMID: 34502768 PMCID: PMC8434437 DOI: 10.3390/s21175877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
The assessment of the velocity of blood flowing in the carotid, in modern clinical practice, represents an important exam performed both in emergency situations and as part of scheduled screenings. It is typically performed by an expert sonographer who operates a complex and costly clinical echograph. Unfortunately, in developing countries, in rural areas, and even in crowded modern cities, the access to this exam can be limited by the lack of suitable personnel and ultrasound equipment. The recent availability of low-cost, handheld devices has contributed to solving part of the problem, but a wide access to the exam is still hampered by the lack of expert sonographers. In this work, an automated procedure is presented with the hope that, in the near future, it can be integrated into a low-cost, handheld instrument that is also suitable for self-measurement, for example, as can be done today with the finger oximeter. The operator should only place the probe on the neck, transversally with respect to the common tract of the carotid. The system, in real-time, automatically locates the vessel lumen, places the sample volume, and performs an angle-corrected velocity measurement of the common carotid artery peak velocity. In this study, the method was implemented for testing on the ULA-OP 256 scanner. Experiments on flow phantoms and volunteers show a performance in sample volume placement similar to that achieved by expert operators, and an accuracy and repeatability of 3.2% and 4.5%, respectively.
Collapse
|
16
|
Rossi S, Ramalli A, Tortoli P. On the Depth-Dependent Accuracy of Plane-Wave-Based Vector Velocity Measurements With Linear Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2707-2715. [PMID: 33909562 DOI: 10.1109/tuffc.2021.3076284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate vector Doppler methods are used to measure blood velocities over large 2-D regions, but their accuracy is often estimated over a short range of depths. This article thoroughly examines the dependence of velocity measurement accuracy on the target position. Simulations were carried out on flat and parabolic flow profiles, for different Doppler angles, and considering a 2-D vector flow imaging (2-D VFI) method based on plane wave transmission and speckle tracking. The results were also compared with those obtained by the reference spectral Doppler (SD) method. Although, as expected, the bias and standard deviation generally tend to worsen at increasing depths, the measurements also show the following. First, the errors are much lower for the flat profile (from ≈ -4 ± 3% at 20 mm to ≈ -17 ± 4% at 100 mm) than for the parabolic profile (from ≈ -4 ± 3% to ≈ -38 ±%). Second, only part of the relative estimation error is related to the inherent low resolution of the 2-D VFI method. For example, even for SD, the error bias increases (on average) from -0.7% (20 mm) to -17% (60 mm) up to -26% (100 mm). Third, conversely, the beam divergence associated with the linear array acoustic lens was found to have a great impact on the velocity measurements. By simply removing such lens, the average bias for 2-D VFI at 60 and 100 mm dropped down to -9.4% and -19.4%, respectively. In conclusion, the results indicate that the transmission beam broadening on the elevation plane, which is not limited by reception dynamic focusing, is the main cause of velocity underestimation in the presence of high spatial gradients.
Collapse
|
17
|
Ramalli A, Boni E, Giangrossi C, Mattesini P, Dallai A, Liebgott H, Tortoli P. Real-Time 3-D Spectral Doppler Analysis With a Sparse Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1742-1751. [PMID: 33444135 DOI: 10.1109/tuffc.2021.3051628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.
Collapse
|
18
|
Giangrossi C, Meacci V, Ricci S, Matera R, Boni E, Dallai A, Tortoli P. Virtual Real-Time for High PRF Multiline Vector Doppler on ULA-OP 256. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:624-631. [PMID: 32813652 DOI: 10.1109/tuffc.2020.3017940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recent development of high-frame-rate (HFR) imaging/Doppler methods based on the transmission of plane or diverging waves has proposed new challenges to echographic data management and display. Due to the huge amount of data that need to be processed at very high speed, the pulse repetition frequency (PRF) is typically limited to hundreds hertz or few kilohertz. In Doppler applications, a PRF limitation may result unacceptable since it inherently translates to a corresponding limitation in the maximum detectable velocity. In this article, the ULA-OP 256 implementation of a novel ultrasound modality, called virtual real-time (VRT), is described. First, for a given HFR RT modality, the scanner displays the processed results while saving channel data into an internal buffer. Then, ULA-OP 256 switches to VRT mode, according to which the raw data stored in the buffer are immediately reprocessed by the same hardware used in RT. In the two phases, the ULA-OP 256 calculation power can be differently distributed to increase the acquisition frame rate or the quality of processing results. VRT was here used to extend the PRF limit in a multiline vector Doppler (MLVD) application. In RT, the PRF was maximized at the expense of the display quality; in VRT, data were reprocessed at a lower rate in a high-quality display format, which provides more detailed flow information. Experiments are reported in which the MLVD technique is shown capable of working at 16-kHz PRF, so that flow jet velocities higher up to 3 m/s can be detected.
Collapse
|
19
|
Hoving AM, Voorneveld J, Mikhal J, Bosch JG, Groot Jebbink E, Slump CH. In vitro performance of echoPIV for assessment of laminar flow profiles in a carotid artery stent. J Med Imaging (Bellingham) 2021; 8:017001. [PMID: 33457445 PMCID: PMC7804295 DOI: 10.1117/1.jmi.8.1.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/22/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Detailed blood flow studies may contribute to improvements in carotid artery stenting. High-frame-rate contrast-enhanced ultrasound followed by particle image velocimetry (PIV), also called echoPIV, is a technique to study blood flow patterns in detail. The performance of echoPIV in presence of a stent has not yet been studied extensively. We compared the performance of echoPIV in stented and nonstented regions in an in vitro flow setup. Approach: A carotid artery stent was deployed in a vessel-mimicking phantom. High-frame-rate contrast-enhanced ultrasound images were acquired with various settings. Signal intensities of the contrast agent, velocity values, and flow profiles were calculated. Results: The results showed decreased signal intensities and correlation coefficients inside the stent, however, PIV analysis in the stent still resulted in plausible flow vectors. Conclusions: Velocity values and laminar flow profiles can be measured in vitro in stented arteries using echoPIV.
Collapse
Affiliation(s)
- Astrid M Hoving
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| | - Jason Voorneveld
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Julia Mikhal
- University of Twente, TechMed Centre, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Johan G Bosch
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging Group, Enschede, The Netherlands
| | - Cornelis H Slump
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| |
Collapse
|
20
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Huang H, Chen PY, Huang CC. 40-MHz high-frequency vector Doppler imaging for superficial venous valve flow estimation. Med Phys 2020; 47:4020-4031. [PMID: 32609885 DOI: 10.1002/mp.14362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Doppler ultrasound imaging has been used widely for diagnosing vascular diseases. Recently, vector Doppler imaging (VDI) has been proposed for visualizing the blood flow in all directions to yield more detailed information for estimating flow conditions. Increasing the resolution of VDI is important for the structural mapping of superficial vessels with microstructure. However, VDI that operates under a high-frequency ultrasound (HFUS; >30 MHz) is rare. In this study, a 40-MHz high-frequency VDI (HFVDI) based on ultrafast ultrasound imaging was developed to obtain the vector information of blood flow around the superficial venous valve. METHODS The use of HFUS imaging system causes an overload of data acquisition easily. In order to provide sufficient recording time, the frame rate should be reduced. Because the aliasing problem worsens due to a low frame rate when operating Doppler imaging, phase-unwrapping processing methods based on spatial and temporal continuities were applied. Flow phantom experiments were performed to validate the accuracy. In vivo experiments were performed on the valve of superficial veins of healthy volunteers. RESULTS The experimental results from the phantom study indicated that the error of velocity estimation was <10% in most cases. Dynamic changes of valve movements and flow conditions (including velocity profiles and vector) were observed. Because of the high resolution of HFVDI, the jet and vortex phenomena were observed between the leaflets and in the sinus pocket, respectively. CONCLUSIONS Flow velocities ranging from 2 to 15 mm/s were measured at different locations around the venous valve during the opening and closing phases. All the results indicated that HFVDI has the potential to be a useful tool for vessel duplex scanning.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
22
|
Fabiani I, Palombo C, Caramella D, Nilsson J, De Caterina R. Imaging of the vulnerable carotid plaque: Role of imaging techniques and a research agenda. Neurology 2020; 94:922-932. [PMID: 32393647 DOI: 10.1212/wnl.0000000000009480] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/18/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Atherothrombosis in the carotid arteries is a main cause of ischemic stroke and may depend on plaque propensity to complicate with rupture or erosion, in turn related to vulnerability features amenable to in vivo imaging. This would provide an opportunity for risk stratification and-potentially-local treatment of more vulnerable plaques. We here review current information on this topic. METHODS We systematically reviewed the literature for concepts derived from pathophysiologic, histopathologic, and clinical studies on imaging techniques attempting at identifying vulnerable carotid lesions. RESULTS Ultrasound, MRI, CT, and nuclear medicine-based techniques, alone or with multimodality approaches, all have a link to pathophysiology and describe different-potentially complementary-aspects of lesions prone to complications. There is also, however, a true paucity of head-to-head comparisons of such techniques for practical implementation of a thorough and cost-effective diagnostic strategy based on evaluation of outcomes. Especially in asymptomatic patients, major international societies leave wide margins of indecision in the advice to techniques guiding interventions to prevent atherothrombotic stroke. CONCLUSIONS To improve practical management of such patients-in addition to the patient's vulnerability for systemic reasons-a more precise identification of the vulnerable plaque is needed. A better definition of the diagnostic yield of each imaging approach in comparison with the others should be pursued for a cost-effective translation of the single techniques. Practical translation to guide future clinical practice should be based on improved knowledge of the specific pathophysiologic correlates and on a comparative modality approach, linked to subsequent stroke outcomes.
Collapse
Affiliation(s)
- Iacopo Fabiani
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Carlo Palombo
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Davide Caramella
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Jan Nilsson
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Raffaele De Caterina
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy.
| |
Collapse
|
23
|
Yiu BYS, Walczak M, Lewandowski M, Yu ACH. Live Ultrasound Color-Encoded Speckle Imaging Platform for Real-Time Complex Flow Visualization In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:656-668. [PMID: 30640607 DOI: 10.1109/tuffc.2019.2892731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Complex flow patterns are prevalent in the vasculature, but they are difficult to image noninvasively in real time. This paper presents the first real-time scanning platform for a high-frame-rate ultrasound technique called color-encoded speckle imaging (CESI) and its use in visualizing arterial flow dynamics in vivo. CESI works by simultaneously rendering flow speckles and color-coded flow velocity estimates on a time-resolved basis. Its live implementation was achieved by integrating a 192-channel programmable ultrasound front-end module, a 4.8-GB/s capacity data streaming link, and a series of computing kernels implemented on the graphical processing unit (GPU) for beamforming and Doppler processing. A slow-motion replay mode was also included to offer coherent visualization of CESI frames acquired at high frame rate [3000 frames per second (fps) in our experiments]. The live CESI scanning platform was found to be effective in facilitating real-time image guidance (at least 20 fps for live video display with 55-fps GPU processing throughout). In vivo pilot trials also showed that live CESI, when running in replay mode, can temporally resolve triphasic flow at the brachial bifurcation and can reveal flow dynamics in the brachial vein during a fist-clenching maneuver. Overall, live CESI has potential for use in routine investigations in vivo that seek to identify complex flow dynamics in real time and relate these dynamics to vascular physiology.
Collapse
|
24
|
Shahriari S, Garcia D. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. Phys Med Biol 2018; 63:205011. [PMID: 30247153 DOI: 10.1088/1361-6560/aae3c3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Before embarking on a series of in vivo tests, design of ultrasound-flow-imaging modalities are generally more efficient through computational models as multiple configurations can be tested methodically. To that end, simulation models must generate realistic blood flow dynamics and Doppler signals. The current in silico ultrasound simulation techniques suffer mainly from uncertainty in providing accurate trajectories of moving ultrasound scatterers. In mesh-based Eulerian methods, numerical truncation errors from the interpolated velocities, both in the time and space dimensions, can accumulate significantly and make the pathlines unreliable. These errors can distort beam-to-beam inter-correlation present in ultrasound flow imaging. It is thus a technical issue to model a correct motion of the scatterers by considering their interaction with boundaries and neighboring scatterers. We hypothesized that in silico analysis of emerging ultrasonic imaging modalities can be implemented more accurately with meshfree approaches. We developed an original fluid-ultrasound simulation environment based on a meshfree Lagrangian CFD (computational fluid dynamics) formulation, which allows analysis of ultrasound flow imaging. This simulator combines smoothed particle hydrodynamics (SPH) and Fourier-domain linear acoustics (SIMUS = simulator for ultrasound imaging). With such a particle-based computation, the fluid particles also acted as individual ultrasound scatterers, resulting in a direct and physically sound fluid-ultrasonic coupling. We used the in-house algorithms for fluid and ultrasound simulations to simulate high-frame-rate vector flow imaging. The potential of the particle-based method was tested in 2D simulations of vector Doppler for the intracarotid flow. The Doppler-based velocity fields were compared with those issued from SPH. The numerical evaluations showed that the vector flow fields obtained by vector Doppler components were in good agreement with the original SPH velocities, with relative errors less than 10% and 2% in the cross-beam and axial directions, respectively. Our results showed that SPH-SIMUS coupling enables direct and realistic simulations of ultrasound flow imaging. The proposed coupled algorithm has also the advantage to be 3D compatible and parallelizable.
Collapse
Affiliation(s)
- Shahrokh Shahriari
- Previously, Research Center of the University of Montreal Hospital, Montreal, QC H2X 0A9, Canada
| | | |
Collapse
|
25
|
Boni E, Yu ACH, Freear S, Jensen JA, Tortoli P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1078-1092. [PMID: 29993364 PMCID: PMC6057541 DOI: 10.1109/tuffc.2018.2844560] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 05/22/2023]
Abstract
Open platform (OP) ultrasound systems are aimed primarily at the research community. They have been at the forefront of the development of synthetic aperture, plane wave, shear wave elastography, and vector flow imaging. Such platforms are driven by a need for broad flexibility of parameters that are normally preset or fixed within clinical scanners. OP ultrasound scanners are defined to have three key features including customization of the transmit waveform, access to the prebeamformed receive data, and the ability to implement real-time imaging. In this paper, a formative discussion is given on the development of OPs from both the research community and the commercial sector. Both software- and hardware-based architectures are considered, and their specifications are compared in terms of resources and programmability. Software-based platforms capable of real-time beamforming generally make use of scalable graphics processing unit architectures, whereas a common feature of hardware-based platforms is the use of field-programmable gate array and digital signal processor devices to provide additional on-board processing capacity. OPs with extended number of channels (>256) are also discussed in relation to their role in supporting 3-D imaging technique development. With the increasing maturity of OP ultrasound scanners, the pace of advancement in ultrasound imaging algorithms is poised to be accelerated.
Collapse
|