1
|
Bonciani G, Guidi F, Tortoli P, Giangrossi C, Dallai A, Boni E, Ramalli A. A Heterogeneous Ultrasound Open Scanner for the Real-Time Implementation of Computationally Demanding Imaging Methods. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:100-108. [PMID: 39365713 DOI: 10.1109/tuffc.2024.3474091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Ultrasound (US) open scanners have recently boosted the development and validation of novel imaging techniques. They are usually split into hardware- or software-oriented systems, depending on whether they process the echo data using embedded field programmable gate arrays (FPGAs)/digital signal processors (DSPs) or a graphics processing unit (GPU) on a host personal computer (PC). The goal of this work was to realize a high-performance heterogeneous open scanner capable of leveraging the strengths of both hardware- and software-oriented systems. The elaboration power of the 256-channel ultrasound advanced open platform (ULA-OP 256) was further enhanced by embedding a compact co-processing (CP) GPU system-on-module (SoM). By carefully avoiding latencies and overheads through low-level optimization work, an efficient peripheral component interconnect express (PCIe) communication interface was established between the GPU and the processing devices onboard the ULA-OP 256. As a proof of concept of the enhanced system, the high frame rate (HFR) color flow mapping (CFM) technique was implemented on the GPU SoM and tested. Compared to a previous DSP-based implementation, higher real-time frame rates were achieved together with unprecedented flexibility in setting crucial parameters such as the ensemble length (EL). For example, by setting EL =64 and a continuous-time high-pass filter (HPF), the flow was investigated with high temporal and spatial resolution in the femoral vein bifurcation (frame rate =1.1 kHz) and carotid artery bulb (4.3 kHz), highlighting the flow disturbances due to valve aperture and secondary velocity components, respectively. The results of this work promote the development of other computational-expensive processing algorithms in real time and may inspire the next generation of the US high-performance heterogeneous scanners.
Collapse
|
2
|
Cohen JN, Hedge ET, Greaves DK, Robertson AD, Nahas H, Yu ACH, Petersen LG, Au JS. Characterization of internal jugular vein region-specific distension and flow patterns during progressive volume shifting. J Appl Physiol (1985) 2024; 137:32-41. [PMID: 38813612 DOI: 10.1152/japplphysiol.00162.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Blood volume shifts during postural adjustment lead to irregular distension of the internal jugular vein (IJV). In microgravity, distension may contribute to flow stasis and thromboembolism, though the regional implications and associated risk remain unexplored. We characterized regional differences in IJV volume distension and flow complexity during progressive head-down tilt (HDT) (0°, -6°, -15°, -30°) using conventional ultrasound and vector flow imaging. We also evaluated low-pressure thigh cuffs (40 mmHg) as a fluid shifting countermeasure during -6° HDT. Total IJV volume expanded 139 ± 95% from supine position (4.6 ± 2.7 mL) to -30° HDT (10.3 ± 5.0 mL). Blood flow profiles had greater vector uniformity at the cranial IJV region (P < 0.01) and became more dispersed with increasing tilt (P < 0.01). Qualitatively, flow was more uniform throughout the IJV during its early flow cycle phase and more disorganized during late flow phase. This disorganized flow was accentuated closer to the vessel wall, near the caudal region, and during greater HDT. Low-pressure thigh cuffs during -6° HDT decreased IJV volume at the cranial region (-12 ± 15%; P < 0.01) but not the caudal region (P = 0.20), although flow uniformity was unchanged (both regions, P > 0.25). We describe a distensible IJV accommodating large volume shifts along its length. Prominent flow dispersion was primarily found at the caudal region, suggesting multidirectional blood flow. Thigh cuffs appear effective for decreasing IJV volume but effects on flow complexity are minor. Flow complexity along the vessel length is likely related to IJV distension during chronic volume shifting and may be a precipitating factor for flow stasis and future thromboembolism risk.NEW & NOTEWORTHY The internal jugular vein (IJV) facilitates cerebral outflow and is sensitive to volume shifts. Concerns about IJV expansion and fluid flow behavior in astronauts have surfaced following thromboembolism reports. Our study explored regional volume distension and blood flow complexity in the IJV during progressive volume shifting. We observed stepwise volume distension and increasing flow dispersion with head-down tilting across all regions. Flow dispersion may pose a risk of future thromboembolism during prolonged volume shifts.
Collapse
Affiliation(s)
- Jeremy N Cohen
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric T Hedge
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Danielle K Greaves
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew D Robertson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Hassan Nahas
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Alfred C H Yu
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Lonnie G Petersen
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Jason S Au
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Xiao D, Torre PDL, Yu ACH. Real-Time Speed-of-Sound Estimation In Vivo via Steered Plane Wave Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:673-686. [PMID: 38687663 DOI: 10.1109/tuffc.2024.3395490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Speed-of-sound (SoS) is an intrinsic acoustic property of human tissues and has been regarded as a potential biomarker of tissue health. To foster the clinical use of this emerging biomarker in medical diagnostics, it is important for SoS estimates to be derived and displayed in real time. Here, we demonstrate that concurrent global SoS estimation and B-mode imaging can be achieved live on a portable ultrasound scanner. Our innovation is hinged upon the design of a novel pulse-echo SoS estimation framework that is based on steered plane wave imaging. It has accounted for the effects of refraction and imaging depth when the medium SoS differs from the nominal value of 1540 m/s that is conventionally used in medical imaging. The accuracy of our SoS estimation framework was comparatively analyzed with through-transmit time-of-flight measurements in vitro on 15 custom agar phantoms with different SoS values (1508-1682 m/s) and in vivo on human calf muscles ( N = 9 ; SoS range: 1560-1586 m/s). Our SoS estimation framework has a mean signed difference (MSD) of - 0.6 ± 2.3 m/s in vitro and - 2.2 ± 11.2 m/s in vivo relative to the reference measurements. In addition, our real-time system prototype has yielded simultaneous SoS estimates and B-mode imaging at an average frame rate of 18.1 fps. Overall, by realizing real-time tissue SoS estimation with B-mode imaging, our innovation can foster the use of tissue SoS as a biomarker in medical ultrasound diagnostics.
Collapse
|
4
|
Pitman WMK, Xiao D, Yiu BYS, Chee AJY, Yu ACH. Branched Convolutional Neural Networks for Receiver Channel Recovery in High-Frame-Rate Sparse-Array Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:558-571. [PMID: 38564354 DOI: 10.1109/tuffc.2024.3383660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
For high-frame-rate ultrasound imaging, it remains challenging to implement on compact systems as a sparse imaging configuration with limited array channels. One key issue is that the resulting image quality is known to be mediocre not only because unfocused plane-wave excitations are used but also because grating lobes would emerge in sparse-array configurations. In this article, we present the design and use of a new channel recovery framework to infer full-array plane-wave channel datasets for periodically sparse arrays that operate with as few as one-quarter of the full-array aperture. This framework is based on a branched encoder-decoder convolutional neural network (CNN) architecture, which was trained using full-array plane-wave channel data collected from human carotid arteries (59 864 training acquisitions; 5-MHz imaging frequency; 20-MHz sampling rate; plane-wave steering angles between -15° and 15° in 1° increments). Three branched encoder-decoder CNNs were separately trained to recover missing channels after differing degrees of channelwise downsampling (2, 3, and 4 times). The framework's performance was tested on full-array and downsampled plane-wave channel data acquired from an in vitro point target, human carotid arteries, and human brachioradialis muscle. Results show that when inferred full-array plane-wave channel data were used for beamforming, spatial aliasing artifacts in the B-mode images were suppressed for all degrees of channel downsampling. In addition, the image contrast was enhanced compared with B-mode images obtained from beamforming with downsampled channel data. When the recovery framework was implemented on an RTX-2080 GPU, the three investigated degrees of downsampling all achieved the same inference time of 4 ms. Overall, the proposed framework shows promise in enhancing the quality of high-frame-rate ultrasound images generated using a sparse-array imaging setup.
Collapse
|
5
|
Sun S, Fu C, Xu S, Wen Y, Ma T. GLFNet: Global-local fusion network for the segmentation in ultrasound images. Comput Biol Med 2024; 171:108103. [PMID: 38335822 DOI: 10.1016/j.compbiomed.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Ultrasound imaging, as a portable and radiation-free modality, presents challenges for accurate segmentation due to the variability of lesions and the similar intensity values of surrounding tissues. Current deep learning approaches leverage convolution for extracting local features and self-attention for handling global dependencies. However, traditional CNNs are spatially local, and Vision Transformers lack image specific bias and are computationally demanding. In response, we propose the Global-Local Fusion Network (GLFNet), a hybrid structure addressing the limitations of both CNNs and Vision Transformers. The GLFNet, featuring Global-Local Fusion Blocks (GLFBlocks), integrates global semantic information with local details to improve segmentation. Each GLFBlock comprises Global and Local Branches for feature extraction in parallel. Within the Global and Local Branches, we introduce the Self-Attention Convolution Fusion Block (SACFBlock), which includes a Spatial-Attention Module and Channel-Attention Module. Experimental results show that our proposed GLFNet surpasses its counterparts in the segmentation tasks, achieving the overall best results with an mIoU of 79.58% and Dice coefficient of 74.62% in the DDTI dataset, an mIoU of 76.61% and Dice coefficient of 71.04% in the BUSI dataset, and an mIoU of 86.77% and Dice coefficient of 87.38% in the BUID dataset. The fusion of local and global features contributes to enhanced performance, making GLFNet a promising approach for ultrasound image segmentation.
Collapse
Affiliation(s)
- Shiyao Sun
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chong Fu
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, China; Engineering Research Center of Security Technology of Complex Network System, Ministry of Education, China.
| | - Sen Xu
- General Hospital of Northern Theatre Command, Shenyang 110016, China
| | - Yingyou Wen
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China; Medical Imaging Research Department, Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Tao Ma
- Dopamine Group Ltd., Auckland, 1542, New Zealand
| |
Collapse
|
6
|
Riksen JJM, Nikolaev AV, van Soest G. Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:121205. [PMID: 37304059 PMCID: PMC10249868 DOI: 10.1117/1.jbo.28.12.121205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Significance Photoacoustic imaging (PAI) enables the visualization of optical contrast with ultrasonic imaging. It is a field of intense research, with great promise for clinical application. Understanding the principles of PAI is important for engineering research and image interpretation. Aim In this tutorial review, we lay out the imaging physics, instrumentation requirements, standardization, and some practical examples for (junior) researchers, who have an interest in developing PAI systems and applications for clinical translation or applying PAI in clinical research. Approach We discuss PAI principles and implementation in a shared context, emphasizing technical solutions that are amenable to broad clinical deployment, considering factors such as robustness, mobility, and cost in addition to image quality and quantification. Results Photoacoustics, capitalizing on endogenous contrast or administered contrast agents that are approved for human use, yields highly informative images in clinical settings, which can support diagnosis and interventions in the future. Conclusion PAI offers unique image contrast that has been demonstrated in a broad set of clinical scenarios. The transition of PAI from a "nice-to-have" to a "need-to-have" modality will require dedicated clinical studies that evaluate therapeutic decision-making based on PAI and consideration of the actual value for patients and clinicians, compared with the associated cost.
Collapse
Affiliation(s)
- Jonas J. M. Riksen
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Anton V. Nikolaev
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Gijs van Soest
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Nahas H, Ishii T, Yiu BYS, Yu ACH. A GPU-Based, Real-Time Dealiasing Framework for High-Frame-Rate Vector Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1384-1400. [PMID: 37549086 DOI: 10.1109/tuffc.2023.3303349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Vector Doppler is well regarded as a potential way of deriving flow vectors to intuitively visualize complex flow profiles, especially when it is implemented at high frame rates. However, this technique's performance is known to suffer from aliasing artifacts. There is a dire need to devise real-time dealiasing solutions for vector Doppler. In this article, we present a new methodological framework for achieving aliasing-resistant flow vector estimation at real-time throughput from precalculated Doppler frequencies. Our framework comprises a series of compute kernels that have synergized: 1) an extended least squares vector Doppler (ELS-VD) algorithm; 2) single-instruction, multiple-thread (SIMT) processing principles; and 3) implementation on a graphical processing unit (GPU). Results show that this new framework, when executed on an RTX-2080 GPU, can effectively generate aliasing-free flow vector maps using high-frame-rate imaging datasets acquired from multiple transmit-receive angle pairs in a carotid phantom imaging scenario. Over the entire cardiac cycle, the frame processing time for aliasing-resistant vector estimation was measured to be less than 16 ms, which corresponds to a minimum processing throughput of 62.5 frames/s. In a human femoral bifurcation imaging trial with fast flow (150 cm/s), our framework was found to be effective in resolving two-cycle aliasing artifacts at a minimum throughput of 53 frames/s. The framework's processing throughput was generally in the real-time range for practical combinations of ELS-VD algorithmic parameters. Overall, this work represents the first demonstration of real-time, GPU-based aliasing-resistant vector flow imaging using vector Doppler estimation principles.
Collapse
|
8
|
Roberts M, Martin E, Brown MD, Cox BT, Treeby BE. open-UST: An Open-Source Ultrasound Tomography Transducer Array System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:782-791. [PMID: 37256814 DOI: 10.1109/tuffc.2023.3280635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fast imaging methods are needed to promote clinical adoption of ultrasound tomography (UST), and more widely available UST hardware could support the experimental validation of new measurement configurations. In this work, an open-source 256-element transducer ring array was developed (morganjroberts.github. io/open-UST) and manufactured using rapid prototyping, for only £2k. Novel manufacturing techniques were used, resulting in a 1.17° mean beam axis skew angle, a [Formula: see text] mean element position error, and a [Formula: see text] deviation in matching layer thickness. The nominal acoustic performance was measured using hydrophone scans and watershot data, and the 61.2 dB signal-to-noise ratio (SNR), 55.4° opening angle, 10.2 mm beamwidth, and 54% transmit-receive bandwidth (-12 dB) were found to be similar to existing systems and compatible with state-of-the-art full-waveform-inversion image reconstruction methods. The interelement variation in acoustic performance was typically < 10% without using normalization, meaning that the elements can be modeled identically during image reconstruction, removing the need for individual source definitions based on hydrophone measurements. Finally, data from a phantom experiment were successfully reconstructed. These results demonstrate that the open-UST system is accessible for users and is suitable for UST imaging research.
Collapse
|
9
|
Nahas H, Yiu BYS, Chee AJY, Au JS, Yu ACH. Deep-learning-assisted and GPU-accelerated vector Doppler imaging with aliasing-resistant velocity estimation. ULTRASONICS 2023; 134:107050. [PMID: 37300906 DOI: 10.1016/j.ultras.2023.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/30/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Vector flow imaging is a diagnostic ultrasound modality that is suited for the visualization of complex blood flow dynamics. One popular way of realizing vector flow imaging at high frame rates over 1000 fps is to apply multi-angle vector Doppler estimation principles in conjunction with plane wave pulse-echo sensing. However, this approach is susceptible to flow vector estimation errors attributed to Doppler aliasing, which is prone to arise when a low pulse repetition frequency (PRF) is inevitably used due to the need for finer velocity resolution or because of hardware constraints. Existing dealiasing solutions tailored for vector Doppler may have high computational demand that makes them unfeasible for practical applications. In this paper, we present the use of deep learning and graphical processing unit (GPU) computing principles to devise a fast vector Doppler estimation framework that is resilient against aliasing artifacts. Our new framework works by using a convolutional neural network (CNN) to detect aliased regions in vector Doppler images and subsequently applying an aliasing correction algorithm only at these affected regions. The framework's CNN was trained using 15,000 in vivo vector Doppler frames acquired from the femoral and carotid arteries, including healthy and diseased conditions. Results show that our framework can perform aliasing segmentation with an average precision of 90 % and can render aliasing-free vector flow maps with real-time processing throughputs (25-100 fps). Overall, our new framework can improve the visualization quality of vector Doppler imaging in real-time.
Collapse
Affiliation(s)
- Hassan Nahas
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Billy Y S Yiu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Jason S Au
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
10
|
Lung Ultrasound Artifacts Interpreted as Pathology Footprints. Diagnostics (Basel) 2023; 13:diagnostics13061139. [PMID: 36980450 PMCID: PMC10047655 DOI: 10.3390/diagnostics13061139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Background: The original observation that lung ultrasound provides information regarding the physical state of the organ, rather than the anatomical details related to the disease, has reinforced the idea that the observed acoustic signs represent artifacts. However, the definition of artifact does not appear adequate since pulmonary ultrasound signs have shown valuable diagnostic accuracy, which has been usefully exploited by physicians in numerous pathologies. Method: A specific method has been used over the years to analyze lung ultrasound data and to convert artefactual information into anatomical information. Results: A physical explanation of the genesis of the acoustic signs is provided, and the relationship between their visual characteristics and the surface histopathology of the lung is illustrated. Two important sources of potential signal alteration are also highlighted. Conclusions: The acoustic signs are generated by acoustic traps that progressively release previously trapped energy. Consequently, the acoustic signs highlight the presence of acoustic traps and quantitatively describe their distribution on the lung surface; they are not artifacts, but pathology footprints and anatomical information. Moreover, the impact of the dynamic focusing algorithms and the impact of different probes on the visual aspect of the acoustic signs should not be neglected.
Collapse
|
11
|
Peralta L, Mazierli D, Gomez A, Hajnal JV, Tortoli P, Ramalli A. 3-D Coherent Multitransducer Ultrasound Imaging With Sparse Spiral Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:197-206. [PMID: 37022372 DOI: 10.1109/tuffc.2023.3241774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coherent multitransducer ultrasound (CoMTUS) creates an extended effective aperture through the coherent combination of multiple arrays, which results in images with enhanced resolution, extended field-of-view, and higher sensitivity. The subwavelength localization accuracy of the multiple transducers required to coherently beamform the data is achieved by using the echoes backscattered from targeted points. In this study, CoMTUS is implemented and demonstrated for the first time in 3-D imaging using a pair of 256-element 2-D sparse spiral arrays, which keep the channel count low and limit the amount of data to be processed. The imaging performance of the method was investigated using both simulations and phantom tests. The feasibility of free-hand operation is also experimentally demonstrated. Results show that, in comparison with a single dense array system using the same total number of active elements, the proposed CoMTUS system improves spatial resolution (up to ten times) in the direction where both arrays are aligned, contrast-to-noise ratio (CNR; up to 46%), and generalized CNR (gCNR; up to 15%). Overall, CoMTUS shows a narrower main lobe and higher CNR, which results in an increased dynamic range and better target detectability.
Collapse
|
12
|
Liang S, Gu Y. SRENet: a spatiotemporal relationship-enhanced 2D-CNN-based framework for staging and segmentation of kidney cancer using CT images. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
de Oliveira J, de Souza MA, Assef AA, Maia JM. Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9232. [PMID: 36501933 PMCID: PMC9740760 DOI: 10.3390/s22239232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The study of muscle contractions generated by the muscle-tendon unit (MTU) plays a critical role in medical diagnoses, monitoring, rehabilitation, and functional assessments, including the potential for movement prediction modeling used for prosthetic control. Over the last decade, the use of combined traditional techniques to quantify information about the muscle condition that is correlated to neuromuscular electrical activation and the generation of muscle force and vibration has grown. The purpose of this review is to guide the reader to relevant works in different applications of ultrasound imaging in combination with other techniques for the characterization of biological signals. Several research groups have been using multi-sensing systems to carry out specific studies in the health area. We can divide these studies into two categories: human-machine interface (HMI), in which sensors are used to capture critical information to control computerized prostheses and/or robotic actuators, and physiological study, where sensors are used to investigate a hypothesis and/or a clinical diagnosis. In addition, the relevance, challenges, and expectations for future work are discussed.
Collapse
Affiliation(s)
- Jonathan de Oliveira
- Graduate Program in Health Technology (PPGTS), Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Mauren Abreu de Souza
- Graduate Program in Health Technology (PPGTS), Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Amauri Amorin Assef
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
| | - Joaquim Miguel Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
- Electronics Engineering Department (DAELN), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
| |
Collapse
|
14
|
Xiao D, Pitman WMK, Yiu BYS, Chee AJY, Yu ACH. Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2849-2861. [PMID: 35862334 DOI: 10.1109/tuffc.2022.3192854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-frame-rate ultrasound imaging uses unfocused transmissions to insonify an entire imaging view for each transmit event, thereby enabling frame rates over 1000 frames per second (fps). At these high frame rates, it is naturally challenging to realize real-time transfer of channel-domain raw data from the transducer to the system back end. Our work seeks to halve the total data transfer rate by uniformly decimating the receive channel count by 50% and, in turn, doubling the array pitch. We show that despite the reduced channel count and the inevitable use of a sparse array aperture, the resulting beamformed image quality can be maintained by designing a custom convolutional encoder-decoder neural network to infer the radio frequency (RF) data of the nullified channels. This deep learning framework was trained with in vivo human carotid data (5-MHz plane wave imaging, 128 channels, 31 steering angles over a 30° span, and 62 799 frames in total). After training, the network was tested on an in vitro point target scenario that was dissimilar to the training data, in addition to in vivo carotid validation datasets. In the point target phantom image beamformed from inferred channel data, spatial aliasing artifacts attributed to array pitch doubling were found to be reduced by up to 10 dB. For carotid imaging, our proposed approach yielded a lumen-to-tissue contrast that was on average within 3 dB compared to the full-aperture image, whereas without channel data inferencing, the carotid lumen was obscured. When implemented on an RTX-2080 GPU, the inference time to apply the trained network was 4 ms, which favors real-time imaging. Overall, our technique shows that with the help of deep learning, channel data transfer rates can be effectively halved with limited impact on the resulting image quality.
Collapse
|
15
|
Ramalli A, Boni E, Roux E, Liebgott H, Tortoli P. Design, Implementation, and Medical Applications of 2-D Ultrasound Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2739-2755. [PMID: 35333714 DOI: 10.1109/tuffc.2022.3162419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasound sparse array consists of a sparse distribution of elements over a 2-D aperture. Such an array is typically characterized by a limited number of elements, which in most cases is compatible with the channel number of the available scanners. Sparse arrays represent an attractive alternative to full 2-D arrays that may require the control of thousands of elements through expensive application-specific integrated circuits (ASICs). However, their massive use is hindered by two main drawbacks: the possible beam profile deterioration, which may worsen the image contrast, and the limited signal-to-noise ratio (SNR), which may result too low for some applications. This article reviews the work done for three decades on 2-D ultrasound sparse arrays for medical applications. First, random, optimized, and deterministic design methods are reviewed together with their main influencing factors. Then, experimental 2-D sparse array implementations based on piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) technologies are presented. Sample applications to 3-D (Doppler) imaging, super-resolution imaging, photo-acoustic imaging, and therapy are reported. The final sections discuss the main shortcomings associated with the use of sparse arrays, the related countermeasures, and the next steps envisaged in the development of innovative arrays.
Collapse
|
16
|
Wei L, Boni E, Ramalli A, Fool F, Noothout E, van der Steen AFW, Verweij MD, Tortoli P, De Jong N, Vos HJ. Sparse 2-D PZT-on-PCB Arrays With Density Tapering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2798-2809. [PMID: 36067108 DOI: 10.1109/tuffc.2022.3204118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and reception strategies. To test the concept of sparse spiral array imaging, we have designed, realized, and characterized two prototype probes designed at 2.5-MHz low-frequency (LF) and 5-MHz high-frequency (HF) center frequencies. Both probes share the same electronic design, based on piezoelectric ceramics and rapid prototyping with printed circuit board substrates to wire the elements to external connectors. Different center frequencies were achieved by adjusting the piezoelectric layer thickness. The LF and HF prototype probes had 88% and 95% of working elements, producing peak pressures of 21 and 96 kPa/V when focused at 5 and 3 cm, respectively. The one-way -3-dB bandwidths were 26% and 32%. These results, together with experimental tests on tissue-mimicking phantoms, show that the probes are viable for volumetric imaging.
Collapse
|
17
|
Fu L, Jokerst J. Interleave-sampled photoacoustic imaging: a doubled and equivalent sampling rate for high-frequency imaging. OPTICS LETTERS 2022; 47:3503-3506. [PMID: 35838713 PMCID: PMC10100578 DOI: 10.1364/ol.464293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
High-frequency photoacoustic (PA) imaging (>20 MHz) requires data acquisition (DAQ) with a commensurately high sampling rate, which leads to hardware challenges and increased costs. We report here a new, to the best of our knowledge, method-interleave-sampled PA imaging-that enables high-frequency imaging with a relatively low sampling rate, e.g., a 41.67-MHz sampling rate with a 30-MHz transducer. This method harnesses two acquisitions at a low sampling rate to effectively double the sampling rate which consequently reduces the frame rate by a factor of two. It modulates the delay of the light pulses and can thus be applied to any PA DAQ system. We perform both phantom and in vivo studies with a 30-MHz transducer. The results demonstrate that interleaved sampling at 41.67 MHz can capture high frequency information above 30 MHz but a conventional 41.67-MHz sampling rate cannot. The axial and lateral resolution are as high as 63 µm and 91 µm via interleaved sampling which are much higher than those of conventional 41.67-MHz sampling (130 µm and 136 µm).
Collapse
Affiliation(s)
- Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jesse Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
- Material Science and Engineering Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
18
|
Wahyulaksana G, Wei L, Schoormans J, Voorneveld J, van der Steen AFW, de Jong N, Vos HJ. Independent Component Analysis Filter for Small Vessel Contrast Imaging During Fast Tissue Motion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2282-2292. [PMID: 35594222 DOI: 10.1109/tuffc.2022.3176742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suppressing tissue clutter is an essential step in blood flow estimation and visualization, even when using ultrasound contrast agents. Blind source separation (BSS)-based clutter filter for high-framerate ultrasound imaging has been reported to perform better in tissue clutter suppression than the conventional frequency-based wall filter and nonlinear contrast pulsing schemes. The most notable BSS technique, singular value decomposition (SVD) has shown compelling results in cases of slow tissue motion. However, its performance degrades when the tissue motion is faster than the blood flow speed, conditions that are likely to occur when imaging the small vessels, such as in the myocardium. Independent component analysis (ICA) is another BSS technique that has been implemented as a clutter filter in the spatiotemporal domain. Instead, we propose to implement ICA in the spatial domain where motion should have less impact. In this work, we propose a clutter filter with the combination of SVD and ICA to improve the contrast-to-background ratio (CBR) in cases where tissue velocity is significantly faster than the flow speed. In an in vitro study, the range of fast tissue motion velocity was 5-25 mm/s and the range of flow speed was 1-12 mm/s. Our results show that the combination of ICA and SVD yields 7-10 dB higher CBR than SVD alone, especially in the tissue high-velocity range. The improvement is crucial for cardiac imaging where relatively fast myocardial motions are expected.
Collapse
|
19
|
Shear Wave Elastography Implementation on a Portable Research Ultrasound System: Initial Results. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ultrasound shear wave elastography (SWE) has emerged as a promising technique that enables the quantitative estimation of soft tissue stiffness. However, its practical implementation is complicated and presents a number of engineering challenges, including high-energy burst transmission, high-frame rate data acquisition and high computational requirements to process huge datasets. Therefore, to date, SWE has only been available for high-end commercial systems or bulk and expensive research platforms. In this work, we present a low-cost, portable and fully configurable 256-channel research system that is able to implement various SWE techniques. We evaluated its transmit capabilities using various push beam patterns and developed algorithms for the reconstruction of tissue stiffness maps. Three different push beam generation methods were evaluated in both homogeneous and heterogeneous experiments using an industry-standard elastography phantom. The results showed that it is possible to implement the SWE modality using a portable and cost-optimized system without significant image quality losses.
Collapse
|
20
|
Cigier A, Varray F, Garcia D. SIMUS: An open-source simulator for medical ultrasound imaging. Part II: Comparison with four simulators. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106774. [PMID: 35398580 DOI: 10.1016/j.cmpb.2022.106774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Computational ultrasound imaging has become a well-established methodology in the ultrasound community. In the accompanying paper (part I), we described a new ultrasound simulator (SIMUS) for MATLAB, which belongs to the Matlab UltraSound Toolbox (MUST). SIMUS can generate pressure fields and radiofrequency RF signals for simulations in medical ultrasound imaging. It works in a harmonic domain and uses far-field and paraxial linear equations. METHODS In this article (part II), we illustrate how SIMUS compares with other ultrasound simulators (Field II, k-Wave, FOCUS, and Verasonics) for a homogeneous medium. We designed different transmit sequences (focused, planar, and diverging wavefronts) and calculated the corresponding 2-D and 3-D (with elevation focusing) RMS pressure fields. RESULTS SIMUS produced pressure fields similar to those of Field II, FOCUS, and k-Wave. The acoustic fields provided by the Verasonics simulator were significantly different from those of SIMUS and k-Wave, although the overall appearance remained consistent. CONCLUSION Our simulations tend to demonstrate that SIMUS is reliable and can be used for realistic medical ultrasound simulations.
Collapse
Affiliation(s)
- Amanda Cigier
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France
| | - François Varray
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| | - Damien Garcia
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| |
Collapse
|
21
|
Fu L, Jin Z, Qi B, Yim W, Wu Z, He T, Jokerst JV. Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the "Scissors" Programming Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1994-2000. [PMID: 35377843 PMCID: PMC9149135 DOI: 10.1109/tuffc.2022.3164371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synchronization is important for photoacoustic (PA) tomography, but some fixed delays between the data acquisition (DAQ) and the light pulse are a common problem degrading imaging quality. Here, we present a simple yet versatile method named "Scissors" to help synchronize ultrasound open platforms (UOPs) for PA imaging. Scissors is a programed function that can cut or add a fixed delay to radio frequency (RF) data and, thus, synchronize it before reconstruction. Scissors applies the programmable metric of UOPs and has several advantages. It is compatible with many setups regardless of the synchronization methods, light sources, transducers, and delays. The synchronization is adjustable in steps reciprocal to the UOPs' sampling rate (20-ns step with a 50-MHz sampling rate). Scissors works in real-time PA imaging, and no extra hardware is needed. We programed Scissors in Vantage UOP (Verasonics, Inc., Kirkland, WA, USA) and then imaged two 30- [Formula: see text] nichrome wires with a 20.2-MHz central frequency transducer. The PA image was severely distorted by an 828-ns delay; over 90% delay was caused by our Q -switch laser. The axial and lateral resolutions are 112 and [Formula: see text], respectively, after using Scissors. We imaged a human finger in vivo, and the imaging quality is tremendously improved after solving the 828-ns delay by using Scissors.
Collapse
|
22
|
An Open Access Chamber Designed for the Acoustic Characterisation of Microbubbles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbubbles are used as contrast agents in clinical ultrasound for Left Ventricular Opacification (LVO) and perfusion imaging. They are also the subject of promising research in therapeutics as a drug delivery mechanism or for sonoporation and co-administration. For maximum efficacy in these applications, it is important to understand the acoustic characteristics of the administered microbubbles. Despite this, there is significant variation in the experimental procedures and equipment used to measure the acoustic properties of microbubble populations. A chamber was designed to facilitate acoustic characterisation experiments and was manufactured using additive manufacturing techniques. The design has been released to allow wider uptake in the research community. The efficacy of the chamber for acoustic characterisation has been explored with an experiment to measure the scattering of SonoVue® microbubbles at the fundamental frequency and second harmonic under interrogation from emissions in the frequency range of 1.6 to 6.4 MHz. The highest overall scattering values were measured at 1.6 MHz and decreased as the frequency increased, a result which is in agreement with previously published measurements. Statistical analysis of the acoustic scattering measurements have been performed and a significant difference, at the 5% significance level, was found between the samples containing contrast agent and the control sample containing only deionised water. These findings validate the proposed design for measuring the acoustic scattering characteristics of ultrasound contrast agents.
Collapse
|
23
|
Chen F, Ye H, Zhang D, Liao H. TypeSeg: A type-aware encoder-decoder network for multi-type ultrasound images co-segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106580. [PMID: 34953278 DOI: 10.1016/j.cmpb.2021.106580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE As a portable and radiation-free imaging modality, ultrasound can be easily used to image various types of tissue structures. It is important to develop a method which supports the multi-type ultrasound images co-segmentation. However, state-of-the-art ultrasound segmentation methods commonly only focus on the single type images or ignore the type-aware information. METHODS To solve the above problem, this work proposes a novel type-aware encoder-decoder network (TypeSeg) for the multi-type ultrasound images co-segmentation. First, we develop a type-aware metric learning module to find an optimum latent feature space where the ultrasound images of the same types are close and that of the different types are separated by a certain margin. Second, depending on the extracted features, a decision module decides whether the input ultrasound images have the common tissue type or not, and the encoder-decoder network produces a segmentation mask accordingly. RESULTS We evaluate the performance of the proposed TypeSeg model on the ultrasound dataset that contains four types of tissues. The proposed TypeSeg model achieves the overall best results with the mean IOU score of 87.51% ± 3.93% for the multi-type ultrasound images. CONCLUSION The experimental results indicate that the proposed method outperforms all the compared state-of-the-art algorithms for the multi-type ultrasound images co-segmentation task.
Collapse
Affiliation(s)
- Fang Chen
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, China.
| | - Haoran Ye
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, China
| |
Collapse
|
24
|
Song J, Zhang Q, Zhou L, Quan Z, Wang S, Liu Z, Fang X, Wu Y, Yang Q, Yin H, Ding M, Yuchi M. Design and Implementation of a Modular and Scalable Research Platform for Ultrasound Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:62-72. [PMID: 34410922 DOI: 10.1109/tuffc.2021.3105691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing attention has been attracted to the research of ultrasound computed tomography (USCT). This article reports the design considerations and implementation details of a novel USCT research system named UltraLucid, which aims to provide a user-friendly platform for researchers to develop new algorithms and conduct clinical trials. The modular design strategy is adopted to make the system highly scalable. A prototype has been assembled in our laboratory, which is equipped with a 2048-element ring transducer, 1024 transmit (TX) channels, 1024 receive (RX) channels, two servers, and a control unit. The prototype can acquire raw data from 1024 channels simultaneously using a modular data acquisition and a transfer system, consisting of 16 excitation and data acquisition (EDAQ) boards. Each EDAQ board has 64 independent TX and RX channels and 4-Gb Ethernet interfaces for raw data transmission. The raw data can be transferred to two servers at a theoretical rate of 64 Gb/s. Both servers are equipped with a 10.9-TB solid-state drive (SSD) array that can store raw data for offline processing. Alternatively, after processing by onboard field-programmable gate arrays (FPGAs), the raw data can be processed online using multicore central processing units (CPUs) and graphics processing units (GPUs) in each server. Through control software running on the host computer, the researchers can configure parameters for transmission, reception, and data acquisition. Novel TX-RX scheme and coded imaging can be implemented. The modular hardware structure and the software-based processing strategy make the system highly scalable and flexible. The system performance is evaluated with phantoms and in vivo experiments.
Collapse
|
25
|
Open-Source FPGA Coprocessor for the Doppler Emulation of Moving Fluids. MICROMACHINES 2021; 12:mi12121549. [PMID: 34945399 PMCID: PMC8705441 DOI: 10.3390/mi12121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Embedded systems are nowadays employed in a wide range of application, and their capability to implement calculation-intensive algorithms is growing quickly and constantly. This result is obtained by the exploitation of powerful embedded processors that are often connected to coprocessors optimized for a particular application. This work presents an open-source coprocessor dedicated to the real-time generation of a synthetic signal that mimics the echoes produced by a moving fluid when investigated by ultrasounds. The coprocessor is implemented in a Field Programmable Gate Array (FPGA) device and integrated in an embedded system. The system can replace the complex and inaccurate flow-rigs employed in laboratorial tests of Doppler ultrasound systems and methods. This paper details the coprocessor and its standard interfaces, and shows how it can be integrated in the wider architecture of an embedded system. Experiments showed its capability to emulate a fluid flowing in a pipe when investigated by an echographic Doppler system.
Collapse
|
26
|
Wei L, Wahyulaksana G, Meijlink B, Ramalli A, Noothout E, Verweij MD, Boni E, Kooiman K, van der Steen AFW, Tortoli P, de Jong N, Vos HJ. High Frame Rate Volumetric Imaging of Microbubbles Using a Sparse Array and Spatial Coherence Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3069-3081. [PMID: 34086570 DOI: 10.1109/tuffc.2021.3086597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volumetric ultrasound imaging of blood flow with microbubbles enables a more complete visualization of the microvasculature. Sparse arrays are ideal candidates to perform volumetric imaging at reduced manufacturing complexity and cable count. However, due to the small number of transducer elements, sparse arrays often come with high clutter levels, especially when wide beams are transmitted to increase the frame rate. In this study, we demonstrate with a prototype sparse array probe and a diverging wave transmission strategy, that a uniform transmission field can be achieved. With the implementation of a spatial coherence beamformer, the background clutter signal can be effectively suppressed, leading to a signal to background ratio improvement of 25 dB. With this approach, we demonstrate the volumetric visualization of single microbubbles in a tissue-mimicking phantom as well as vasculature mapping in a live chicken embryo chorioallantoic membrane.
Collapse
|
27
|
Karzova MM, Yuldashev PV, Khokhlova VA, Nartov FA, Morrison KP, Khokhlova TD. Dual-Use Transducer for Ultrasound Imaging and Pulsed Focused Ultrasound Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2930-2941. [PMID: 33793399 PMCID: PMC8443157 DOI: 10.1109/tuffc.2021.3070528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pulsed focused ultrasound (pFUS) uses short acoustic pulses delivered at low duty cycle and moderate intensity to noninvasively apply mechanical stress or introduce disruption to tissue. Ultrasound-guided pFUS has primarily been used for inducing cavitation at the focus, with or without contrast agents, to promote drug delivery to tumors. When applied in tandem with contrast agents, pFUS is often administered using an ultrasound imaging probe, which has a small footprint and does not require a large acoustic window. The use of nonlinear pFUS without contrast agents was recently shown to be beneficial for localized tissue disruption, but required higher ultrasound pressure levels than a conventional ultrasound imaging probe could produce. In this work, we present the design of a compact dual-use 1-MHz transducer for ultrasound-guided pFUS without contrast agents. Nonlinear pressure fields that could be generated by the probe, under realistic power input, were simulated using the Westervelt equation. In water, fully developed shocks of 42-MPa amplitude and peak negative pressure of 8 MPa were predicted to form at the focus at 458-W acoustic power or 35% of the maximum reachable power of the transducer. In absorptive soft tissue, fully developed shocks formed at higher power (760 W or 58% of the maximum reachable power) with the shock amplitude of 33 MPa and peak negative pressure of 7.5 MPa. The electronic focus-steering capabilities of the array were evaluated and found to be sufficient to cover a target with dimensions of 19 mm in axial direction and 44 mm in transversal direction.
Collapse
|
28
|
Engelhard S, van Helvert M, Voorneveld J, Bosch JG, Lajoinie GPR, Versluis M, Groot Jebbink E, Reijnen MMPJ. US Velocimetry in Participants with Aortoiliac Occlusive Disease. Radiology 2021; 301:332-338. [PMID: 34427462 DOI: 10.1148/radiol.2021210454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The accurate quantification of blood flow in aortoiliac arteries is challenging but clinically relevant because local flow patterns can influence atherosclerotic disease. Purpose To investigate the feasibility and clinical application of two-dimensional blood flow quantification using high-frame-rate contrast-enhanced US (HFR-CEUS) and particle image velocimetry (PIV), or US velocimetry, in participants with aortoiliac stenosis. Materials and Methods In this prospective study, participants with a recently diagnosed aortoiliac stenosis underwent HFR-CEUS measurements of the pre- and poststenotic vessel segments (August 2018 to July 2019). Two-dimensional quantification of blood flow was achieved by performing PIV analysis, which was based on pairwise cross-correlation of the HFR-CEUS images. Visual inspection of the entire data set was performed by five observers to evaluate the ability of the technique to enable adequate visualization of blood flow. The contrast-to-background ratio and average vector correlation were calculated. In two participants who showed flow disturbances, the flow complexity and vorticity were calculated. Results Thirty-five participants (median age, 67 years; age range, 56-84 years; 22 men) were included. Visual scoring showed that flow quantification was achieved in 41 of 42 locations. In 25 locations, one or multiple issues occurred that limited optimal flow quantification, including loss of correlation during systole (n = 12), shadow regions (n = 8), a short vessel segment in the image plane (n = 7), and loss of contrast during diastole (n = 5). In the remaining 16 locations, optimal quantification was achieved. The contrast-to-background ratio was higher during systole than during diastole (11.0 ± 2.9 vs 6.9 ± 3.4, respectively; P < .001), whereas the vector correlation was lower (0.58 ± 0.21 vs 0.47 ± 0.13; P < .001). The flow complexity and vorticity were high in regions with disturbed flow. Conclusion Blood flow quantification with US velocimetry is feasible in patients with an aortoiliac stenosis, but several challenges must be overcome before implementation into clinical practice. Clinical trial registration no. NTR6980 © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Stefan Engelhard
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Majorie van Helvert
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Jason Voorneveld
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Johan G Bosch
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Guillaume P R Lajoinie
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Michel Versluis
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Erik Groot Jebbink
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Michel M P J Reijnen
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| |
Collapse
|
29
|
Guidi F, Tortoli P. Real-Time High Frame Rate Color Flow Mapping System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2193-2201. [PMID: 33690116 DOI: 10.1109/tuffc.2021.3064612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plane wave (PW) transmission (TX) can be profitably used to improve the performance of color flow mapping (CFM) systems by increasing the autocorrelation ensemble length (EL) and/or the frame rate (FR). Although high-end scanners tend to include imaging schemes using PW TX and parallel receive beams, high frame rate (HFR) CFM has been so far experimentally implemented mostly through research platforms that transmit PWs and beamform/process the received channel data off-line. In this article, full real-time implementation of PW CFM with continuous-time clutter filtering and extended FR/EL is reported. The field-programmable gate arrays (FPGAs) and digital signal processors (DSPs) onboard the ULA-OP 256 research scanner were programmed to perform high-speed parallel beamforming and autocorrelation-based CFM processing, respectively. Different strategies were tested, in which the TX of PWs for CFM is either continuous or interleaved with the TX of packets of B-mode pulses. A fourth-order Chebyshev continuous-time high-pass filter with programmable cutoff frequency was implemented and its clutter rejection performance was positively compared with that obtained when operating on packet data. CFM FRs up to 575 were obtained. The possibility of programming the autocorrelation EL up to 64 permitted to detect flow with high sensitivity and accuracy (average relative errors down to 0.4% ± 8.4%). In vivo HFR movies are presented, showing the dynamics of flow in the common carotid artery, which highlight the presence of secondary flow components.
Collapse
|
30
|
Mazierli D, Ramalli A, Boni E, Guidi F. Architecture for an Ultrasound Advanced Open Platform With an Arbitrary Number of Independent Channels. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:486-496. [PMID: 33956633 DOI: 10.1109/tbcas.2021.3077664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasound open platforms are programmable and flexible tools for the development and test of novel methods. In most cases, they embed the electronics for the independent control of (maximum) 256 probe elements. However, a higher number of channels is needed for the control of 2-D array probes. This paper presents a system architecture that, through the hardware and software synchronization of multiple ULA-OP 256 scanners, may implement advanced open platforms with an arbitrary number of channels. The proposed solution needs a single personal computer, maintains real-time features, and preserves portability. A prototype demonstrator, composed of two ULA-OP 256 scanners connected to 512 elements of a matrix array, was implemented and tested according to different channel configurations. Experiments performed under MATLAB control confirmed that by doubling the number of elements (from 256 to 512) the signal-to-noise and contrast ratios improve by 9 dB and 3 dB, respectively. Furthermore, as a full 512-channel scanner, the demonstrator can produce real-time B-mode images at 18 Hz, high enough for probe positioning during acquisitions. Also, the demonstrator permitted the implementation of a new high frame rate, bi-plane, triplex modality. All probe elements are excited to simultaneously produce two planar, perpendicular diverging waves. Each scanner independently processes the echoes received by the 256 connected elements to beamform 1300 frames per second. For each insonified plane, good quality morphological (B-mode), qualitative (color flow-), and quantitative (spectral-) Doppler images are finally shown in real-time by a dedicated interface.
Collapse
|
31
|
Ramalli A, Boni E, Giangrossi C, Mattesini P, Dallai A, Liebgott H, Tortoli P. Real-Time 3-D Spectral Doppler Analysis With a Sparse Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1742-1751. [PMID: 33444135 DOI: 10.1109/tuffc.2021.3051628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.
Collapse
|
32
|
Lai TY, Averkiou MA. Linear Signal Cancellation of Nonlinear Pulsing Schemes in a Verasonics Research Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1721-1728. [PMID: 33428569 PMCID: PMC8142865 DOI: 10.1109/tuffc.2021.3050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is a real-time imaging technique that allows the visualization of organ and tumor microcirculation by utilizing the nonlinear response of microbubbles. Nonlinear pulsing schemes are used exclusively in CEUS imaging modes in modern scanners. One important aspect of nonlinear pulsing schemes is the near-complete elimination of the linear signals that originate from tissue. Up until now, no study has investigated the performance of Verasonics scanners in eliminating the linear signals during CEUS and, by extension, the optimal pulsing sequences for performing CEUS. The aim of this article was to investigate linear signal cancellation of the Verasonics scanner performing nonlinear pulsing schemes with two different probes (L7-4 linear array and C5-2 convex array). We have considered two pulsing schemes: pulse inversion (PI) and amplitude modulation (AM). We have also compared our results from the Verasonics scanner with a clinical scanner (Philips iU22). We found that the linear signal cancellation of the transmitted pulse by Verasonics scanner was ~40 dB in AM mode and ~30 dB in PI mode when operated at 0.06 MI. The linear signal cancellation performance of Verasonics scanner was comparable with Philips iU22 scanner in focused AM mode and on average 3 dB better than Philips iU22 scanner in focused PI mode.
Collapse
|
33
|
Bottenus N, Byram BC, Hyun D. Histogram Matching for Visual Ultrasound Image Comparison. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1487-1495. [PMID: 33147144 PMCID: PMC8136614 DOI: 10.1109/tuffc.2020.3035965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The widespread development of new ultrasound image formation techniques has created a need for a standardized methodology for comparing the resulting images. Traditional methods of evaluation use quantitative metrics to assess the imaging performance in specific tasks, such as point resolution or lesion detection. Quantitative evaluation is complicated by unconventional new methods and nonlinear transformations of the dynamic range of data and images. Transformation-independent image metrics have been proposed for quantifying task performance. However, clinical ultrasound still relies heavily on visualization and qualitative assessment by expert observers. We propose the use of histogram matching to better assess differences across image formation methods. We briefly demonstrate the technique using a set of sample beamforming methods and discuss the implications of such image processing. We present variations of histogram matching and provide code to encourage the application of this method within the imaging community.
Collapse
|
34
|
Chen Q, Song H, Yu J, Kim K. Current Development and Applications of Super-Resolution Ultrasound Imaging. SENSORS 2021; 21:s21072417. [PMID: 33915779 PMCID: PMC8038018 DOI: 10.3390/s21072417] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Abnormal changes of the microvasculature are reported to be key evidence of the development of several critical diseases, including cancer, progressive kidney disease, and atherosclerotic plaque. Super-resolution ultrasound imaging is an emerging technology that can identify the microvasculature noninvasively, with unprecedented spatial resolution beyond the acoustic diffraction limit. Therefore, it is a promising approach for diagnosing and monitoring the development of diseases. In this review, we introduce current super-resolution ultrasound imaging approaches and their preclinical applications on different animals and disease models. Future directions and challenges to overcome for clinical translations are also discussed.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hyeju Song
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Jaesok Yu
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
- DGIST Robotics Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Correspondence: (J.Y.); (K.K.)
| | - Kang Kim
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (J.Y.); (K.K.)
| |
Collapse
|
35
|
Xu X, Wala SA, Vishwa A, Shen J, K D, Devi S, Chandak A, Dixit S, Granata E, Pithadia S, Nimran V, Oswal S. A Programmable Platform for Accelerating the Development of Smart Ultrasound Transducer Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1296-1304. [PMID: 33275578 DOI: 10.1109/tuffc.2020.3042472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
During the COVID-19 pandemic, an ultraportable ultrasound smart probe has proven to be one of the few practical diagnostic and monitoring tools for doctors who are fully covered with personal protective equipment. The real-time, safety, ease of sanitization, and ultraportability features of an ultrasound smart probe make it extremely suitable for diagnosing COVID-19. In this article, we discuss the implementation of a smart probe designed according to the classic architecture of ultrasound scanners. The design balanced both performance and power consumption. This programmable platform for an ultrasound smart probe supports a 64-channel full digital beamformer. The platform's size is smaller than 10 cm ×5 cm. It achieves a 60-dBFS signal-to-noise ratio (SNR) and an average power consumption of ~4 W with 80% power efficiency. The platform is capable of achieving triplex B-mode, M-mode, color, pulsed-wave Doppler mode imaging in real time. The hardware design files are available for researchers and engineers for further study, improvement or rapid commercialization of ultrasound smart probes to fight COVID-19.
Collapse
|
36
|
Allevato G, Hinrichs J, Rutsch M, Adler JP, Jager A, Pesavento M, Kupnik M. Real-Time 3-D Imaging Using an Air-Coupled Ultrasonic Phased-Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:796-806. [PMID: 32746193 DOI: 10.1109/tuffc.2020.3005292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present an air-coupled ultrasonic imaging system based on a 40-kHz 8×8 phased-array for 3-D real-time localization of multiple objects in the far-field. By attaching a waveguide to the array, the effective interelement spacing is reduced to half wavelength. This enables grating lobe-free transmit and receive beamforming with a uniform rectangular array of efficient low-cost transducers. The system further includes custom transceiver electronics, an field programmable gate array (FPGA) system-on-chip and a PC for GPU accelerated frequency domain signal processing, consisting of matched filtering, conventional beamforming, and envelope extraction using Nvidia Compute Unified Device Architecture (CUDA) and OpenGL for visualization. The uniform rectangular layout allows utilizing multiple transmit and receive methods, known from medical imaging applications. Thus, the system is dynamically adaptable to maximize the frame rate or detection range. One implemented method demonstrates the real-time capability by transmitting a hemispherical pulse (HP) with a single transducer to irradiate the surroundings simultaneously, whereas all transducers are used for echo reception. The imaging properties, such as axial and lateral resolution, field of view and range of view, are characterized in an anechoic chamber. The object localization is validated for a horizontal and vertical field of view of ±80° and a range of view of 0.5-3 m with 29 frames/s. Using the same system, a comparison between the HP method and the dynamic transmit beamforming method, which transmits multiple sequential beamformed pulses for long-range localization, is provided.
Collapse
|
37
|
Giangrossi C, Meacci V, Ricci S, Matera R, Boni E, Dallai A, Tortoli P. Virtual Real-Time for High PRF Multiline Vector Doppler on ULA-OP 256. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:624-631. [PMID: 32813652 DOI: 10.1109/tuffc.2020.3017940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recent development of high-frame-rate (HFR) imaging/Doppler methods based on the transmission of plane or diverging waves has proposed new challenges to echographic data management and display. Due to the huge amount of data that need to be processed at very high speed, the pulse repetition frequency (PRF) is typically limited to hundreds hertz or few kilohertz. In Doppler applications, a PRF limitation may result unacceptable since it inherently translates to a corresponding limitation in the maximum detectable velocity. In this article, the ULA-OP 256 implementation of a novel ultrasound modality, called virtual real-time (VRT), is described. First, for a given HFR RT modality, the scanner displays the processed results while saving channel data into an internal buffer. Then, ULA-OP 256 switches to VRT mode, according to which the raw data stored in the buffer are immediately reprocessed by the same hardware used in RT. In the two phases, the ULA-OP 256 calculation power can be differently distributed to increase the acquisition frame rate or the quality of processing results. VRT was here used to extend the PRF limit in a multiline vector Doppler (MLVD) application. In RT, the PRF was maximized at the expense of the display quality; in VRT, data were reprocessed at a lower rate in a high-quality display format, which provides more detailed flow information. Experiments are reported in which the MLVD technique is shown capable of working at 16-kHz PRF, so that flow jet velocities higher up to 3 m/s can be detected.
Collapse
|
38
|
Perrot V, Polichetti M, Varray F, Garcia D. So you think you can DAS? A viewpoint on delay-and-sum beamforming. ULTRASONICS 2021; 111:106309. [PMID: 33360053 DOI: 10.1016/j.ultras.2020.106309] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Delay-and-sum (DAS) is the most widespread digital beamformer in high-frame-rate ultrasound imaging. Its implementation is simple and compatible with real-time applications. In this viewpoint article, we describe the fundamentals of DAS beamforming. The underlying theory and numerical approach are detailed so that users can be aware of its functioning and limitations. In particular, we discuss the importance of the f-number and speed of sound on image quality, and propose one solution to set their values from a physical viewpoint. We suggest determining the f-number from the directivity of the transducer elements and the speed of sound from the phase dispersion of the delayed signals. Simplified Matlab codes are provided for the sake of clarity and openness. The effect of the f-number and speed of sound on the lateral resolution and contrast-to-noise ratio was investigated in vitro and in vivo. If not properly preset, these two factors had a substantial negative impact on standard metrics of image quality (namely CNR and FWHM). When beamforming with DAS in vitro or in vivo, it is recommended to optimize these parameters in order to use it wisely and prevent image degradation.
Collapse
Affiliation(s)
- Vincent Perrot
- CREATIS, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon, France
| | - Maxime Polichetti
- CREATIS, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon, France
| | - François Varray
- CREATIS, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon, France
| | - Damien Garcia
- CREATIS, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon, France.
| |
Collapse
|
39
|
Chee AJY, Ishii T, Yiu BYS, Yu ACH. Helical toroid phantom for 3D flow imaging investigations. Phys Med Biol 2021; 66:045029. [PMID: 33586671 DOI: 10.1088/1361-6560/abda99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The medical physics community has hitherto lacked an effective calibration phantom to holistically evaluate the performance of three-dimensional (3D) flow imaging techniques. Here, we present the design of a new omnidirectional, three-component (3-C) flow phantom whose lumen is consisted of a helical toroid structure (4 mm lumen diameter; helically winded for 5 revolutions over a torus with 10 mm radius; 5 mm helix radius). This phantom's intraluminal flow trajectory embraces all combinations of x, y, and z directional components, as confirmed using computational fluid dynamics (CFD) simulations. The phantom was physically fabricated via lost-core casting with polyvinyl alcohol cryogel (PVA) as the tissue mimic. 3D ultrasound confirmed that the phantom lumen expectedly resembled a helical toroid geometry. Pulsed Doppler measurements showed that the phantom, when operating under steady flow conditions (3 ml s-1 flow rate), yielded flow velocity magnitudes that agreed well with those derived from CFD at both the inner torus (-47.6 ± 5.7 versus -52.0 ± 2.2 cm s-1; mean ± 1 S.D.) and the outer torus (49.5 ± 4.2 versus 48.0 ± 1.7 cm s-1). Additionally, 3-C velocity vectors acquired from multi-angle pulsed Doppler showed good agreement with CFD-derived velocity vectors (<7% and 10° difference in magnitude and flow angle, respectively). Ultrasound color flow imaging further revealed that the phantom's axial flow pattern was aligned with the CFD-derived flow profile. Overall, the helical toroid phantom has strong potential as an investigative tool in 3D flow imaging innovation endeavors, such as the development of flow vector estimators and visualization algorithms.
Collapse
Affiliation(s)
- Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, Canada
| | | | | | | |
Collapse
|
40
|
Pinkert MA, Hall TJ, Eliceiri KW. Challenges of conducting quantitative ultrasound with a multimodal optical imaging system. Phys Med Biol 2021; 66:035008. [PMID: 33171448 PMCID: PMC8349544 DOI: 10.1088/1361-6560/abc93c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-frequency quantitative ultrasound is a potential non-invasive source of imaging cell-tissue scale biomarkers for major diseases such as heart disease, cancer, and preterm birth. However, one of the barriers to developing such biomarkers is that it is labor-intensive to compare quantitative ultrasound images to optical images of the tissue structure. We have previously developed a multiscale imaging system that can obtain registered qualitative ultrasound and optical images, but there are further technical challenges to obtaining quantitative data: System-specific details of obtaining and processing data with Verasonics high-frequency transducers; the need for high-frequency reference phantoms; and off-axis clutter from imaging above a glass coverslip. This paper provides a characterization of the Verasonics ultrasound system with the 18.5 MHz L22-14v and 28.5 MHz L38-22v transducers, describes the construction of high-frequency reference phantoms, and details methods for reducing off-axis clutter. The paper features a demonstration multiscale image of a wild type mouse mammary gland that incorporates quantitative ultrasound with both transducers and second harmonic generation microscopy. These advances demonstrate a way to obtain, on a single system with a cohesive and integrated pipeline, quantitative ultrasound data that is correlated with optical imaging without the need for extensive sample preparation.
Collapse
Affiliation(s)
- Michael A Pinkert
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States of America
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, United States of America
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Timothy J Hall
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Kevin W Eliceiri
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States of America
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, United States of America
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, United States of America
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, United States of America
| |
Collapse
|
41
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
43
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Ahmed R, Doyley MM. Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2057-2068. [PMID: 32746171 PMCID: PMC7590368 DOI: 10.1109/tuffc.2020.2998979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Single-track location shear wave elastography (STL-SWEI) is robust against speckle-induced noise in shear wave speed (SWS) estimates; however, it is not immune to other incoherent sources of noise (such as electronic noise) that increases the variance in SWS estimates. Although estimation averaging enabled by parallel receive beamforming adequately suppresses these noise sources, these beamforming techniques often rely on broad transmit beams (plane or diverging). While broad beam approaches, such as plane-wave imaging, are becoming ubiquitous in research ultrasound systems, clinical systems usually employ focused transmit beams due to compatibility with hardware beamforming and deeper penetration. Consequently, improving the noise robustness of focused transmit-based STL-SWEI may enable easier translation to clinical scenarios. In this article, we experimentally evaluated the performance of parallel beamforming for STL-SWEI using fixed or multiple transmit focus. By imaging tissue-mimicking phantoms, we found that parallel beamforming improved the focal zone elastographic signal-to-noise ratio (SNRe) by 40.9%. For a receive line spacing equivalent to transducer pitch, averaging estimates from three parallel lines produced peak SNRe at the focal zone (25 mm), while, at the shallower regions (< 20 mm), a larger number of parallel lines (>7) were needed. Increasing the beamforming line density by a factor of 8 increased the focal zone SNRe only by 13.2%. When SWS quantification was desirable at a fixed depth (such as within the push focal depth), using a deeper tracking focal zone enabled higher parallel line count and improved the peak SNRe by 33%. The multifocusing strategy produced a lower SNRe than the single-focus configurations. For a fixed tracking focal zone, a depth-dependent averaging based on the simulated transmit intensity adequately accounted for the transmit beamwidth. The results in this work demonstrated that STL-SWEI can be implemented using focused transmit beams with robust noise-suppression capability.
Collapse
|
45
|
Wu Y, Zhang HK, Kang J, Boctor EM. An economic photoacoustic imaging platform using automatic laser synchronization and inverse beamforming. ULTRASONICS 2020; 103:106098. [PMID: 32105781 PMCID: PMC7418056 DOI: 10.1016/j.ultras.2020.106098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 05/02/2023]
Abstract
We present a proof-of-concept of an automatic integration of photoacoustic (PA) imaging on clinical ultrasound (US) imaging platforms. Here we tackle two critical challenges: the laser synchronization and the inaccessibility to the beamformer core embedded in commercial US imaging platform. In particular, the line trigger frequency (LTF) estimation and the asynchronous synthetic aperture inverse beamforming (ASAIB) were developed and evaluated in both k-Wave simulation and phantom experiment. The proposed method is an economical solution to enable PA imaging on a greater number of US equipment to further thrive the PA imaging research community.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haichong K Zhang
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeeun Kang
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA; Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Emad M Boctor
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA; Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
46
|
Jensen JA, Ommen ML, Oygard SH, Schou M, Sams T, Stuart MB, Beers C, Thomsen EV, Larsen NB, Tomov BG. Three-Dimensional Super-Resolution Imaging Using a Row-Column Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:538-546. [PMID: 31634831 DOI: 10.1109/tuffc.2019.2948563] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A 3-D super-resolution (SR) pipeline based on data from a row-column (RC) array is presented. The 3-MHz RC array contains 62 rows and 62 columns with a half wavelength pitch. A synthetic aperture (SA) pulse inversion sequence with 32 positive and 32 negative row emissions is used for acquiring volumetric data using the SARUS research ultrasound scanner. Data received on the 62 columns are beamformed on a GPU for a maximum volume rate of 156 Hz when the pulse repetition frequency is 10 kHz. Simulated and 3-D printed point and flow microphantoms are used for investigating the approach. The flow microphantom contains a 100- [Formula: see text] radius tube injected with the contrast agent SonoVue. The 3-D processing pipeline uses the volumetric envelope data to find the bubble's positions from their interpolated maximum signal and yields a high resolution in all three coordinates. For the point microphantom, the standard deviation on the position is (20.7, 19.8, 9.1) [Formula: see text]. The precision estimated for the flow phantom is below [Formula: see text] in all three coordinates, making it possible to locate structures on the order of a capillary in all three dimensions. The RC imaging sequence's point spread function has a size of 0.58 × 1.05 × 0.31 mm3 ( 1.17λ×2.12λ×0.63λ ), so the possible volume resolution is 28900 times smaller than for SA RC B-mode imaging.
Collapse
|
47
|
Hamelmann P, Vullings R, Kolen AF, Bergmans JWM, van Laar JOEH, Tortoli P, Mischi M. Doppler Ultrasound Technology for Fetal Heart Rate Monitoring: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:226-238. [PMID: 31562079 DOI: 10.1109/tuffc.2019.2943626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fetal well-being is commonly assessed by monitoring the fetal heart rate (fHR). In clinical practice, the de facto standard technology for fHR monitoring is based on the Doppler ultrasound (US). Continuous monitoring of the fHR before and during labor is performed using a US transducer fixed on the maternal abdomen. The continuous fHR monitoring, together with simultaneous monitoring of the uterine activity, is referred to as cardiotocography (CTG). In contrast, for intermittent measurements of the fHR, a handheld Doppler US transducer is typically used. In this article, the technology of Doppler US for continuous fHR monitoring and intermittent fHR measurements is described, with emphasis on fHR monitoring for CTG. Special attention is dedicated to the measurement environment, which includes the clinical setting in which fHR monitoring is commonly performed. In addition, to understand the signal content of acquired Doppler US signals, the anatomy and physiology of the fetal heart and the surrounding maternal abdomen are described. The challenges encountered in these measurements have led to different technological strategies, which are presented and critically discussed, with a focus on the US transducer geometry, Doppler signal processing, and fHR extraction methods.
Collapse
|
48
|
Adams C. HIFU Power Monitoring Using Combined Instantaneous Current and Voltage Measurement. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:239-247. [PMID: 31514135 PMCID: PMC7030945 DOI: 10.1109/tuffc.2019.2941185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During high-intensity focused ultrasound (HIFU) therapy, it is important that the electrical power delivered to the transducer is monitored to avoid underexposure or overexposure, ensure patient safety, and to protect the transducer itself. Due to ease of measurement, the transducer's potential difference may be as an indicator of power delivery. However, even when a transducer's complex impedance is well characterized at small amplitudes and matching networks are used, voltage-only (VO) monitoring cannot account for the presence of drive waveform distortion, changes to the acoustic path, or damage to the transducer. In this study, combined current and voltage (CCV) is proposed as a magnetic resonance imaging (MRI)-compatible, miniature alternative to bidirectional power couplers, which is compatible with switched amplifiers. For CCV power measurement, current probe data were multiplied by the voltage waveform and integrated in the frequency domain. Transducer efficiency was taken into account to predict acoustic power. The technique was validated with a radiation force balance (RFB). When using a typical HIFU transducer and amplifier, VO predictions and acoustic power had a maximum difference of 20%. However, under the same conditions, CCV only had a maximum difference of 5%. The technique was applied to several lesioning experiments and it was shown that when VO was used as a control between two amplifiers, there was up to a 38% difference in lesion area. This greatly reduced to a maximum of 5% once CCV was used instead. These results demonstrate that CCV can accurately predict real-time electrical power delivery, leading to safer HIFU treatments.
Collapse
Affiliation(s)
- Chris Adams
- Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
49
|
Yu J, Yoon H, Khalifa YM, Emelianov SY. Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:248-257. [PMID: 31545718 PMCID: PMC7008949 DOI: 10.1109/tuffc.2019.2942557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ultrasound imaging using a matrix array allows real-time multi-planar volumetric imaging. To enhance image quality, the matrix array should provide fast volumetric ultrasound imaging with spatially consistent focusing in the lateral and elevational directions. However, because of the significantly increased data size, dealing with massive and continuous data acquisition is a significant challenge. We have designed an imaging acquisition sequence that handles volumetric data efficiently using a single 256-channel Verasonics ultrasound research platform multiplexed with a 1024-element matrix array. The developed sequence has been applied for building an ultrasonic pupilometer. Our results demonstrate the capability of the developed approach for structural visualization of an ex vivo porcine eye and the temporal response of the modeled eye pupil with moving iris at the volume rate of 30 Hz. Our study provides a fundamental ground for researchers to establish their own volumetric ultrasound imaging platform and could stimulate the development of new volumetric ultrasound approaches and applications.
Collapse
|
50
|
Abstract
A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design.
Collapse
|