1
|
Zhang J, Huang C, Lok UW, Dong Z, Liu H, Gong P, Song P, Chen S. Enhancing Row-Column Array (RCA)-Based 3D Ultrasound Vascular Imaging With Spatial-Temporal Similarity Weighting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:297-309. [PMID: 39106128 DOI: 10.1109/tmi.2024.3439615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ultrasound vascular imaging (UVI) is a valuable tool for monitoring the physiological states and evaluating the pathological diseases. Advancing from conventional two-dimensional (2D) to three-dimensional (3D) UVI would enhance the vasculature visualization, thereby improving its reliability. Row-column array (RCA) has emerged as a promising approach for cost-effective ultrafast 3D imaging with a low channel count. However, ultrafast RCA imaging is often hampered by high-level sidelobe artifacts and low signal-to-noise ratio (SNR), which makes RCA-based UVI challenging. In this study, we propose a spatial-temporal similarity weighting (St-SW) method to overcome these challenges by exploiting the incoherence of sidelobe artifacts and noise between datasets acquired using orthogonal transmissions. Simulation, in vitro blood flow phantom, and in vivo experiments were conducted to compare the proposed method with existing orthogonal plane wave imaging (OPW), row-column-specific frame-multiply-and-sum beamforming (RC-FMAS), and XDoppler techniques. Qualitative and quantitative results demonstrate the superior performance of the proposed method. In simulations, the proposed method reduced the sidelobe level by 31.3 dB, 20.8 dB, and 14.0 dB, compared to OPW, XDoppler, and RC-FMAS, respectively. In the blood flow phantom experiment, the proposed method significantly improved the contrast-to-noise ratio (CNR) of the tube by 26.8 dB, 25.5 dB, and 19.7 dB, compared to OPW, XDoppler, and RC-FMAS methods, respectively. In the human submandibular gland experiment, it not only reconstructed a more complete vasculature but also improved the CNR by more than 15 dB, compared to OPW, XDoppler, and RC-FMAS methods. In summary, the proposed method effectively suppresses the side-lobe artifacts and noise in images collected using an RCA under low SNR conditions, leading to improved visualization of 3D vasculatures.
Collapse
|
2
|
Jang D, Yoon H, Kim GD, Hee Song J, Song TK. Design and Evaluation of a Weighted Periodic Sparse Array for Low-Complexity 1-D Phased Array Ultrasound Imaging Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1255-1268. [PMID: 39269796 DOI: 10.1109/tuffc.2024.3460688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A sparse array offers a significant reduction in the complexity of ultrasonic imaging systems by decreasing the number of active elements and associated electrical circuits needed to form a focused beam. Consequently, for 1-D arrays, it has been adopted in the development of miniaturized systems such as portable, handheld, or smartphone-based systems. Previously, we developed an analytic method that can design a pair of 1-D periodic sparse arrays (PSAs) satisfying three specific constraints, which are the array size, desired grating lobe level, and sparseness factor (SF). In this study, we further developed our method by incorporating aperture weighting functions, which take the form of tapered rectangular functions to introduce null points on the beam pattern. These null points effectively suppress grating lobes generated by a matching pair of arrays. The design process commences with determining transmit and receive PSA patterns, followed by deriving corresponding aperture weighting functions. First, aperture functions of a base and weighting arrays are convolved, which is then upsampled to the targeted array size. Finally, the upsampled aperture is convolved to an aperture function of a subarray, resulting in weighted PSAs (wPSAs). Pulsed wave (PW) simulation confirmed improved grating lobe suppression with wPSAs compared to PSAs. Phantom imaging experiments using a 1-D phased array validated the enhanced contrast due to suppressed grating lobes but at the cost of small degradation in lateral resolution. The signal-to-noise ratio (SNR) also gradually declined with the greater SFs, but no significant difference in SNR was observed between wPSAs and PSAs. Finally, in vivo echocardiography imaging highlighted the clinical potential of wPSAs, particularly with high SFs. Overall, these results suggest that wPSAs can effectively enhance contrast compared to PSAs under the given SF or, alternatively, wPSA with greater SFs can achieve comparable image quality to PSAs with lower SFs. In conclusion, the wPSA approach holds promise for further reducing the complexity of ultrasound imaging systems.
Collapse
|
3
|
Lang Y, Jiang Z, Sun L, Tran P, Mossahebi S, Xiang L, Ren L. Patient-specific deep learning for 3D protoacoustic image reconstruction and dose verification in proton therapy. Med Phys 2024; 51:7425-7438. [PMID: 38980065 PMCID: PMC11479840 DOI: 10.1002/mp.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Protoacoustic (PA) imaging has the potential to provide real-time 3D dose verification of proton therapy. However, PA images are susceptible to severe distortion due to limited angle acquisition. Our previous studies showed the potential of using deep learning to enhance PA images. As the model was trained using a limited number of patients' data, its efficacy was limited when applied to individual patients. PURPOSE In this study, we developed a patient-specific deep learning method for protoacoustic imaging to improve the reconstruction quality of protoacoustic imaging and the accuracy of dose verification for individual patients. METHODS Our method consists of two stages: in the first stage, a group model is trained from a diverse training set containing all patients, where a novel deep learning network is employed to directly reconstruct the initial pressure maps from the radiofrequency (RF) signals; in the second stage, we apply transfer learning on the pre-trained group model using patient-specific dataset derived from a novel data augmentation method to tune it into a patient-specific model. Raw PA signals were simulated based on computed tomography (CT) images and the pressure map derived from the planned dose. The reconstructed PA images were evaluated against the ground truth by using the root mean squared errors (RMSE), structural similarity index measure (SSIM) and gamma index on 10 specific prostate cancer patients. The significance level was evaluated by t-test with the p-value threshold of 0.05 compared with the results from the group model. RESULTS The patient-specific model achieved an average RMSE of 0.014 (p < 0.05 ${{{p}}}<{0.05}$ ), and an average SSIM of 0.981 (p < 0.05 ${{{p}}}<{0.05}$ ), out-performing the group model. Qualitative results also demonstrated that our patient-specific approach acquired better imaging quality with more details reconstructed when comparing with the group model. Dose verification achieved an average RMSE of 0.011 (p < 0.05 ${{{p}}}<{0.05}$ ), and an average SSIM of 0.995 (p < 0.05 ${{{p}}}<{0.05}$ ). Gamma index evaluation demonstrated a high agreement (97.4% [p < 0.05 ${{{p}}}<{0.05}$ ] and 97.9% [p < 0.05 ${{{p}}}<{0.05}$ ] for 1%/3 and 1%/5 mm) between the predicted and the ground truth dose maps. Our approach approximately took 6 s to reconstruct PA images for each patient, demonstrating its feasibility for online 3D dose verification for prostate proton therapy. CONCLUSIONS Our method demonstrated the feasibility of achieving 3D high-precision PA-based dose verification using patient-specific deep-learning approaches, which can potentially be used to guide the treatment to mitigate the impact of range uncertainty and improve the precision. Further studies are needed to validate the clinical impact of the technique.
Collapse
Affiliation(s)
- Yankun Lang
- Department of Radiation Oncology Physics, University of Maryland, Baltimore, Maryland, USA
| | - Zhuoran Jiang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Leshan Sun
- Department of Biomedical Engineering and Radiology, University of California, Irnive, California, USA
| | - Phuoc Tran
- Department of Radiation Oncology Physics, University of Maryland, Baltimore, Maryland, USA
| | - Sina Mossahebi
- Department of Radiation Oncology Physics, University of Maryland, Baltimore, Maryland, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering and Radiology, University of California, Irnive, California, USA
| | - Lei Ren
- Department of Radiation Oncology Physics, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Almashakbeh Y, Shamimi H, Callejas A, Rus G. Using torsional wave elastography to evaluate spring pot parameters in skin tumor mimicking phantoms. Sci Rep 2024; 14:16058. [PMID: 38992074 PMCID: PMC11239839 DOI: 10.1038/s41598-024-66621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Estimating the tissue parameters of skin tumors is crucial for diagnosis and effective therapy in dermatology and related fields. However, identifying the most sensitive biomarkers require an optimal rheological model for simulating skin behavior this remains an ongoing research endeavor. Additionally, the multi-layered structure of the skin introduces further complexity to this task. In order to surmount these challenges, an inverse problem methodology, in conjunction with signal analysis techniques, is being employed. In this study, a fractional rheological model is presented to enhance the precision of skin tissue parameter estimation from the acquired signal from torsional wave elastography technique (TWE) on skin tumor-mimicking phantoms for lab validation and the estimation of the thickness of the cancerous layer. An exhaustive analysis of the spring-pot model (SP) solved by the finite difference time domain (FDTD) is conducted. The results of experiments performed using a TWE probe designed and prototyped in the laboratory were validated against ultrafast imaging carried out by the Verasonics Research System. Twelve tissue-mimicking phantoms, which precisely simulated the characteristics of skin tissue, were prepared for our experimental setting. The experimental data from these bi-layer phantoms were measured using a TWE probe, and the parameters of the skin tissue were estimated using inverse problem-solving. The agreement between the two datasets was evaluated by comparing the experimental data obtained from the TWE technique with simulated data from the SP- FDTD model using Pearson correlation, dynamic time warping (DTW), and time-frequency representation. Our findings show that the SP-FDTD model and TWE are capable of determining the mechanical properties of both layers in a bilayer phantom, using a single signal and an inverse problem approach. The ultrafast imaging and the validation of TWE results further demonstrate the robustness and reliability of our technology for a realistic range of phantoms. This fusion of the SP-FDTD model and TWE, as well as inverse problem-solving methods has the potential to have a considerable impact on diagnoses and treatments in dermatology and related fields.
Collapse
Affiliation(s)
- Yousef Almashakbeh
- Department of Allied Engineering Sciences, Facility of Engineering, The Hashemite University, Zarqa, 13133, Jordan.
| | - Hirad Shamimi
- Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Callejas
- Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, 18012, Spain
- Excellence Research Unit, "Modelling Nature" (MNat), Granada, 18071, Spain
| | - Guillermo Rus
- Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, 18012, Spain
- Excellence Research Unit, "Modelling Nature" (MNat), Granada, 18071, Spain
| |
Collapse
|
5
|
Wu X, Lee WN. Row Transmission for High Volume-Rate Ultrasound Imaging With a Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:659-672. [PMID: 38696301 DOI: 10.1109/tuffc.2024.3396269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The widely used Vermon 1024-element matrix array for 3-D ultrasound imaging has three blank rows in the elevational direction, which breaks the elevation periodicity, thus degrading volumetric image quality. To bypass the blank rows in elevation while maintaining the steering capability in azimuth, we proposed a row-transmission (RT) scheme to improve 3-D spatial resolution. Specifically, we divided the full array into four apertures, each with multiple rows along the elevation. Each multirow aperture (MRA) was further divided into subapertures to transmit diverging waves (DWs) sequentially. Coherent DW compounding (CDWC) was realized in azimuth, while the elevation was multielement synthetic aperture (M-SA) imaging by regarding each row as an array of dashed line elements. An in-house spatiotemporal coding strategy, cascaded synthetic aperture (CaSA), was incorporated into the RT scheme as RT-CaSA to increase the signal-to-noise ratio (SNR). We compared the proposed RT with conventional bank-by-bank transmission-reception (Bank) and sparse-random-aperture compounding (SRAC) in a wire phantom and the in vivo human abdominal aorta (AA) to assess the performance of anatomical imaging and aortic wall motion estimation. Phantom results demonstrated superior lateral resolution achieved by our RT scheme (+19.52% and +16.88% versus Bank, +15.32% and +19.72% versus SRAC, in the azimuth-depth and elevation-depth planes, respectively). Our RT-CaSA showed excellent contrast ratios (CRs) (+8.19 and +8.08 dB versus Bank, +6.81 and +5.85 dB versus SRAC, +0.99 and +0.90 dB versus RT) and the highest in vivo aortic wall motion estimation accuracy. The RT scheme was demonstrated to have potential for various matrix array-based 3-D imaging research.
Collapse
|
6
|
Pitman WMK, Xiao D, Yiu BYS, Chee AJY, Yu ACH. Branched Convolutional Neural Networks for Receiver Channel Recovery in High-Frame-Rate Sparse-Array Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:558-571. [PMID: 38564354 DOI: 10.1109/tuffc.2024.3383660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
For high-frame-rate ultrasound imaging, it remains challenging to implement on compact systems as a sparse imaging configuration with limited array channels. One key issue is that the resulting image quality is known to be mediocre not only because unfocused plane-wave excitations are used but also because grating lobes would emerge in sparse-array configurations. In this article, we present the design and use of a new channel recovery framework to infer full-array plane-wave channel datasets for periodically sparse arrays that operate with as few as one-quarter of the full-array aperture. This framework is based on a branched encoder-decoder convolutional neural network (CNN) architecture, which was trained using full-array plane-wave channel data collected from human carotid arteries (59 864 training acquisitions; 5-MHz imaging frequency; 20-MHz sampling rate; plane-wave steering angles between -15° and 15° in 1° increments). Three branched encoder-decoder CNNs were separately trained to recover missing channels after differing degrees of channelwise downsampling (2, 3, and 4 times). The framework's performance was tested on full-array and downsampled plane-wave channel data acquired from an in vitro point target, human carotid arteries, and human brachioradialis muscle. Results show that when inferred full-array plane-wave channel data were used for beamforming, spatial aliasing artifacts in the B-mode images were suppressed for all degrees of channel downsampling. In addition, the image contrast was enhanced compared with B-mode images obtained from beamforming with downsampled channel data. When the recovery framework was implemented on an RTX-2080 GPU, the three investigated degrees of downsampling all achieved the same inference time of 4 ms. Overall, the proposed framework shows promise in enhancing the quality of high-frame-rate ultrasound images generated using a sparse-array imaging setup.
Collapse
|
7
|
Lang Y, Jiang Z, Sun L, Xiang L, Ren L. Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction. Phys Med Biol 2024; 69:10.1088/1361-6560/ad3327. [PMID: 38471184 PMCID: PMC11076107 DOI: 10.1088/1361-6560/ad3327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective. Protoacoustic imaging showed great promise in providing real-time 3D dose verification of proton therapy. However, the limited acquisition angle in protoacoustic imaging induces severe artifacts, which impairs its accuracy for dose verification. In this study, we developed a hybrid-supervised deep learning method for protoacoustic imaging to address the limited view issue.Approach. We proposed a Recon-Enhance two-stage deep learning method. In the Recon-stage, a transformer-based network was developed to reconstruct initial pressure maps from raw acoustic signals. The network is trained in a hybrid-supervised approach, where it is first trained using supervision by the iteratively reconstructed pressure map and then fine-tuned using transfer learning and self-supervision based on the data fidelity constraint. In the enhance-stage, a 3D U-net is applied to further enhance the image quality with supervision from the ground truth pressure map. The final protoacoustic images are then converted to dose for proton verification.Main results. The results evaluated on a dataset of 126 prostate cancer patients achieved an average root mean squared errors (RMSE) of 0.0292, and an average structural similarity index measure (SSIM) of 0.9618, out-performing related start-of-the-art methods. Qualitative results also demonstrated that our approach addressed the limit-view issue with more details reconstructed. Dose verification achieved an average RMSE of 0.018, and an average SSIM of 0.9891. Gamma index evaluation demonstrated a high agreement (94.7% and 95.7% for 1%/3 mm and 1%/5 mm) between the predicted and the ground truth dose maps. Notably, the processing time was reduced to 6 s, demonstrating its feasibility for online 3D dose verification for prostate proton therapy.Significance. Our study achieved start-of-the-art performance in the challenging task of direct reconstruction from radiofrequency signals, demonstrating the great promise of PA imaging as a highly efficient and accurate tool forinvivo3D proton dose verification to minimize the range uncertainties of proton therapy to improve its precision and outcomes.
Collapse
Affiliation(s)
- Yankun Lang
- Department of Radiation Oncology Physics, University of Maryland, Baltimore, Baltimore, MD 21201, United States of America
| | - Zhuoran Jiang
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States of America
| | - Leshan Sun
- Department of Biomedical Engineering and Radiology, University of California, Irvine, Irnive, CA, 92617, United States of America
| | - Liangzhong Xiang
- Department of Biomedical Engineering and Radiology, University of California, Irvine, Irnive, CA, 92617, United States of America
| | - Lei Ren
- Department of Radiation Oncology Physics, University of Maryland, Baltimore, Baltimore, MD 21201, United States of America
| |
Collapse
|
8
|
Jansen LC, Fekkes S, Schwab HM, Lopata RGP. Increasing abdominal aortic aneurysm curvature visibility using 3D dual probe bistatic ultrasound imaging combined with probe translation. ULTRASONICS 2024; 139:107284. [PMID: 38458061 DOI: 10.1016/j.ultras.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
High frame rate ultrasound (US) imaging techniques in 3D are promising tools for capturing abdominal aortic aneurysms (AAAs) over time, however, with the limited number of channel-to-element connections current footprints are small, which limits the field of view. Moreover, the maximal steering angle of the ultrasound beams in transmit and the maximal receptance angle in receive are insufficient for capturing the curvy shape of the AAA. Therefore, an approach is needed towards large arrays. In this study, high frame rate bistatic 3D US data (17 Hz) were acquired with two synchronized matrix arrays positioned at different locations (multi-aperture imaging) using a translation stage to simulate what a larger array with limited channel-to-element connections can potentially achieve. Acquisitions were performed along an AAA shaped phantom with different probe tilting angles (0 up to ± 30°). The performance of different multi-aperture configurations was quantified using the generalized contrast-to-noise ratio of the wall and lumen (gCNR). Furthermore, a parametric model of the multi-aperture system was used to estimate in which AAA wall regions the contrast is expected to be high. This was evaluated for AAAs with increasing diameters and curvature. With an eight-aperture 0° probe angle configuration a 69 % increase in field of view was measured in the longitudinal direction compared to the field of view of a single aperture configuration. When increasing the number of apertures from two to eight, the gCNR improved for the upper wall and lower wall by 35 % and 13 % (monostatic) and by 36 % and 13 % (bistatic). Contrast improvements up to 22 % (upper wall) and 12 % (lower wall) are achieved with tilted probe configurations compared to non-tilted configurations. Moreover, with bistatic imaging with tilted probe configurations gCNR improvements up to 4 % (upper wall) and 7 % (lower wall) are achieved compared to monostatic imaging. Furthermore, imaging with a larger inter-probe distance improved the gCNR for a ± 15° probe angle configuration. The gCNR has an expected pattern over time, where the contrast is lower when there is more wall motion (systole) and higher when motion is reduced (diastole). Furthermore, a higher frame rate (45 Hz) yields a lower gCNR, because fewer compound angles are used. The results of the parametric model suggest that a flat array is suitable for imaging AAA shapes with limited curvature, but that it is not suitable for imaging larger AAA shapes with more curvature. According to the model, tilted multi-aperture configurations combined with bistatic imaging can achieve a larger region with high contrast compared to non-tilted configurations. The findings of the model are in agreement with experimental findings. To conclude, this study demonstrates the vast improvements in field of view and AAA wall visibility that a large, sparsely populated 3D array can potentially achieve when imaging AAAs compared to single or dual aperture imaging. In the future, larger arrays, less thermal noise, more steering, and more channel-to-element connections combined with carefully chosen orientations of (sub-) apertures will likely advance 3D imaging of AAAs.
Collapse
Affiliation(s)
- Larissa C Jansen
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Stein Fekkes
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans-Martin Schwab
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Richard G P Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
9
|
Wang N, Qiang Y, Qiu C, Chen Y, Wang X, Pan Y, Liu R, Wu W, Zheng H, Qiu W, Zhang Z. A Multiplexed 32 × 32 2D Matrix Array Transducer for Flexible Sub-Aperture Volumetric Ultrasound Imaging. IEEE Trans Biomed Eng 2024; 71:831-840. [PMID: 37756181 DOI: 10.1109/tbme.2023.3319513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.
Collapse
|
10
|
Qiang Y, Wang X, Liu R, Han X, Zheng H, Qiu W, Zhang Z. Sub-aperture ultrafast volumetric ultrasound imaging for fully sampled dual-mode matrix array. ULTRASONICS 2024; 136:107172. [PMID: 37788535 DOI: 10.1016/j.ultras.2023.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
Fully sampled dual-mode matrix array ultrasound transducer is capable of performing imaging and therapeutic ultrasound in three dimensions (3D). It is a promising tool for many clinical applications because of its precise multi-focus therapy with imaging guidance by itself. Our team previously designed a 256-element fully sampled dual-mode matrix array transducer, while its imaging quality needs to be further improved. In this work, we propose a high-contrast sub-aperture volumetric imaging strategy to improve the imaging quality of the dual-mode matrix array. We first analyzed the effect of various parameters of sub-aperture imaging on the imaging quality by Field II. Based on the optimized parameters, we compared the resolution and signal to noise ratio (SNR) of sub-aperture imaging with those of full aperture imaging on phantoms and rabbit brain. The experimental results showed the proposed sub-aperture imaging method could obtain a comparable resolution to full aperture imaging. Moreover, the average intensity of noise signal near the wire phantom decreased by about 5 dB and the SNR of tissue phantom image increased by 8 %. The proposed sub-aperture imaging method also enabled clearer and more accurate imaging of the rabbit brain. The obtained results indicate the proposed sub-aperture imaging is a promising method for practical use of a fully sampled dual-mode matrix array for volumetric ultrasound imaging.
Collapse
Affiliation(s)
- Yu Qiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingying Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Xuan Han
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Yoon H, Kim J, Lee K, Song TK. Design and Implementation of Analog-Digital Hybrid Beamformers for Low-Complexity Ultrasound Systems: A Feasibility Study. Bioengineering (Basel) 2023; 11:8. [PMID: 38275576 PMCID: PMC10813642 DOI: 10.3390/bioengineering11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Low-complexity ultrasound systems are increasingly desired for both wearable, point-of-care ultrasound and high-end massive-channel ultrasound for 3-D matrix imaging. However, the imaging capabilities, including spatial resolution and contrast, could suffer as low complexity systems are pursued, which remains as an unresolved tradeoff. To mitigate this limitation, this study revisits the general structures of analog and digital beamformers and introduces a hybrid approach, referred to as analog-digital hybrid beamforming, to implement efficient ultrasound systems. The suggested hybrid beamforming takes two stages sequentially, where the first analog stage partially beamforms M-channel RF signals to N sum-out data (i.e., M-to-N beamforming), and the second digital stage beamforms N partial sums to single final beamformed data (i.e., N-to-1 beamforming). Our approach was systematically designed and implemented with only four major integrated circuits, which was capable of driving full 64-channel transmission and reception. The developed system was demonstrated with a customized 64-channel 1-D phased array using a commercial tissue mimicking phantom. From the phantom imaging results, signal-to-noise ratio, contrast-to-noise ratio, and full beam width at half maximum values were quantitatively evaluated. The demonstrated results indicate that the analog-digital hybrid beamforming can be applied to any type of array for sophisticated 3-D imaging and tiny wearable ultrasound applications.
Collapse
Affiliation(s)
- Heechul Yoon
- School of Electronics and Electrical Engineering, Dankook University, Yongin-si 16890, Republic of Korea;
| | - Junseung Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Kunkyu Lee
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
12
|
Masoumi MH, Kaddoura T, Zemp RJ. Costas Sparse 2-D Arrays for High-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:460-472. [PMID: 37028300 DOI: 10.1109/tuffc.2023.3256339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two-dimensional arrays enable volumetric ultrasound imaging but have been limited to small aperture size and hence low resolution due to the high cost and complexity of fabrication, addressing, and processing associated with large fully addressed arrays. Here, we propose Costas arrays as a gridded sparse 2-D array architecture for volumetric ultrasound imaging. Costas arrays have exactly one element for every row and column, such that the vector displacement between any pair of elements is unique. These properties ensure aperiodicity, which helps eliminate grating lobes. Compared with previously reported works, we studied the distribution of active elements based on an order-256 Costas layout on a wider aperture ( 96 λ×96 λ at 7.5 MHz center frequency) for high-resolution imaging. Our investigations with focused scanline imaging of point targets and cyst phantoms showed that Costas arrays exhibit lower peak sidelobe levels compared with random sparse arrays of the same size and offer comparable performance in terms of contrast compared with Fermat spiral arrays. In addition, Costas arrays are gridded, which could ease the manufacturing and has one element for each row/column, which enables simple interconnection strategies. Compared with state-of-the-art matrix probes, which are commonly 32×32 , the proposed sparse arrays achieve higher lateral resolution and a wider field of view.
Collapse
|
13
|
Peralta L, Mazierli D, Gomez A, Hajnal JV, Tortoli P, Ramalli A. 3-D Coherent Multitransducer Ultrasound Imaging With Sparse Spiral Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:197-206. [PMID: 37022372 DOI: 10.1109/tuffc.2023.3241774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coherent multitransducer ultrasound (CoMTUS) creates an extended effective aperture through the coherent combination of multiple arrays, which results in images with enhanced resolution, extended field-of-view, and higher sensitivity. The subwavelength localization accuracy of the multiple transducers required to coherently beamform the data is achieved by using the echoes backscattered from targeted points. In this study, CoMTUS is implemented and demonstrated for the first time in 3-D imaging using a pair of 256-element 2-D sparse spiral arrays, which keep the channel count low and limit the amount of data to be processed. The imaging performance of the method was investigated using both simulations and phantom tests. The feasibility of free-hand operation is also experimentally demonstrated. Results show that, in comparison with a single dense array system using the same total number of active elements, the proposed CoMTUS system improves spatial resolution (up to ten times) in the direction where both arrays are aligned, contrast-to-noise ratio (CNR; up to 46%), and generalized CNR (gCNR; up to 15%). Overall, CoMTUS shows a narrower main lobe and higher CNR, which results in an increased dynamic range and better target detectability.
Collapse
|
14
|
De Hoop H, Vermeulen M, Schwab HM, Lopata RGP. Coherent Bistatic 3-D Ultrasound Imaging Using Two Sparse Matrix Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:182-196. [PMID: 37027570 DOI: 10.1109/tuffc.2022.3233158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the last decade, many advances have been made in high frame rate 3-D ultrasound imaging, including more flexible acquisition systems, transmit (TX) sequences, and transducer arrays. Compounding multiangle transmits of diverging waves has shown to be fast and effective for 2-D matrix arrays, where heterogeneity between transmits is key in optimizing the image quality. However, the anisotropy in contrast and resolution remains a drawback that cannot be overcome with a single transducer. In this study, a bistatic imaging aperture is demonstrated that consists of two synchronized matrix ( 32×32 ) arrays, allowing for fast interleaved transmits with a simultaneous receive (RX). First, for a single array, the aperture efficiency for high volume rate imaging was evaluated between sparse random arrays and fully multiplexed arrays. Second, the performance of the bistatic acquisition scheme was analyzed for various positions on a wire phantom and was showcased in a dynamic setup mimicking the human abdomen and aorta. Sparse array volume images were equal in resolution and lower in contrast compared to fully multiplexed arrays but can efficiently minimize decorrelation during motion for multiaperture imaging. The dual-array imaging aperture improved the spatial resolution in the direction of the second transducer, reducing the average volumetric speckle size with 72% and the axial-lateral eccentricity with 8%. In the aorta phantom, the angular coverage increased by a factor of 3 in the axial-lateral plane, raising the wall-lumen contrast with 16% compared to single-array images, despite accumulation of thermal noise in the lumen.
Collapse
|
15
|
Tai H, Basavarajappa L, Hoyt K. 3-D H-scan ultrasound imaging of relative scatterer size using a matrix array transducer and sparse random aperture compounding. Comput Biol Med 2022; 151:106316. [PMID: 36442278 PMCID: PMC9749370 DOI: 10.1016/j.compbiomed.2022.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
H-scan ultrasound (US) is a high-resolution imaging technique for soft tissue characterization. By acquiring data in volume space, H-scan US can provide insight into subtle tissue changes or heterogenous patterns that might be missed using traditional cross-sectional US imaging approaches. In this study, we introduce a 3-dimensional (3-D) H-scan US imaging technology for voxel-level tissue characterization in simulation and experimentation. Using a matrix array transducer, H-scan US imaging was developed to evaluate the relative size of US scattering aggregates in volume space. Experimental data was acquired using a programmable US system (Vantage 256, Verasonics Inc, Kirkland, WA) equipped with a 1024-element (32 × 32) matrix array transducer (Vermon Inc, Tours, France). Imaging was performed using the full array in transmission. Radiofrequency (RF) data sequences were collected using a sparse random aperture compounding technique with 6 different data compounding approaches. Plane wave imaging at five angles was performed at a center frequency of 8 MHz. Scan conversion and attenuation correction were applied. To generate the 3-D H-scan US images, a convolution filter bank (N = 256) was then used to process the RF data sequences and measure the spectral content of the backscattered US signals before volume reconstruction. Preliminary experimental studies were conducted using homogeneous phantom materials embedded with spherical US scatterers of varying diameter, i.e., 27 to 45, 63 to 75, or 106-126 μm. Both simulated and experimental results revealed that 3-D H-scan US images have a low spatial variance when tested with homogeneous phantom materials. Furthermore, H-scan US is considerably more sensitive than traditional B-mode US imaging for differentiating US scatterers of varying size (p = 0.001 and p = 0.93, respectively). Overall, this study demonstrates the feasibility of 3-D H-scan US imaging using a matrix array transducer for tissue characterization in volume space.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
16
|
Jiang Z, Sun L, Yao W, Wu QJ, Xiang L, Ren L. 3D in vivodose verification in prostate proton therapy with deep learning-based proton-acoustic imaging. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9881. [PMID: 36206745 PMCID: PMC9647484 DOI: 10.1088/1361-6560/ac9881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/07/2022] [Indexed: 02/10/2023]
Abstract
Dose delivery uncertainty is a major concern in proton therapy, adversely affecting the treatment precision and outcome. Recently, a promising technique, proton-acoustic (PA) imaging, has been developed to provide real-timein vivo3D dose verification. However, its dosimetry accuracy is limited due to the limited-angle view of the ultrasound transducer. In this study, we developed a deep learning-based method to address the limited-view issue in the PA reconstruction. A deep cascaded convolutional neural network (DC-CNN) was proposed to reconstruct 3D high-quality radiation-induced pressures using PA signals detected by a matrix array, and then derive precise 3D dosimetry from pressures for dose verification in proton therapy. To validate its performance, we collected 81 prostate cancer patients' proton therapy treatment plans. Dose was calculated using the commercial software RayStation and was normalized to the maximum dose. The PA simulation was performed using the open-source k-wave package. A matrix ultrasound array with 64 × 64 sensors and 500 kHz central frequency was simulated near the perineum to acquire radiofrequency (RF) signals during dose delivery. For realistic acoustic simulations, tissue heterogeneity and attenuation were considered, and Gaussian white noise was added to the acquired RF signals. The proposed DC-CNN was trained on 204 samples from 69 patients and tested on 26 samples from 12 other patients. Predicted 3D pressures and dose maps were compared against the ground truth qualitatively and quantitatively using root-mean-squared-error (RMSE), gamma-index (GI), and dice coefficient of isodose lines. Results demonstrated that the proposed method considerably improved the limited-view PA image quality, reconstructing pressures with clear and accurate structures and deriving doses with a high agreement with the ground truth. Quantitatively, the pressure accuracy achieved an RMSE of 0.061, and the dose accuracy achieved an RMSE of 0.044, GI (3%/3 mm) of 93.71%, and 90%-isodose line dice of 0.922. The proposed method demonstrates the feasibility of achieving high-quality quantitative 3D dosimetry in PA imaging using a matrix array, which potentially enables the online 3D dose verification for prostate proton therapy.
Collapse
Affiliation(s)
- Zhuoran Jiang
- Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Weiguang Yao
- Department of Radiation Oncology, University of Maryland, Baltimore, MD, 21201, USA
| | - Q. Jackie Wu
- Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA 92612, USA
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Yociss M, Brown K, Bruce M, Hoyt K. Amplitude modulation and baseband delay-multiply-and-sum beamforming for improved vessel visualization with volumetric contrast-enhanced ultrasound. 2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) 2022:1-4. [DOI: 10.1109/ius54386.2022.9957183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Megan Yociss
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Katherine Brown
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington,Seattle,Washington,USA
| | - Kenneth Hoyt
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| |
Collapse
|
18
|
Wei L, Boni E, Ramalli A, Fool F, Noothout E, van der Steen AFW, Verweij MD, Tortoli P, De Jong N, Vos HJ. Sparse 2-D PZT-on-PCB Arrays With Density Tapering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2798-2809. [PMID: 36067108 DOI: 10.1109/tuffc.2022.3204118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and reception strategies. To test the concept of sparse spiral array imaging, we have designed, realized, and characterized two prototype probes designed at 2.5-MHz low-frequency (LF) and 5-MHz high-frequency (HF) center frequencies. Both probes share the same electronic design, based on piezoelectric ceramics and rapid prototyping with printed circuit board substrates to wire the elements to external connectors. Different center frequencies were achieved by adjusting the piezoelectric layer thickness. The LF and HF prototype probes had 88% and 95% of working elements, producing peak pressures of 21 and 96 kPa/V when focused at 5 and 3 cm, respectively. The one-way -3-dB bandwidths were 26% and 32%. These results, together with experimental tests on tissue-mimicking phantoms, show that the probes are viable for volumetric imaging.
Collapse
|
19
|
Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12:14607. [PMID: 36028542 PMCID: PMC9418177 DOI: 10.1038/s41598-022-18025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, availability, and possibly some contraindications. The development of Ultrasound Localization Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has increased the field-of-view and provided a more precise description of the microvascularisation. In this study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward diagnosis and monitoring in clinic.
Collapse
Affiliation(s)
- Arthur Chavignon
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Vincent Hingot
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cyrille Orset
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France
| | - Denis Vivien
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, CHU Caen, Avenue de la Côte de Nacre, Caen, France
| | - Olivier Couture
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| |
Collapse
|
20
|
He L, Wang B, Wen Z, Li X, Wu D. 3-D High Frequency Ultrasound Imaging by Piezo-Driving a Single-Element Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1932-1942. [PMID: 35050853 DOI: 10.1109/tuffc.2022.3145162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electronic scanning of two-dimensional (2-D) arrays and mechanical or freehand scanning of one-dimensional (1-D) arrays have been mostly utilized for conventional three-dimensional (3-D) ultrasound (US) imaging. However, the development of 2-D arrays and the hardware systems are complicated and expensive, while freehand systems with positioning sensors and mechanical systems are mostly bulky. This article represents a novel scanning strategy for achieving high-quality 3-D US imaging with a high-frequency single-element transducer. A 42-MHz US transducer with a compact structure was designed and fabricated, which was excited in the 2-D vibration by a tubular piezoelectric actuator. A dedicated imaging system was set up and both B-mode and 3-D US imaging of a custom wire phantom have been carried out to evaluate the performance of the proposed transducer. Compared to the results obtained with the motorized linear translation stage, the reconstructed images obtained by the proposed resonance scanning method are accurate, demonstrating the feasibility of 3-D US imaging with a vibrating single-element US transducer.
Collapse
|
21
|
Fu L, Jin Z, Qi B, Yim W, Wu Z, He T, Jokerst JV. Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the "Scissors" Programming Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1994-2000. [PMID: 35377843 PMCID: PMC9149135 DOI: 10.1109/tuffc.2022.3164371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synchronization is important for photoacoustic (PA) tomography, but some fixed delays between the data acquisition (DAQ) and the light pulse are a common problem degrading imaging quality. Here, we present a simple yet versatile method named "Scissors" to help synchronize ultrasound open platforms (UOPs) for PA imaging. Scissors is a programed function that can cut or add a fixed delay to radio frequency (RF) data and, thus, synchronize it before reconstruction. Scissors applies the programmable metric of UOPs and has several advantages. It is compatible with many setups regardless of the synchronization methods, light sources, transducers, and delays. The synchronization is adjustable in steps reciprocal to the UOPs' sampling rate (20-ns step with a 50-MHz sampling rate). Scissors works in real-time PA imaging, and no extra hardware is needed. We programed Scissors in Vantage UOP (Verasonics, Inc., Kirkland, WA, USA) and then imaged two 30- [Formula: see text] nichrome wires with a 20.2-MHz central frequency transducer. The PA image was severely distorted by an 828-ns delay; over 90% delay was caused by our Q -switch laser. The axial and lateral resolutions are 112 and [Formula: see text], respectively, after using Scissors. We imaged a human finger in vivo, and the imaging quality is tremendously improved after solving the 828-ns delay by using Scissors.
Collapse
|
22
|
Garcia D. SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106726. [PMID: 35339918 DOI: 10.1016/j.cmpb.2022.106726] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Computational ultrasound imaging has become a well-established methodology in the ultrasound community. Simulations of ultrasound sequences and images allow the study of innovative techniques in terms of emission strategy, beamforming, and probe design. There is a wide spectrum of software dedicated to ultrasound imaging, each having its specificities in its applications and the numerical method. METHODS We describe in this two-part paper a new ultrasound simulator (SIMUS) for MATLAB, which belongs to the MATLAB UltraSound Toolbox (MUST). The SIMUS software simulates acoustic pressure fields and radiofrequency RF signals for uniform linear or convex probes. SIMUS is an open-source software whose features are 1) ease of use, 2) time-harmonic analysis, 3) pedagogy. The main goal was to offer a comprehensive turnkey tool, along with a detailed theory for pedagogical and research purposes. RESULTS This article describes in detail the underlying linear theory of SIMUS and provides examples of simulated acoustic fields and ultrasound images. The accompanying article (part II) is devoted to the comparison of SIMUS with several software packages: Field II, k-Wave, FOCUS, and the Verasonics simulator. The MATLAB open codes for the simulator SIMUS are distributed under the terms of the GNU Lesser General Public License, and can be downloaded from https://www.biomecardio.com/MUST. CONCLUSIONS The simulations described in this part and in the accompanying paper (Part II) show that SIMUS can be used for realistic simulations in medical ultrasound imaging.
Collapse
Affiliation(s)
- Damien Garcia
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| |
Collapse
|
23
|
Bae S, Kim BH, Alizad A, Fatemi M, Song TK. Experimental Study of Aperiodic Plane Wave Imaging for Ultrafast 3-D Ultrasound Imaging. IEEE Trans Biomed Eng 2022; 69:2679-2690. [PMID: 35180073 PMCID: PMC9620471 DOI: 10.1109/tbme.2022.3152212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although plane wave imaging (PWI) with multiple plane waves (PWs) steered at different angles enables ultrafast three-dimensional (3-D) ultrasonic imaging, there is still a challenging tradeoff between image quality and frame rate. To address this challenge, we recently proposed the aperiodic PWI (APWI) with mathematical analysis and simulation study. In this paper, we demonstrate the feasibility of APWI and evaluate the performance with phantom and in vivo experiments. METHODS APWI with a concentric ring angle pattern (APWI-C) and APWI with a sunflower pattern (APWI-S) are evaluated. For experimental verification of the methods, the experimental results are compared with simulation results in terms of the mainlobe-to-sidelobe ratio. In addition, the performance of APWI is compared with that of conventional PWI by using a commercial phantom. To examine the potential for clinical use of APWI, a gallstone-mimicking phantom study and an in vivo carotid artery experiment are also conducted. RESULTS In the phantom study, the APWI methods provide a contrast ratio approximately 23 dB higher than that of PWI. In a gallstone mimicking experiment, the proposed methods yield 3-D rendered stone images more similar to the real stones than PWI. In the in vivo carotid artery images, APWI reduces the clutter artifacts inside the artery. CONCLUSION Phantom and in vivo studies show that the APWI enhances the contrast without compromising the spatial resolution and frame rate. SIGNIFICANCE This study experimentally demonstrates the feasibility and advantage of APWI for ultrafast 3-D ultrasonic imaging.
Collapse
|
24
|
Hansen-Shearer J, Lerendegui M, Toulemonde M, Tang MX. Ultrafast 3-D Ultrasound Imaging Using Row-Column Array-Specific Frame-Multiply-and-Sum Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:480-488. [PMID: 34705641 DOI: 10.1109/tuffc.2021.3122094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Row-column arrays have been shown to be able to generate 3-D ultrafast ultrasound images with an order of magnitude less independent electronic channels than traditional 2-D matrix arrays. Unfortunately, row-column array images suffer from major imaging artifacts due to high sidelobes, particularly when operating at high frame rates. This article proposes a row-column-specific beamforming technique, for orthogonal plane-wave transmissions, row-column-specific frame multiply and sum (RC-FMAS), that exploits the incoherent nature of certain row-column array artifacts. A series of volumetric images is produced using row or column transmissions of 3-D plane waves. The voxelwise geometric mean of the beamformed volumetric images from each row and column pair is taken prior to compounding, which drastically reduces the incoherent imaging artifacts in the resulting image compared to traditional coherent compounding. The effectiveness of this technique was demonstrated in silico and in vitro, and the results show a significant reduction in sidelobe level with over 16-dB improvement in sidelobe to main-lobe energy ratio. Significantly improved contrast was demonstrated with contrast ratio increased by ~10 dB and generalized contrast-to-noise ratio increased by 158% when using the proposed new method compared to the existing delay and sum during in vitro studies. The new technique allowed for higher quality 3-D imaging while maintaining high frame rate potential.
Collapse
|
25
|
Chavignon A, Heiles B, Hingot V, Orset C, Vivien D, Couture O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans Biomed Eng 2021; 69:2132-2142. [PMID: 34932470 DOI: 10.1109/tbme.2021.3137265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasound Localization Microscopy (ULM) provides images of the microcirculation in-depth in living tissue. However, its implementation in two-dimension is limited by the elevation projection and tedious plane-by-plane acquisition. Volumetric ULM alleviates these issues and can map the vasculature of entire organs in one acquisition with isotropic resolution. However, its optimal implementation requires many independent acquisition channels, leading to complex custom hardware. METHODS In this article, we implemented volumetric ultrasound imaging with a multiplexed 32 x 32 probe driven by a single commercial ultrasound scanner. We propose and compare three different sub-aperture multiplexing combinations for localization microscopy in silico and in vitro with a flow of microbubbles in a canal. Finally, we evaluate the approach for micro-angiography of the rat brain.The "light" combination allows a higher maximal volume rate than the "full" combination while maintaining the field of view and resolution. RESULTS In the rat brain, 100,000 volumes were acquired within 7 min with a dedicated ultrasound sequence and revealed vessels down to 31 m in diameter with flows from 4.3 mm/s to 28.4 mm/s. CONCLUSION This work demonstrates the ability to perform a complete angiography with unprecedented resolution in the living rats brain with a simple and light setup through the intact skull. SIGNIFICANCE We foresee that it might contribute to democratize 3D ULM for both preclinical and clinical studies.
Collapse
|
26
|
Lo WC, Huang YL, Fan CH, Yeh CK. 3-D Ultrafast Ultrasound Imaging of Microbubbles Trapped Using an Acoustic Vortex. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3507-3514. [PMID: 34228623 DOI: 10.1109/tuffc.2021.3095241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing the local concentration of microbubbles (MBs) within the blood flow plays a crucial role in several medical applications, but there are few imaging modalities available for volumetric tracking of the aggregated MBs in real time. Here we describe a device integrating acoustic vortex tweezers (AVTs) and ultrasound plane-wave imaging (PWI) to achieve the goal of controlling the spatial distribution of MBs in blood vessels and simultaneously monitoring this process using the same probe. Experiments were conducted using a 5-MHz 2-D array ultrasound probe (with three cycles of excitation at an acoustic pressure of 2000 kPa) and 1.2- [Formula: see text]-diameter MBs at a flow rate of 20 mm/s. The AVT waveform was produced by modulating the repetition frequency of the transmitted pulse asymmetrically (4 and 8 kHz at the inflow and outflow ends, respectively). In order to simultaneously capture MBs and carry out imaging with the same probe, the asymmetric AVT pulse signal and the ultrasound-imaging pulse signal were arranged in a staggered series, and the imaging was carried out using plane-wave pulses at nine angles (-7° to 7°) in compounded PWI (volume rate: 200 Hz). Microscopy observations showed that freely suspended MBs could indeed be gathered by the asymmetric AVT in the flow field to form an MBs cluster with a spot size of about [Formula: see text], which could resist the flow to remain at a fixed location for about 22 s. After the asymmetric AVT signal and the ultrasound-imaging pulse signal were turned on for 1 s, the ultrasound 3-D image showed that the signal intensity of the MB clusters increased by 13.1 dB ± 2.9 dB in relation to the background area. These results show that the proposed strategy can be used to accumulate flowing MBs at a desired location and to simultaneously observe this phenomenon. This tool could be used in the future to improve the outcomes of MB-related treatments for various diseases.
Collapse
|
27
|
Wei L, Wahyulaksana G, Meijlink B, Ramalli A, Noothout E, Verweij MD, Boni E, Kooiman K, van der Steen AFW, Tortoli P, de Jong N, Vos HJ. High Frame Rate Volumetric Imaging of Microbubbles Using a Sparse Array and Spatial Coherence Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3069-3081. [PMID: 34086570 DOI: 10.1109/tuffc.2021.3086597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volumetric ultrasound imaging of blood flow with microbubbles enables a more complete visualization of the microvasculature. Sparse arrays are ideal candidates to perform volumetric imaging at reduced manufacturing complexity and cable count. However, due to the small number of transducer elements, sparse arrays often come with high clutter levels, especially when wide beams are transmitted to increase the frame rate. In this study, we demonstrate with a prototype sparse array probe and a diverging wave transmission strategy, that a uniform transmission field can be achieved. With the implementation of a spatial coherence beamformer, the background clutter signal can be effectively suppressed, leading to a signal to background ratio improvement of 25 dB. With this approach, we demonstrate the volumetric visualization of single microbubbles in a tissue-mimicking phantom as well as vasculature mapping in a live chicken embryo chorioallantoic membrane.
Collapse
|
28
|
Yociss M, Brown K, Hoyt K. Null Subtraction Beamforming for Improved Vessel Resolution in Volumetric Contrast-Enhanced Ultrasound. 2021 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) 2021:1-4. [DOI: 10.1109/ius52206.2021.9593368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Megan Yociss
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Katherine Brown
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Kenneth Hoyt
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| |
Collapse
|
29
|
Chen Q, Song H, Yu J, Kim K. Current Development and Applications of Super-Resolution Ultrasound Imaging. SENSORS 2021; 21:s21072417. [PMID: 33915779 PMCID: PMC8038018 DOI: 10.3390/s21072417] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Abnormal changes of the microvasculature are reported to be key evidence of the development of several critical diseases, including cancer, progressive kidney disease, and atherosclerotic plaque. Super-resolution ultrasound imaging is an emerging technology that can identify the microvasculature noninvasively, with unprecedented spatial resolution beyond the acoustic diffraction limit. Therefore, it is a promising approach for diagnosing and monitoring the development of diseases. In this review, we introduce current super-resolution ultrasound imaging approaches and their preclinical applications on different animals and disease models. Future directions and challenges to overcome for clinical translations are also discussed.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hyeju Song
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Jaesok Yu
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
- DGIST Robotics Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Correspondence: (J.Y.); (K.K.)
| | - Kang Kim
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (J.Y.); (K.K.)
| |
Collapse
|
30
|
Bernal M, Cunitz B, Rohrbach D, Daigle R. High-frame-rate volume imaging using sparse-random-aperture compounding. Phys Med Biol 2020; 65:175002. [PMID: 32413874 DOI: 10.1088/1361-6560/ab9372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-frame-rate volume imaging (HFR-VI) aims to provide high-quality images with high-temporal information. Despite its potential, HFR-VI translation into clinical applications has been challenging due to the high cost of the equipment required to drive matrix probes with a large number of elements. The goal of this study is to introduce and test sparse-random-aperture compounding (SRAC), a technique that allows use of matrix probes with an ultrasound system that has fewer channels while maintaining high frame rates. Four scanning methods were implemented with a 256-channel system using a 4-to-1 multiplexer and a 3 MHz matrix probe with 1024 elements. These methods used three types of waves, either single-diverging waves (SDW), multiplane-diverging waves (MDW) or wide beams (WB); and were driven using one to four SRAC. All methods were also implemented in a 1024-channel multisystem. The main-lobe-to-side-lobe ratio (MLSLR) and the contrast ratio (CR) were studied using a string phantom and a CIRS phantom, respectively. The results showed an increase in the MLSLR and CR as a function of the number of SRAC. The multisystem provided the best results for the MLSLR. However, four SRAC outperformed the multisystem with respect to CR. The method using SDW provided the highest frame rates (i.e. 1875 and 7500 Hz for four and one SRAC, respectively), however it provided the lowest image quality. The two methods using MDWs showed a good compromise between image quality and frame rate (i.e. 187 to 750 Hz for four and one SRAC). WB provided the best image quality at the expense of frame rate (i.e. 18 to 75 Hz for four and one SRAC). Our results suggest that SRAC in combination with the tested scanning methods can provide a low-channel count alternative for HFR-VI systems and allows a tunable tradeoff between image quality and frame rate guided by the desired application.
Collapse
Affiliation(s)
- Miguel Bernal
- Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|