1
|
Smiseth OA, Rider O, Cvijic M, Valkovič L, Remme EW, Voigt JU. Myocardial Strain Imaging: Theory, Current Practice, and the Future. JACC Cardiovasc Imaging 2025; 18:340-381. [PMID: 39269417 DOI: 10.1016/j.jcmg.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/15/2024]
Abstract
Myocardial strain imaging by echocardiography or cardiac magnetic resonance (CMR) is a powerful method to diagnose cardiac disease. Strain imaging provides measures of myocardial shortening, thickening, and lengthening and can be applied to any cardiac chamber. Left ventricular (LV) global longitudinal strain by speckle-tracking echocardiography is the most widely used clinical strain parameter. Several CMR-based modalities are available and are ready to be implemented clinically. Clinical applications of strain include global longitudinal strain as a more sensitive method than ejection fraction for diagnosing mild systolic dysfunction. This applies to patients suspected of having heart failure with normal LV ejection fraction, to early systolic dysfunction in valvular disease, and when monitoring myocardial function during cancer chemotherapy. Segmental LV strain maps provide diagnostic clues in specific cardiomyopathies, when evaluating LV dyssynchrony and ischemic dysfunction. Strain imaging is a promising modality to quantify right ventricular function. Left atrial strain may be used to evaluate LV diastolic function and filling pressure.
Collapse
Affiliation(s)
- Otto A Smiseth
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.
| | - Oliver Rider
- Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marta Cvijic
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Espen W Remme
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway; The Intervention Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jens-Uwe Voigt
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Nawijn CL, de Bakker JMK, Segers T, Korte CLD, Versluis M, Saris AECM, Lajoinie G. Frequency-Domain Decoding of Cascaded Dual- Polarity Waves for Ultrafast Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:321-337. [PMID: 40031318 DOI: 10.1109/tuffc.2025.3534429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ultrafast plane-wave (PW) ultrasound imaging is a versatile tool that has become increasingly relevant for blood flow imaging using speckle tracking but suffers from a low signal-to-noise ratio (SNR). Cascaded dual-polarity wave (CDW) imaging can improve the SNR by transmitting pulse trains, which are subsequently decoded to recover the imaging resolution. However, the current decoding method (in the time domain) requires a set of two acquisitions, which introduces motion artifacts that result in incorrect speckle tracking at high flow velocities. Here, we evaluate an inverse filtering approach that uses frequency-domain decoding to decode acquisitions independently. Experiments using a disk phantom show that frequency-domain decoding of a four-pulse train achieves an SNR gain of up to 4.2 dB, versus 5.9 dB for conventional decoding. The benefit of frequency-domain decoding for flow quantification is assessed through experiments performed with a rotating disk phantom and a parabolic flow, and through matching linear simulations. Both CDW methods improve the tracking accuracy compared to single PW imaging. Time-domain decoding outperforms frequency-domain decoding in low SNR conditions and low velocities ( m/s), as a result of the higher SNR gain. In contrast, frequency-domain decoding outperforms time-domain decoding for high peak velocities in imaging of the rotating disk (1 m/s) and of the parabolic flow (2 m/s), when significant scatterer motion between acquisitions causes imperfect time-domain decoding. Its ability to decode individual acquisitions makes the used frequency-domain decoding of CDW (F-CDW) a promising approach to improve the SNR and thereby the accuracy of flow quantification at high velocities.
Collapse
|
3
|
de Hoop H, Maas E, Muller JW, Schwab HM, Lopata R. 3-D motion tracking and vascular strain imaging using bistatic dual aperture ultrasound acquisitions. Phys Med Biol 2025; 70:045013. [PMID: 39662050 DOI: 10.1088/1361-6560/ad9db2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Objective.This study demonstrates high volume rate bistatic 3-D vascular strain imaging, to overcome well-known challenges caused by the anisotropic resolution and contrast inherent to ultrasound imaging.Approach.Using two synchronized 32 × 32 element matrix arrays (3.5 MHz), coherent 3-D ultrasound images ofex vivoporcine aortas were acquired at 90 Hz during pulsation in a mock circulation loop. The image data of interleaved transmissions were coherently compounded on one densely sampled Cartesian grid to estimate frame-to-frame displacements using 3-D block matching. The radial displacement components were projected onto mesh nodes of the aortic wall, after which local circumferential and radial strain estimates were calculated with a 3-D least squares strain estimator.Main results.The additional reflection content and high-resolution phase information along the axis of the second transducer added more distinctive features for block matching, resulting in an increased coverage of high correlation values and more accurate lateral displacements. Compared to single array results, the mean motion tracking error for one inflation cycle was reduced by a factor 5-8 and circumferential elastographic signal-to-noise ratio increased by 5-10 dB. Radial strain remains difficult to estimate at the transmit frequency used at these imaging depths, but may benefit from more research into strain regularization and sub-pixel interpolation techniques.Significance.These results suggest that multi-aperture ultrasound acquisition sequences can advance the field of vascular strain imaging and elastography by addressing challenges related to estimating local-scale deformation on an acquisition level. Future research into 3-D aberration correction and probe localization techniques is important to extend the method's applicability towardsin vivouse and for a wider range of applications.
Collapse
Affiliation(s)
- Hein de Hoop
- Photoacoustic and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Maas
- Photoacoustic and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Jan-Willem Muller
- Photoacoustic and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Hans-Martin Schwab
- Photoacoustic and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard Lopata
- Photoacoustic and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Geréb G, Lønmo TIB, Hansen RE, Näsholm SP, Austeng A. Clairvoyant performance bounds for adaptive beamforming in pulse-echo imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:459-470. [PMID: 39846776 DOI: 10.1121/10.0034836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
In adaptive beamforming, the array signal processing adjusts its sensor delays and weights based on the incoming data. In conventional beamforming, these parameters are instead given from a predefined model. Adaptive beamformers can improve measurement precision by dynamically rejecting spatial interference. While an established theory is available on the behavior of adaptive beamformers in textbook scenarios, their expected performance on realistic pulse-echo imaging scenes is still mostly uncharted. Imaging performance can be evaluated by individual pixel precision and aggregated metrics such as resolution and contrast. The achievable gain is strongly related to the sparsity of the scene and the availability of data to appropriately estimate the spatial covariance matrix. In pulse-echo measurements, the nonstationary interference poses a special problem for adaptive beamforming, which is a current research question of academic and industrial interest. The current work establishes a performance bound for adaptive beamforming in simulated realistic pulse-echo scenarios. This is derived and numerically implemented as the clairvoyant minimum variance distortionless response beamformer. The proposed framework allows for an a priori assessment of the applicability of adaptive beamforming, for a given scenario. The performance of the implemented algorithms can be directly compared with the theoretical limit in a simulated environment.
Collapse
Affiliation(s)
- Gábor Geréb
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | | | - Roy Edgar Hansen
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Norwegian Defence Research Establishment, 2027 Kjeller, Norway
| | | | - Andreas Austeng
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
5
|
Kuder IM, Rock M, Jones GG, Amis AA, Cegla FB, van Arkel RJ. An Optimization Approach for Creating Application-specific Ultrasound Speckle Tracking Algorithms. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1108-1121. [PMID: 38714465 DOI: 10.1016/j.ultrasmedbio.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE Ultrasound speckle tracking enables in vivo measurement of soft tissue deformation or strain, providing a non-invasive diagnostic tool to quantify tissue health. However, adoption into new fields is challenging since algorithms need to be tuned with gold-standard reference data that are expensive or impractical to acquire. Here, we present a novel optimization approach that only requires repeated measurements, which can be acquired for new applications where reference data might not be readily available or difficult to get hold of. METHODS Soft tissue motion was captured using ultrasound for the medial collateral ligament (MCL) of three quasi-statically loaded porcine stifle joints, and medial ligamentous structures of a dynamically loaded human cadaveric knee joint. Using a training subset, custom speckle tracking algorithms were created for the porcine and human ligaments using surrogate optimization, which aimed to maximize repeatability by minimizing the normalized standard deviation of calculated strain maps for repeat measurements. An unseen test subset was then used to validate the tuned algorithms by comparing the ultrasound strains to digital image correlation (DIC) surface strains (porcine specimens) and length change values of the optically tracked ligament attachments (human specimens). RESULTS After 1500 iterations, the optimization routine based on the porcine and human training data converged to similar values of normalized standard deviations of repeat strain maps (porcine: 0.19, human: 0.26). Ultrasound strains calculated for the independent test sets using the tuned algorithms closely matched the DIC measurements for the porcine quasi-static measurements (R > 0.99, RMSE < 0.59%) and the length change between the tracked ligament attachments for the dynamic human dataset (RMSE < 6.28%). Furthermore, strains in the medial ligamentous structures of the human specimen during flexion showed a strong correlation with anterior/posterior position on the ligaments (R > 0.91). CONCLUSION Adjusting ultrasound speckle tracking algorithms using an optimization routine based on repeatability led to robust and reliable results with low RMSE for the medial ligamentous structures of the knee. This tool may be equally beneficial in other soft-tissue displacement or strain measurement applications and can assist in the development of novel ultrasonic diagnostic tools to assess soft tissue biomechanics.
Collapse
Affiliation(s)
- Isabelle M Kuder
- Imperial College London Department of Mechanical Engineering, London, UK
| | | | - Gareth G Jones
- Imperial College London Department of Surgery and Cancer, London, UK
| | - Andrew A Amis
- Imperial College London Department of Mechanical Engineering, London, UK
| | - Frederic B Cegla
- Imperial College London Department of Mechanical Engineering, London, UK
| | | |
Collapse
|
6
|
Dermul N, Dierckx H. Reconstruction of excitation waves from mechanical deformation using physics-informed neural networks. Sci Rep 2024; 14:16975. [PMID: 39043805 PMCID: PMC11266589 DOI: 10.1038/s41598-024-67597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Non-invasive assessment of the electrical activation pattern can significantly contribute to the diagnosis and treatment of cardiac arrhythmias, due to faster and safer diagnosis, improved surgical planning and easier follow-up. One promising path is to measure the mechanical contraction via echocardiography and utilize this as an indirect way of measuring the original activation pattern. To solve this demanding inversion task, we make use of physics-informed neural networks, an upcoming methodology to solve forward and inverse physical problems governed by partial differential equations. In this study, synthetic data sets were created, consisting of 2D excitation waves coupled to an isotropic and linearly deforming elastic medium. We show that for both focal and spiral patterns, the underlying excitation waves can be reconstructed accurately. We test the robustness of the method against Gaussian noise, reduced spatial resolution and projected tri-planar data. In situations where the data quality is heavily reduced, we show how to improve the reconstruction by additional regularization on the wave speed. Our findings suggest that physics-informed neural networks hold the potential to solve sparse and noisy bio-mechanical inversion problems and may offer a pathway to non-invasive assessment of certain cardiac arrhythmias.
Collapse
Affiliation(s)
- Nathan Dermul
- Department of Mathematics, KU Leuven, 8500, Kortrijk, Belgium.
- iSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, 3000, Leuven, Belgium.
| | - Hans Dierckx
- Department of Mathematics, KU Leuven, 8500, Kortrijk, Belgium
- iSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Petrescu A, Voigt JU. [Echocardiography with high frame rates in the clinical practice : Principles, applications and perspectives]. Herz 2023; 48:339-351. [PMID: 37530782 DOI: 10.1007/s00059-023-05199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Continuous developments in cardiovascular imaging, software and hardware have led to technological advancements that open new ways for assessing myocardial mechanics, hemodynamics, and function. Through new scan modalities, echocardiographic scanners can nowadays achieve very high frame rates up to 5000 frames s-1 which enables a wide variety of new applications, including shear wave elastography, ultrafast speckle tracking, the visualization of intracardiac blood flow and myocardial perfusion imaging. This review provides an overview of these advances and demonstrates possible applications and their potential added value in the clinical practice.
Collapse
Affiliation(s)
- Aniela Petrescu
- Abteilung für Kardiologie, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Jens-Uwe Voigt
- Department of Cardiology, University Hospital Leuven, University of Leuven, Herestraat 49, 3000, Leuven, Belgien.
| |
Collapse
|
8
|
Al Mukaddim R, Weichmann AM, Taylor R, Hacker TA, Pier T, Hardin J, Graham M, Casper EM, Mitchell CC, Varghese T. In Vivo Longitudinal Monitoring of Cardiac Remodeling in Murine Ischemia Models With Adaptive Bayesian Regularized Cardiac Strain Imaging: Validation Against Histology. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:45-61. [PMID: 36184393 PMCID: PMC9712162 DOI: 10.1016/j.ultrasmedbio.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/16/2023]
Abstract
Adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) uses raw radiofrequency signals to estimate myocardial wall contractility as a surrogate measure of relative tissue elasticity incorporating regularization in the Bayesian sense. We determined the feasibility of using ABR-CSI -derived strain for in vivo longitudinal monitoring of cardiac remodeling in a murine ischemic injury model (myocardial infarction [MI] and ischemia-reperfusion [IR]) and validated the findings against ground truth histology. We randomly stratified 30 BALB/CJ mice (17 females, 13 males, median age = 10 wk) into three surgical groups (MI = 10, IR = 12, sham = 8) and imaged pre-surgery (baseline) and 1, 2, 7 and 14 d post-surgery using a pre-clinical high-frequency ultrasound system (VisualSonics Vevo 2100). We then used ABR-CSI to estimate end-systolic and peak radial (er) and longitudinal (el) strain estimates. ABR-CSI was found to have the ability to serially monitor non-uniform cardiac remodeling associated with murine MI and IR non-invasively through temporal variation of strain estimates post-surgery. Furthermore, radial end-systole (ES) strain images and segmental strain curves exhibited improved discrimination among infarct, border and remote regions around the myocardium compared with longitudinal strain results. For example, the MI group had significantly lower (Friedman's with Bonferroni-Dunn test, p = 0.002) ES er values in the anterior middle (infarcted) region at day 14 (n = 9, 9.23 ± 7.39%) compared with the BL group (n = 9, 44.32 ± 5.49). In contrast, anterior basal (remote region) mean ES er values did not differ significantly (non-significant Friedman's test, χ2 = 8.93, p = 0.06) at day 14 (n = 6, 33.05 ± 6.99%) compared with baseline (n = 6, 34.02 ± 6.75%). Histology slides stained with Masson's trichrome (MT) together with a machine learning model (random forest classifier) were used to derive the ground truth cardiac fibrosis parameter termed histology percentage of myocardial fibrosis (PMF). Both radial and longitudinal strain were found to have strong statistically significant correlations with the PMF parameter. However, radial strain had a higher Spearman's correlation value (εresρ = -0.67, n = 172, p < 0.001) compared with longitudinal strain (εlesρ = -0.60, n = 172, p < 0.001). Overall, the results of this study indicate that ABR-CSI can reliably perform non-invasive detection of infarcted and remote myocardium in small animal studies.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Pier
- Experimental Animal Pathology Lab, UW-Madison
| | | | - Melissa Graham
- Comparative Pathology Laboratory, Research Animal Resources and Compliance (RARC), UW-Madison
| | | | | | - Tomy Varghese
- Medical Physics, University of Wisconsin (UW) – Madison
| |
Collapse
|
9
|
Wang Y, Wei X, Pan Z, Huang L, He Q, Luo J. Influence of key parameters on motion artifacts in lateral strain estimation with spatial angular compounding. ULTRASONICS 2022; 125:106799. [PMID: 35797866 DOI: 10.1016/j.ultras.2022.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Strain imaging can reveal the changes in tissue mechanical properties related to pathological alterations by estimating tissue strains in the lateral and axial directions of ultrasound imaging. The estimation performance in the lateral direction is usually worse than that in the axial direction. Spatial angular compounding (SAC) has been demonstrated to improve the quality of lateral estimation by deriving the lateral displacements using axial displacements obtained from multi-angle transmissions. However, motion and deformation of tissues during multiple transmissions may cause motion artifacts, and thus deteriorate the quality of strain estimation. These artifacts can be reduced by choosing appropriate imaging parameters. However, few studies have been conducted to evaluate the influences of key parameters in strain estimation, such as the pulse repetition frequency (PRF), the number of steering angles (NSA), and the maximum steering angles (MSA), in terms of performance optimization. Therefore, this study aims to investigate the effects of these parameters through simulations and phantom experiments. The performance of strain estimation is evaluated by measuring the root-mean-square error (RMSE) and the standard deviation (SD) in the simulations and phantom experiments, respectively. The contrast-to-noise ratio (CNR) of strain images is calculated in both the simulations and phantom experiments. The results show that motion artifacts in strain estimation can be reduced by increasing the PRF to 1 kHz. When the PRF reaches 1 kHz, further increase of the PRF shows little obvious improvement in strain estimation. An increase in the NSA can cause larger motion artifacts and deteriorate the quality of strain images, and the improvement of strain estimation is limited when the NSA is increased from 3 to 7. An NSA of 3 is thus recommended to balance the influences of motion artifacts and the improvement for strain estimation. The MSA has little influence on the motion artifacts, while increased MSA can achieve improved lateral estimation performance at the cost of a smaller imaging region. In light of the lateral strain estimation performance and imaging region, an MSA of 15° is recommended. The influences of these key parameters obtained from this study may provide insights for parameter optimization in strain estimation with SAC to minimize the effects of motion artifacts.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xingyue Wei
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zonghui Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Orlowska M, Bézy S, Ramalli A, Voigt JU, D'hooge J. High-Frame-Rate Speckle Tracking for Echocardiographic Stress Testing. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1644-1651. [PMID: 35637027 DOI: 10.1016/j.ultrasmedbio.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Stress echocardiography helps to diagnose cardiac diseases that cannot easily be detected or do not even manifest at rest. In clinical practice, assessment of the stress test is usually performed visually and, therefore, in a qualitative and subjective way. Although speckle tracking echocardiography (STE) has been proposed for the quantification of function during stress, its time resolution is inadequate at high heart rates. Recently, high-frame-rate (HFR) imaging approaches have been proposed together with dedicated STE algorithms capable of handling small interframe displacements. The aim of this study was to determine if HFR STE is effective in assessing strain and strain rate parameters during echocardiographic stress testing. Specifically, stress echocardiography, at four different workload intensities, was performed in 25 healthy volunteers. At each stress level, HFR images from the apical four-chamber view were recorded using the ULA-OP 256 experimental scanner. Then, the myocardium was tracked with HFR STE, and strain and strain rate biomarkers were extracted to further analyze systolic and diastolic (early and late) peaks, as well as a short-lived isovolumic relaxation peak during stress testing. The global systolic strain response was monophasic, revealing a significant (p < 0.001) increase at low stress but then reaching a plateau. In contrast, all strain rate indices linearly increased (p < 0.001) with increasing stress level. These findings are in line with those reported using tissue Doppler imaging and, thus, indicate that HFR STE can be a useful tool in assessing cardiac function during stress echocardiography.
Collapse
Affiliation(s)
- Marta Orlowska
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Stéphanie Bézy
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alessandro Ramalli
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Jens-Uwe Voigt
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan D'hooge
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Al Mukaddim R, Weichmann AM, Taylor R, Hacker TA, Pier T, Hardin J, Graham M, Mitchell CC, Varghese T. Murine cardiac fibrosis localization using adaptive Bayesian cardiac strain imaging in vivo. Sci Rep 2022; 12:8522. [PMID: 35595876 PMCID: PMC9122999 DOI: 10.1038/s41598-022-12579-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
An adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) algorithm for in vivo murine myocardial function assessment is presented. We report on 31 BALB/CJ mice (n = 17 females, n = 14 males), randomly stratified into three surgical groups: myocardial infarction (MI, n = 10), ischemia–reperfusion (IR, n = 13) and control (sham, n = 8) imaged pre-surgery (baseline- BL), and 1, 2, 7 and 14 days post-surgery using a high frequency ultrasound imaging system (Vevo 2100). End-systole (ES) radial and longitudinal strain images were used to generate cardiac fibrosis maps using binary thresholding. Percentage fibrotic myocardium (PFM) computed from regional fibrosis maps demonstrated statistically significant differences post-surgery in scar regions. For example, the MI group had significantly higher PFMRadial (%) values in the anterior mid region (p = 0.006) at Day 14 (n = 8, 42.30 ± 14.57) compared to BL (n = 12, 1.32 ± 0.85). A random forest classifier automatically detected fibrotic regions from ground truth Masson’s trichrome stained histopathology whole slide images. Both PFMRadial (r = 0.70) and PFMLongitudinal (r = 0.60) results demonstrated strong, positive correlation with PFMHistopathology (p < 0.001).
Collapse
Affiliation(s)
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, UW-Madison, Madison, USA
| | - Rachel Taylor
- Cardiovascular Physiology Core Facility, UW-Madison, Madison, USA
| | - Timothy A Hacker
- Cardiovascular Physiology Core Facility, UW-Madison, Madison, USA
| | - Thomas Pier
- Experimental Animal Pathology Lab, UW-Madison, Madison, USA
| | - Joseph Hardin
- Experimental Animal Pathology Lab, UW-Madison, Madison, USA
| | - Melissa Graham
- Comparative Pathology Laboratory, Research Animal Resources and Compliance (RARC), UW-Madison, Madison, USA
| | - Carol C Mitchell
- Medicine/Division of Cardiovascular Medicine, UW-Madison, Madison, USA
| | - Tomy Varghese
- Medical Physics, University of Wisconsin (UW)-Madison, Madison, USA.
| |
Collapse
|
12
|
Orlowska M, Ramalli A, Bezy S, Meacci V, Voigt JU, D'Hooge J. In Vivo Comparison of Multiline Transmission and Diverging Wave Imaging for High-Frame-Rate Speckle-Tracking Echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1511-1520. [PMID: 33170777 DOI: 10.1109/tuffc.2020.3037043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-frame-rate (HFR) speckle-tracking echocardiography (STE) assesses myocardial function by quantifying motion and deformation at high temporal resolution. Among the proposed HFR techniques, multiline transmission (MLT) and diverging wave (DW) imaging have been used in this context both being characterized by specific advantages and disadvantages. Therefore, in this article, we directly contrast both approaches in an in vivo setting while operating at the same frame rate (FR). First, images were recorded at baseline (resting condition) from healthy volunteers and patients. Next, additional acquisitions during stress echocardiography were performed on volunteers. Each scan was contoured and processed by a previously proposed 2-D HFR STE algorithm based on cross correlation. Then, strain curves and their end-systolic (ES) values were extracted for all myocardial segments for further statistical analysis. The baseline acquisitions did not reveal differences in estimated strain between the acquisition modes ( ); myocardial segments ( ); or an interaction between imaging mode and depth ( ). Similarly, during stress testing, no difference ( p = 0.7 ) was observed for the two scan sequences, stress levels or an interaction sequence-stress level ( p = 0.94 ). Overall, our findings show that MLT and DW compoundings give comparable HFR STE strain values and that the choice for using one method or the other may thus rather be based on other factors, for example, system requirements or computational cost.
Collapse
|
13
|
Petrescu A, D'hooge J, Voigt JU. Concepts and applications of ultrafast cardiac ultrasound imaging. Echocardiography 2021; 38:7-15. [PMID: 33471395 DOI: 10.1111/echo.14971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of ultrafast echocardiographic imaging has been around for decades. However, only recent progress in ultrasound machine hardware and computer technology allowed to apply this concept to echocardiography. High frame rate echocardiography can visualize phenomena that have never been captured before. It enables a wide variety of potential new applications, including shear wave imaging, speckle tracking, ultrafast Doppler imaging, and myocardial perfusion imaging. The principles of these applications and their potential clinical use will be presented in this manuscript.
Collapse
Affiliation(s)
- Aniela Petrescu
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Department of Cardiology, Heart Valve Center, University Medical Center Mainz, Mainz, Germany
| | - Jan D'hooge
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|