1
|
Annayev M, Minhaj TI, Adelegan OJ, Yamaner FY, Dayton PA, Oralkan O. Design and Fabrication of 1-D CMUT Arrays for Dual-Mode Dual-Frequency Acoustic Angiography Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:191-201. [PMID: 38090855 PMCID: PMC10832990 DOI: 10.1109/tuffc.2023.3342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
When microbubble contrast agents are excited at low frequencies (less than 5 MHz), they resonate and produce higher-order harmonics due to their nonlinear behavior. We propose a novel scheme with a capacitive micromachined ultrasonic transducer (CMUT) array to receive high-frequency microbubble harmonics in collapse mode and to transmit a low-frequency high-pressure pulse by releasing the CMUT plate from collapse and pull it back to collapse again in the same transmit-receive cycle. By patterning and etching the substrate to create glass spacers in the device cavity we can reliably operate the CMUT in collapse mode and receive high-frequency signals. Previously, we demonstrated a single-element CMUT with spacers operating in the described fashion. In this article, we present the design and fabrication of a dual-mode, dual-frequency 1-D CMUT array with 256 elements. We present two different insulating glass spacer designs in rectangular cells for the collapse mode. For the device with torus-shaped spacers, the 3 dB receive bandwidth is from 8 to 17 MHz, and the transmitted maximum peak-to-peak pressure from 32 elements at 4 mm focal depth was 2.12 MPa with a 1.21 MPa peak negative pressure, which corresponds to a mechanical index (MI) of 0.58 at 4.3 MHz. For the device with line-shaped spacers, the 3-dB receive bandwidth at 150 V dc bias extends from 10.9 to 19.2 MHz. By increasing the bias voltage to 180 V, the 3 dB bandwidth shifts, and extends from 11.7 to 20.4 MHz. The transmitting maximum peak-to-peak pressure with 32 elements at 4 mm was 2.06 MPa with a peak negative pressure of 1.19 MPa, which corresponds to an MI of 0.62 at 3.7 MHz.
Collapse
|
2
|
Dew EB, Zemp RJ. High-Performance Electrode-Post CMUTs: Fabrication Details and Best Practices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1270-1285. [PMID: 37022072 DOI: 10.1109/tuffc.2023.3240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Capacitive micromachined ultrasound transducers (CMUTs) have been investigated for over 25 years due to their promise for mass manufacturing and electronic co-integration. Previously, CMUTs were fabricated with many small membranes comprising a single transducer element. This, however, resulted in suboptimal electromechanical efficiency and transmit performance, such that resulting devices were not necessarily competitive with piezoelectric transducers. Moreover, many previous CMUT devices were subject to dielectric charging and operational hysteresis that limited long-term reliability. Recently, we demonstrated a CMUT architecture using a single long rectangular membrane per transducer element and novel electrode-post (EP) structures. This architecture not only offers long-term reliability, but also provides performance advantages over previously published CMUT and piezoelectric arrays. The purpose of this article is to highlight these performance advantages and provide details of the fabrication process, including the best practices to avoid common pitfalls. The objective is to provide sufficient detail to inspire a new generation of microfabricated transducers, which could lead to performance gains of future ultrasound systems.
Collapse
|
3
|
Herickhoff CD, van Schaijk R. cMUT technology developments. Z Med Phys 2023; 33:256-266. [PMID: 37316428 PMCID: PMC10517396 DOI: 10.1016/j.zemedi.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023]
Abstract
Capacitive micromachined ultrasonic transducer (cMUT) technology has steadily advanced since its advent in the mid-1990's. Though cMUTs have not supplanted piezoelectric transducers for medical ultrasound imaging to date, researchers and engineers are continuing to improve cMUTs and leverage unique cMUT characteristics toward new applications. While not intended to be an exhaustive review of every aspect of cMUT state-of-the-art, this article provides a brief overview of cMUT benefits, challenges, and opportunities, as well as recent progress in cMUT research and translation.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA.
| | | |
Collapse
|
4
|
Zhang J, Xie J, Shi W, Huo Y, Ren Z, He D. Resonance and bifurcation of fractional quintic Mathieu-Duffing system. CHAOS (WOODBURY, N.Y.) 2023; 33:023131. [PMID: 36859234 DOI: 10.1063/5.0138864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In this paper, the main subharmonic resonance of the Mathieu-Duffing system with a quintic oscillator under simple harmonic excitation, the route to chaos, and the bifurcation of the system under the influence of different parameters is studied. The amplitude-frequency and phase-frequency response equations of the main resonance of the system are determined by the harmonic balance method. The amplitude-frequency and phase-frequency response equations of the steady solution to the system under the combined action of parametric excitation and forced excitation are obtained by using the average method, and the stability conditions of the steady solution are obtained based on Lyapunov's first method. The necessary conditions for heteroclinic orbit cross section intersection and chaos of the system are given by the Melnikov method. Based on the separation of fast and slow variables, the bifurcation phenomena of the system under different conditions are obtained. The amplitude-frequency characteristics of the total response of the system under different excitation frequencies are investigated by analytical and numerical methods, respectively, which shows that the two methods achieve consistency in the trend. The influence of fractional order and fractional derivative term coefficient on the amplitude-frequency response of the main resonance of the system is analyzed. The effects of nonlinear stiffness coefficient, parametric excitation term coefficient, and fractional order on the amplitude-frequency response of subharmonic resonance are discussed. Through analysis, it is found that the existence of parametric excitation will cause the subharmonic resonance of the Mathieu-Duffing oscillator to jump. Finally, the subcritical and supercritical fork bifurcations of the system caused by different parameter changes are studied. Through analysis, it is known that the parametric excitation coefficient causes subcritical fork bifurcations and fractional order causes supercritical fork bifurcations.
Collapse
Affiliation(s)
- Jiale Zhang
- College of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Jiaquan Xie
- College of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Wei Shi
- Institute of Advanced Forming and Intelligent Equipment, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yiting Huo
- College of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Zhongkai Ren
- Institute of Advanced Forming and Intelligent Equipment, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Dongping He
- Institute of Advanced Forming and Intelligent Equipment, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
5
|
Sanders JL, Biliroglu AO, Newsome IG, Adelegan OJ, Yamaner FY, Dayton PA, Oralkan O. A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2318-2330. [PMID: 35522635 PMCID: PMC9716577 DOI: 10.1109/tuffc.2022.3172566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article presents an imaging probe with a 256-element ultrawideband (UWB) 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for acoustic angiography (AA). This array was fabricated on a borosilicate glass wafer with a reduced bottom electrode and an additional central plate mass to achieve the broad bandwidth. A custom 256-channel handheld probe was designed and implemented with integrated low-noise amplifiers and supporting power circuitry. This probe was used to characterize the UWB CMUT, which has a functional 3-dB frequency band from 3.5 to 23.5 MHz. A mechanical index (MI) of 0.33 was achieved at 3.5 MHz at a depth of 11 mm. These promising measurements are then combined to demonstrate AA. The use of alternate amplitude modulation (aAM) combined with a frequency analysis of the measured transmit signal demonstrates the suitability of the UWB CMUT for AA. This is achieved by measuring only a low level of unwanted high-frequency harmonics in both the transmit signal and the reconstructed image in the areas other than the contrast bubbles.
Collapse
|
6
|
Dew EB, Kashani Ilkhechi A, Maadi M, Haven NJM, Zemp RJ. Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements. MICROSYSTEMS & NANOENGINEERING 2022; 8:59. [PMID: 35669969 PMCID: PMC9162926 DOI: 10.1038/s41378-022-00392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
It has long been hypothesized that capacitive micromachined ultrasound transducers (CMUTs) could potentially outperform piezoelectric technologies. However, challenges with dielectric charging, operational hysteresis, and transmit sensitivity have stood as obstacles to these performance outcomes. In this paper, we introduce key architectural features to enable high-reliability CMUTs with enhanced performance. Typically, a CMUT element in an array is designed with an ensemble of smaller membranes oscillating together to transmit or detect ultrasound waves. However, this approach can lead to unreliable behavior and suboptimal transmit performance if these smaller membranes oscillate out of phase or collapse at different voltages. In this work, we designed CMUT array elements composed of a single long rectangular membrane, with the aim of improving the output pressure and electromechanical efficiency. We compare the performance of three different modifications of this architecture: traditional contiguous dielectric, isolated isolation post (IIP), and insulated electrode-post (EP) CMUTs. EPs were designed to improve performance while also imparting robustness to charging and minimization of hysteresis. To fabricate these devices, a wafer-bonding process was developed with near-100% bonding yield. EP CMUT elements achieved electromechanical efficiency values as high as 0.95, higher than values reported with either piezoelectric transducers or previous CMUT architectures. Moreover, all investigated CMUT architectures exhibited transmit efficiency 2-3 times greater than published CMUT or piezoelectric transducer elements in the 1.5-2.0 MHz range. The EP and IIP CMUTs demonstrated considerable charging robustness, demonstrating minimal charging over 500,000 collapse-snap-back actuation cycles while also mitigating hysteresis. Our proposed approach offers significant promise for future ultrasonic applications.
Collapse
Affiliation(s)
- Eric B. Dew
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | | | - Mohammad Maadi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Nathaniel J. M. Haven
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Collins GC, Brumfiel TA, Bercu ZL, Desai JP, Lindsey BD. Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1428-1441. [PMID: 35143395 PMCID: PMC9013008 DOI: 10.1109/tuffc.2022.3150746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral artery disease (PAD) affects more than 200 million people globally. Minimally invasive endovascular procedures can provide relief and salvage limbs while reducing injury rates and recovery times. Unfortunately, when a calcified chronic total occlusion is encountered, ~25% of endovascular procedures fail due to the inability to advance a guidewire using the view provided by fluoroscopy. To enable a sub-millimeter, robotically steerable guidewire to cross these occlusions, a novel single-element, dual-band transducer is developed that provides simultaneous multifrequency, forward-viewing imaging with high penetration depth and high spatial resolution while requiring only a single electrical connection. The design, fabrication, and acoustic characterization of this device are described, and proof-of-concept imaging is demonstrated in an ex vivo porcine artery after integration with a robotically steered guidewire. Measured center frequencies of the developed transducer were 16 and 32 MHz, with -6 dB fractional bandwidths of 73% and 23%, respectively. When imaging a 0.2-mm wire target at a depth of 5 mm, measured -6 dB target widths were 0.498 ± 0.02 and 0.268 ± 0.01 mm for images formed at 16 and 32 MHz, respectively. Measured SNR values were 33.3 and 21.3 dB, respectively. The 3-D images of the ex vivo artery demonstrate high penetration for visualizing vessel morphology at 16 MHz and ability to resolve small features close to the transducer at 32 MHz. Using images acquired simultaneously at both frequencies as part of an integrated forward-viewing, guidewire-based imaging system, an interventionalist could visualize the best path for advancing the guidewire to improve outcomes for patients with PAD.
Collapse
|
8
|
Maadi M, Ceroici C, Zemp RJ. Dual-Frequency CMUT Arrays for Multiband Ultrasound Imaging Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2532-2542. [PMID: 33625982 DOI: 10.1109/tuffc.2021.3062071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dual-frequency capacitive micromachined ultrasonic transducers (CMUTs) are introduced for multiscale imaging applications, where a single array transducer can be used for both deep low-resolution imaging and shallow high-resolution imaging. These transducers consist of low- and high-frequency membranes interlaced within each subarray element. They are fabricated using a modified sacrificial release process. Successful performance is demonstrated using wafer-level vibrometer testing, as well as acoustic testing on wirebonded dies consisting of arrays of 2- and 9-MHz elements of up to 64 elements for each subarray. The arrays are demonstrated to provide multiscale, multiresolution imaging using wire phantoms and can span frequencies from 2 MHz up to as high as 17 MHz. Peak transmit sensitivities of 27 and 7.5 kPa/V are achieved with the low- and high-frequency subarrays, respectively. At 16-mm imaging depth, lateral spatial resolution achieved is 0.84 and 0.33 mm for low- and high-frequency subarrays, respectively. The signal-to-noise ratio of the low-frequency subarray is significantly higher for deep targets compared to the high-frequency subarray. The array achieves multiband imaging capabilities difficult to achieve with current transducer technologies and may have applications to multipurpose probes and novel contrast agent imaging schemes.
Collapse
|
9
|
Haroun A, Le X, Gao S, Dong B, He T, Zhang Z, Wen F, Xu S, Lee C. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf3d4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Self-sustainable sensing systems composed of micro/nano sensors and nano-energy harvesters contribute significantly to developing the internet of things (IoT) systems. As one of the most promising IoT applications, smart home relies on implementing wireless sensor networks with miniaturized and multi-functional sensors, and distributed, reliable, and sustainable power sources, namely energy harvesters with a variety of conversion mechanisms. To extend the capabilities of IoT in the smart home, a technology fusion of IoT and artificial intelligence (AI), called the artificial intelligence of things (AIoT), enables the detection, analysis, and decision-making functions with the aids of machine learning assisted algorithms to form a smart home based intelligent system. In this review, we introduce the conventional rigid microelectromechanical system (MEMS) based micro/nano sensors and energy harvesters, followed by presenting the advances in the wearable counterparts for better human interactions. We then discuss the viable integration approaches for micro/nano sensors and energy harvesters to form self-sustainable IoT systems. Whereafter, we emphasize the recent development of AIoT based systems and the corresponding applications enabled by the machine learning algorithms. Smart home based healthcare technology enabled by the integrated multi-functional sensing platform and bioelectronic medicine is also presented as an important future direction, as well as wearable photonics sensing system as a complement to the wearable electronics sensing system.
Collapse
|
10
|
Zhang X, Zhang H, Li D. Design of a hexagonal air-coupled capacitive micromachined ultrasonic transducer for air parametric array. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0003504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|