1
|
Kaovasia TP, Duclos S, Gupta D, Kalayeh K, Fabiilli M, Noll DC, Sukovich J, Pandey A, Xu Z, Hall TL. A pre-clinical MRI-guided all-in-one focused ultrasound system for murine brain studies. Sci Rep 2025; 15:144. [PMID: 39747938 PMCID: PMC11696467 DOI: 10.1038/s41598-024-84078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
This paper describes the design and initial proof-of-concept of a single pre-clinical transcranial focused ultrasound (FUS) system capable of performing histotripsy (mechanical ablation), hyperthermia, blood-brain barrier opening (BBBO), sonodynamic therapy, or neuromodulation in a murine brain. We have termed it the All-in-One FUS system for murine brain studies, which is the first FUS system of its kind. The 1.5 MHz ultrasound transducer was fabricated and driven using a custom electronic driver to produce 3-cycle pulses with a focal peak-negative pressure (P-) of up to 87 MPa at a low duty cycle (< 0.1%) for histotripsy as well as 50% duty cycle pulsed-ultrasound with a spatial-peak temporal-average intensity (Ispta) of up to 251 W/cm2 for the other FUS modalities. This All-in-One system can be guided by MRI or stereotactically to maximize its flexibility. To validate the design of the system, histotripsy, BBBO, and hyperthermia were performed in naïve brains of two mice for each modality. Histotripsy and BBBO were performed using MRI-based stereotactic co-registration. The therapeutic effect was confirmed using T2-weighted MR-images for histotripsy, and T1-weighted Gadolinium contrast-enhanced MR-images for BBBO. For hyperthermia, an MRI-compatible insert was designed to fit inside the 80 mm imaging coil of a 7-Tesla small-animal MRI-system, with T2-weighted MR-images used to confirm targeting, and MR-thermometry used to monitor the thermal dose delivered.
Collapse
Affiliation(s)
| | - Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dinank Gupta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kourosh Kalayeh
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mario Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Douglas C Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Choi SW, Komaiha M, Choi D, Lu N, Gerhardson TI, Fox A, Chaudhary N, Camelo-Piragua S, Hall TL, Pandey AS, Xu Z, Sukovich JR. Neuronavigation-Guided Transcranial Histotripsy (NaviTH) System. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1155-1166. [PMID: 38789304 PMCID: PMC11822949 DOI: 10.1016/j.ultrasmedbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The goal of the work described here was to develop the first neuronavigation-guided transcranial histotripsy (NaviTH) system and associated workflow for transcranial ablation. METHODS The NaviTH system consists of a 360-element, 700 kHz transmitter-receiver-capable transcranial histotripsy array, a clinical neuronavigation system and associated equipment for patient-to-array co-registration and therapy planning and targeting software systems. A workflow for NaviTH treatments, including pre-treatment aberration correction, was developed. Targeting errors stemming from target registration errors (TREs) during the patient-to-array co-registration process, as well as focal shifts caused by skull-induced aberrations, were investigated and characterized. The NaviTH system was used in treatments of two <96 h post-mortem human cadavers and in experiments in two excised human skullcaps. RESULTS The NaviTH was successfully used to create ablations in the cadaver brains as confirmed in post-treatment magnetic resonance imaging A total of three ablations were created in the cadaver brains, and targeting errors of 9, 3.4 and 4.4 mm were observed in corpus callosum, septum and thalamus targets, respectively. Errors were found to be caused primarily by TREs resulting from transducer tracking instrument design flaws and imperfections in the treatment workflow. Transducer tracking instrument design and workflow improvements reduced TREs to <2 mm, and skull-induced focal shifts, following pre-treatment aberration correction, were 0.3 mm. Total targeting errors of the NaviTH system following the noted improvements were 2.5 mm. CONCLUSIONS The feasibility of using the first NaviTH system in a human cadaver model has been determined. Although accuracy still needs to be improved, the proposed system has the potential to allow for transcranial histotripsy therapies without requiring active magnetic resonance treatment guidance.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mahmoud Komaiha
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dave Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ning Lu
- Department of Biomedical Engineering, Stanford University, Stanford, CA, USA
| | - Tyler I Gerhardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Adam Fox
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Duclos S, Choi SW, Andjelkovic AV, Chaudhary N, Camelo-Piragua S, Pandey A, Xu Z. Characterization of Blood-Brain Barrier Opening Induced by Transcranial Histotripsy in Murine Brains. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:639-646. [PMID: 38302370 PMCID: PMC11894761 DOI: 10.1016/j.ultrasmedbio.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Transcranial histotripsy has shown promise as a non-invasive neurosurgical tool, as it has the ability to treat a wide range of locations in the brain without overheating the skull. One important effect of histotripsy in the brain is the blood-brain barrier (BBB) opening (BBBO) at the ablation site, but there is a knowledge gap concerning the extent of histotripsy-induced BBBO. Here we describe induction of BBBO by transcranial histotripsy and use of magnetic resonance imaging (MRI) and histology to quantify changes in BBBO at the periphery of the histotripsy ablation zone over time in the healthy mouse brain. METHODS An eight-element, 1 MHz histotripsy transducer with a focal distance of 32.5 mm was used to treat the brains of 23 healthy female BL6 mice. T1-gadolinium (T1-Gd) MR images were acquired immediately following histotripsy treatment and during each of the subsequent 4 wk to quantify the size and intensity of BBB leakage. RESULTS The T1-Gd MRI results revealed that the hyperintense BBBO volume increased over the first week and subsided gradually over the following 3 wk. Histology revealed complete loss of tight junction proteins and blood vessels in the center of the ablation region immediately after histotripsy, partial recovery in the periphery of the ablation zone 1 wk following histotripsy and near-complete recovery of tight junction complex after 4 wk. CONCLUSION These results provide the first evidence of transcranial histotripsy-induced BBBO and repair at the periphery of the ablation zone.
Collapse
Affiliation(s)
- Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Worlikar T, Hall T, Zhang M, Mendiratta-Lala M, Green M, Cho CS, Xu Z. Insights from in vivo preclinical cancer studies with histotripsy. Int J Hyperthermia 2024; 41:2297650. [PMID: 38214171 PMCID: PMC11102041 DOI: 10.1080/02656736.2023.2297650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technique that mechanically fractionates target tissue into acellular homogenate via controlled acoustic cavitation. Histotripsy has been evaluated for various preclinical applications requiring noninvasive tissue removal including cancer, brain surgery, blood clot and hematoma liquefaction, and correction of neonatal congenital heart defects. Promising preclinical results including local tumor suppression, improved survival outcomes, local and systemic anti-tumor immune responses, and histotripsy-induced abscopal effects have been reported in various animal tumor models. Histotripsy is also being investigated in veterinary patients with spontaneously arising tumors. Research is underway to combine histotripsy with immunotherapy and chemotherapy to improve therapeutic outcomes. In addition to preclinical cancer research, human clinical trials are ongoing for the treatment of liver tumors and renal tumors. Histotripsy has been recently approved by the FDA for noninvasive treatment of liver tumors. This review highlights key learnings from in vivo shock-scattering histotripsy, intrinsic threshold histotripsy, and boiling histotripsy cancer studies treating cancers of different anatomic locations and discusses the major considerations in planning in vivo histotripsy studies regarding instrumentation, tumor model, study design, treatment dose, and post-treatment tumor monitoring.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiation Oncology, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, Hall T, Pandey A, Xu Z. Histotripsy Treatment of Murine Brain and Glioma: Temporal Profile of Magnetic Resonance Imaging and Histological Characteristics Post-treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1882-1891. [PMID: 37277304 DOI: 10.1016/j.ultrasmedbio.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Currently, there is a knowledge gap in our understanding of the magnetic resonance imaging (MRI) characteristics of brain tumors treated with histotripsy to evaluate treatment response as well as treatment-related injuries. Our aim was to bridge this gap by investigating and correlating MRI with histological analysis after histotripsy treatment of mouse brain with and without brain tumors and evaluating the evolution of the histotripsy ablation zone on MRI over time. METHODS An eight-element, 1 MHz histotripsy transducer with a focal distance of 32.5 mm was used to treat orthotopic glioma-bearing mice and normal mice. The tumor burden at the time of treatment was ∼5 mm3. T2, T2*, T1 and T1-gadolinium (Gd) MR images and histology of the brain were acquired on days 0, 2 and 7 for tumor-bearing mice and days 0, 2, 7, 14, 21 and 28 post-histotripsy for normal mice. RESULTS T2 and T2* sequences most accurately correlated with histotripsy treatment zone. The treatment-induced blood products, T1 along with T2, revealed blood product evolution from oxygenated, de-oxygenated blood and methemoglobin to hemosiderin. And T1-Gd revealed the state of the blood-brain barrier arising from the tumor or histotripsy ablation. Histotripsy leads to minor localized bleeding, which resolves within the first 7 d as evident on hematoxylin and eosin staining. By day 14, the ablation zone could be distinguished only by the macrophage-laden hemosiderin, which resides around the ablation zone, rendering the treated zone hypo-intense on all MR sequences. CONCLUSION These results provide a library of radiological features on MRI sequences correlated to histology, thus allowing for non-invasive evaluation of histotripsy treatment effects in in vivo experiments.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Duclos S, Golin A, Fox A, Chaudhary N, Camelo-Piragua S, Pandey A, Xu Z. Transcranial histotripsy parameter study in primary and metastatic murine brain tumor models. Int J Hyperthermia 2023; 40:2237218. [PMID: 37495214 PMCID: PMC10410615 DOI: 10.1080/02656736.2023.2237218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE This study investigated the effect of various histotripsy dosages on tumor cell kill and associated bleeding in two murine brain tumor models (glioma [Gl261] and lung metastasis [LL/2-Luc2]). METHODS AND MATERIALS GL261 or LL/2-Luc2 cells were cultured and implanted into the brains of C57BL/6 mice. Histotripsy (1-cycle pulses, 5 Hz PRF, 30 MPa-P) was performed using a 1 MHz transducer for five different dosages for each cell line: 5, 20 or 200 pulses per location (PPL) at a single treatment point, or 5 or 10-20 PPL at multiple treatment points. MRI, bioluminescence imaging and histology were used to assess tumor ablation and treatment effects within 4-6 h post-treatment. RESULTS All treatment groups resulted in a reduction of BLI intensity for the LL/2-Luc2 tumors, with significant signal reductions for the multi-point groups. The average pre-/post-treatment BLI flux (photons/s, ×108) for the different treatment groups were: 4.39/2.19 (5 PPL single-point), 5.49/1.80 (20 PPL single-point), 3.86/1.73 (200 PPL single-point), 2.44/1.11 (5 PPL multi-point) and 5.85/0.80 (10 PPL multi-point). MRI and H&E staining showed increased tumor damage and hemorrhagic effects with increasing histotripsy dose for both GL261 and LL/2-Luc2 tumors, but the increase in tumor damage was diminished beyond 10-20 PPL for single-point treatments and outweighed by increased hemorrhage. In general, hemorrhage was confined to be within 1 mm of the treatment boundary for all groups. CONCLUSIONS Our results suggest that a lower number of histotripsy pulses at fewer focal locations can achieve substantial tumor kill while minimizing hemorrhage.
Collapse
Affiliation(s)
- Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Golin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Adam Fox
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|