1
|
Albers A, Kuberasivakumaran S, Fernández Z, Daniliuc CG, Li Y, Lee M, Geyer C, Hoffmann E, Faber C, Helfen A, Grashoff C, Masthoff M, Fernández G. Size-Controlled Self-Assembly for Bimodal In Vivo Imaging. Angew Chem Int Ed Engl 2025:e202500144. [PMID: 40035710 DOI: 10.1002/anie.202500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/06/2025]
Abstract
Contrast agents (CAs) are essential in biomedical imaging to aid in the diagnosis and therapy monitoring of disease. However, they are typically restricted to one imaging modality and have fixed properties such as size, shape, toxicity profile, or photophysical characteristics, which hampers a comprehensive view of biological processes. Herein, rationally designed dye assemblies are introduced as a unique CA platform for simultaneous multimodal and multiscale biomedical imaging. To this end, a series of amphiphilic aza-BODIPY dyes are synthesized with varying hydrophobic domains (C1, C8, C12, and C16) that self-assemble in aqueous media into nanostructures of tunable size (50 nm-1 µm) and photophysical properties. While C1 exhibits oblique-type exciton coupling and negligible emission, C8-C16 bearing longer alkyl chains undergo J-type aggregation with NIR absorption and emission and excellent photoacoustic properties. Given these advantageous features, aza-BODIPY specific, semi-quantitative fluorescence reflectance and photoacoustic imaging both in vitro and in vivo are established. Additionally, in vitro cell viability as well as murine in vivo biodistribution analysis with ex vivo validation showed excellent biocompatibility and a size-dependent biodistribution of nanostructures to different organ beds. These results broaden the scope of aqueous self-assembly to multimodal imaging and highlight its great potential for rationalizing numerous biomedical questions.
Collapse
Affiliation(s)
- Antonia Albers
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | | | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Yongsheng Li
- Department of Chemistry, Fudan University, Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Christiane Geyer
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Emily Hoffmann
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Cornelius Faber
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Anne Helfen
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carsten Grashoff
- Universität Münster, Institut für Integrative Zellbiologie und Physiologie, Schlossplatz 5, 48149, Münster, Germany
| | - Max Masthoff
- University Hospital and University of Münster, Clinic for Radiology, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
2
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
3
|
De Koninck LH, Vuong KS, Shin S, Powers JE, Averkiou MA. Delivery of Cavitation Therapy With a Modified Clinical Scanner: In Vitro Evaluation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:351-361. [PMID: 40031319 PMCID: PMC12002410 DOI: 10.1109/tuffc.2025.3536932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In this study, we design and implement pulses [1.67 MHz, 20-1000 cycles, 0.8-2.5 MPa, and 5-100 ms pulse repetition time (PRT)] suitable for microbubble cavitation treatments with a phased array of a clinical ultrasound scanner. A range of acoustic parameters was evaluated in a tissue-mimicking phantom with suspended Sonazoid microbubbles. Hydrophone measurements were used to optimize the transmit beamforming. A passive cavitation detection (PCD) system was designed to measure the microbubble scattered signals over a 1 s exposure. Postprocessing of the scattered signals evaluated frequency content to extract broadband energy and calculate the inertial cavitation dose (ICD). ICD was maximized at 1000 cycles (maximum pulse length), 5 ms (fastest firing rate), and 2.5 MPa peak negative pressure (PNP) (maximum pressure). Inertial cavitation was only sustained for about three pulses (out of hundreds fired) occurring within the first 100 ms of treatment. Temporal analysis of the first 1000-cycle pulse revealed that broadband energy is sustained for the entire pulse. We also demonstrate that while inertial cavitation is possible with clinically available pulse wave Doppler settings, ICD can be significantly increased using the new conditions suggested in this work. We have delivered successful image-guided cavitation treatment after modifying a clinical scanner and monitored the cavitation dose with a PCD system on a gel phantom with suspended microbubbles. We plan to apply this technique in vivo in animal tumor models next. This work demonstrates the first implementation of long, high-pressure pulses on a clinical scanner that users can optimize for cavitation treatments.
Collapse
|
4
|
Martinez PJ, Song JJ, Castillo JI, DeSisto J, Song KH, Green AL, Borden M. Effect of Microbubble Size, Composition, and Multiple Sonication Points on Sterile Inflammatory Response in Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ACS Biomater Sci Eng 2024; 10:7451-7465. [PMID: 39497639 DOI: 10.1021/acsbiomaterials.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB + FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNaseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 μm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 μm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO, and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.
Collapse
Affiliation(s)
- Payton J Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jane J Song
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jair I Castillo
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
5
|
Mine Y, Takada E, Sugimoto K, Moriyasu F. Principle of contrast-enhanced ultrasonography. J Med Ultrason (2001) 2024; 51:567-580. [PMID: 38780871 PMCID: PMC11499413 DOI: 10.1007/s10396-024-01443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/14/2024] [Indexed: 05/25/2024]
Abstract
Sonazoid, an ultrasound contrast agent, has been covered by insurance in Japan since January 2007 for the diagnosis of hepatic mass lesions and is widely used for diagnosing not only primary liver cancer but also liver metastases such as those from breast cancer and colorectal cancer. Contrast-enhanced ultrasound for breast mass lesions has been covered by insurance since August 2012 after phase II and phase III clinical trials showed that the diagnostic performance was significantly superior to that of B-mode and contrast-enhanced magnetic resonance imaging. This paper describes the principles of imaging techniques in contrast-enhanced ultrasonography including the filter, pulse inversion, amplitude modulation, and amplitude-modulated pulse inversion methods. The pulse inversion method, which visualizes the second-harmonic component using the nonlinear scattering characteristics of the contrast agent, is widely used regardless of the contrast agent and target organ because of its high resolution. Sonazoid has a stiffer shell and requires a higher acoustic amplitude than Sonovue to generate nonlinear vibrations. The higher transmitted sound pressure generates more tissue harmonic components. Since pulse inversion allows visualization of the tissue harmonic components, amplitude modulation and amplitude-modulated pulse inversion, which include few tissue harmonic components, are primarily used. Amplitude modulation methods detect nonlinear signals from the contrast agent in the fundamental band. The mechanism of the amplitude modulation is considered to be changes in the echo signal's phase depending on the sound pressure. Since the tissue-derived component is minor in amplitude modulation methods, good contrast sensitivity can be obtained.
Collapse
Affiliation(s)
- Yoshitaka Mine
- Department of Radiological Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan.
| | - Etsuo Takada
- Center of Medical Ultrasonics, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Fuminori Moriyasu
- Center for Cancer Ablation Therapy, Sanno Hospital, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
6
|
Shen X, Wu P, Lin W. A new model for bubble cluster dynamics in a viscoelastic media. ULTRASONICS SONOCHEMISTRY 2024; 107:106890. [PMID: 38693010 PMCID: PMC11176833 DOI: 10.1016/j.ultsonch.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bubble cluster dynamics in viscoelastic media is instructive for ultrasound diagnosis and therapy. In this paper, we propose a statistical model for bubble cluster dynamics in viscoelastic media considering the radius distribution of bubble nuclei. By investigating and comparing the response for a bubble in three conditions: single bubble; multi-bubble with the same radius; multi-bubble with different radius, the following rules are found: The promotion or suppression of the bubble cluster on the bubble vibration is not monotonous with the increase of the number of bubbles. The promotion or suppression of the bubble cluster on the bubble vibration varies alternately with the frequency. The effect of bubble cluster on bubble vibration is mostly suppressed when the driving acoustic pressure amplitude pa is high (5000 kPa). Usually, the bubble cluster promotes the vibration of the large bubbles (R0 = 10 μm) more, or suppresses it less.
Collapse
Affiliation(s)
- Xiaozhuo Shen
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Martinez PJ, Song JJ, Castillo J, DeSisto J, Song KH, Green AL, Borden M. Effect of Microbubble Size, Composition and Multiple Sonication Points on Sterile Inflammatory Response in Focused Ultrasound-Mediated Blood-Brain Barrier Opening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591538. [PMID: 38746278 PMCID: PMC11092473 DOI: 10.1101/2024.04.28.591538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB+FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNAseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 μm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 μm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.
Collapse
Affiliation(s)
- Payton J. Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | - Jane J. Song
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | - Jair Castillo
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora CO 80045, United States
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder CO 80303, United States
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora CO 80045, United States
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder CO 80303, United States
| |
Collapse
|
8
|
Krolak C, Dighe M, Clark A, Shumaker M, Yeung R, Barr RG, Kono Y, Averkiou M. Quantification of Hepatocellular Carcinoma Vascular Dynamics With Contrast-Enhanced Ultrasound for LI-RADS Implementation. Invest Radiol 2024; 59:337-344. [PMID: 37725492 PMCID: PMC10939991 DOI: 10.1097/rli.0000000000001022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
OBJECTIVE The aim of this study is to describe a comprehensive contrast-enhanced ultrasound (CEUS) imaging protocol and analysis method to implement CEUS LI-RADS (Liver Imaging Reporting and Data System) in a quantifiable manner. The methods that are validated with a prospective single-center study aim to simplify CEUS LI-RADS evaluation, remove observer bias, and potentially improve the sensitivity of CEUS LI-RADS. MATERIALS AND METHODS This prospective single-center study enrolled patients with hepatocellular carcinoma (April 2021-June 2022; N = 31; mean age ± SD, 67 ± 6 years; 24 men/7 women). For each patient, at least 2 CEUS loops spanning over 5 minutes were collected for different lesion scan planes using an articulated arm to hold the transducer. Automatic respiratory gating and motion compensation algorithms removed errors due to breathing motion. The long axis of the lesion was measured in the contrast and fundamental images to capture nodule size. Parametric processing of time-intensity curve analysis on linearized data provided quantifiable information of the wash-in and washout dynamics via rise time ( RT ) and degree of washout ( DW ) parameters extracted from the time-intensity curve, respectively. A Welch t test was performed between lesion and parenchyma RT for each lesion to confirm statistically significant differences. P values for bootstrapped 95% confidence intervals of the relative degree of washout ( rDW ), ratio of DW between the lesion and surrounding parenchyma, were computed to quantify lesion washout. Coefficient of variation (COV) of RT , DW , and rDW was calculated for each patient between injections for both the lesion and surrounding parenchyma to gauge reproducibility of these metrics. Spearman rank correlation tests were performed among size, RT , DW , and rDW values to evaluate statistical dependence between the variables. RESULTS The mean ± SD lesion diameter was 23 ± 8 mm. The RT for all lesions, capturing arterial phase hyperenhancement, was shorter than that of surrounding liver parenchyma ( P < 0.05). All lesions also demonstrated significant ( P < 0.05) but variable levels of washout at both 2-minute and 5-minute time points, quantified in rDW . The COV of RT for the lesion and surrounding parenchyma were both 11%, and the COV of DW and rDW at 2 and 5 minutes ranged from 22% to 31%. Statistically significant relationships between lesion and parenchyma RT and between lesion RT and lesion DW at the 2- and 5-minute time points were found ( P < 0.05). CONCLUSIONS The imaging protocol and analysis method presented provide robust, quantitative metrics that describe the dynamic vascular patterns of LI-RADS 5 lesions classified as hepatocellular carcinomas. The RT of the bolus transit quantifies the arterial phase hyperenhancement, and the DW and rDW parameters quantify the washout from linearized CEUS intensity data. This unique methodology is able to implement the CEUS-LIRADS scheme in a quantifiable manner for the first time and remove its existing issues of currently being qualitative and suffering from subjective evaluations.
Collapse
Affiliation(s)
- Connor Krolak
- University of Washington Department of Bioengineering, Seattle, USA
| | - Manjiri Dighe
- University of Washington Department of Radiology, Seattle, USA
| | - Alicia Clark
- University of Washington Department of Bioengineering, Seattle, USA
| | - Marissa Shumaker
- University of Washington Department of Bioengineering, Seattle, USA
| | - Raymond Yeung
- University of Washington Department of Surgery, Seattle, USA
| | | | - Yuko Kono
- University of California at San Diego Department of Radiology, San Diego, USA
| | | |
Collapse
|
9
|
Yoshida K, Omura M, Tamura K, Hirata S, Yamaguchi T. Detection of Individual Microbubbles by Burst-Wave-Aided Contrast-Enhanced Active Doppler Ultrasonography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:380-394. [PMID: 38261486 DOI: 10.1109/tuffc.2024.3357140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We propose burst-wave-aided, contrast-enhanced, active Doppler ultrasonography for visualizing lymph vessels. This technique forces ultrasound contrast agents (UCAs) to move using the acoustic radiation force induced by burst waves with low amplitude while suppressing their destruction. Using a flow phantom, we measured the average, decrease rate of echo intensity [i.e., pulse intensity integral (PII)], and the velocity of individual contrast agents, which directly affects the performance of imaging and tracking contrast agents under stationary flow conditions. Comparison with pulse-inversion Doppler without exposure to the burst wave demonstrated that the velocity of the contrast agents could be enhanced up to several tens of millimeters per second by the effect of the burst wave, maximizing the echo intensity extracted by a clutter filter. The contrast ratio (CR), defined as the ratio of the contrast echo to the phantom echo outside the channel, did not change appreciably, even when the lower cut-off velocity of the clutter filter was increased up to 10 mm/s. This implies a better robustness against the motion of the tissue. In addition, the performance for detecting contrast agents (i.e., echo intensity) was superior or similar to that of pulse-inversion Doppler, even in undesirable conditions where the flow had a velocity component in the opposite direction to that of the acoustic radiation force. The echo intensity was lower or the same as that in pulse-inversion Doppler, demonstrating the potential for suppressing the destruction of contrast agents and enabling long-term observations. From these results, we expect that the proposed method will be beneficial for visualizing lymph vessels.
Collapse
|
10
|
Juang EK, De Koninck LH, Vuong KS, Gnanaskandan A, Hsiao CT, Averkiou MA. Controlled Hyperthermia With High-Intensity Focused Ultrasound and Ultrasound Contrast Agent Microbubbles in Porcine Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1852-1860. [PMID: 37246049 PMCID: PMC10330369 DOI: 10.1016/j.ultrasmedbio.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE The objective of this work was to study microbubble-enhanced temperature elevation with high-intensity focused ultrasound (HIFU) at different acoustic pressures and under image guidance. The microbubbles were administered with either local or vascular injections (that mimic systemic injections) in perfused and non-perfused ex vivo porcine liver under ultrasound image guidance. METHODS Porcine liver was insonified for 30 s with a single-element HIFU transducer (0.9 MHz, 0.413 ms, 82% duty cycle, focal pressures of 0.6-3.5 MPa). Contrast microbubbles were injected either locally or through the vasculature. A needle thermocouple at the focus measured temperature elevation. Diagnostic ultrasound (Philips iU22, C5-1 probe) guided placement of the thermocouple and delivery of microbubbles and monitored the procedure in real time. RESULTS At lower acoustic pressures (0.6 and 1.2 MPa) in non-perfused liver, inertial cavitation of the injected microbubbles led to greater temperatures at the focus compared with HIFU-only treatments. At higher pressures (2.4 and 3.5 MPa) native inertial cavitation in the tissue (without injecting microbubbles) resulted in temperature elevations similar to those after injecting microbubbles. The heated area was larger when using microbubbles at all pressures. In the presence of perfusion, only local injections provided a sufficiently high concentration of microbubbles necessary for significant temperature enhancement. CONCLUSION Local injections of microbubbles provide a higher concentration of microbubbles in a smaller area, avoiding acoustic shadowing, and can lead to higher temperature elevation at lower pressures and increase the size of the heated area at all pressures.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lance H De Koninck
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kaleb S Vuong
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Aswin Gnanaskandan
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | |
Collapse
|
11
|
Seo K, Zhang Y, Toyota T, Hayashi H, Hirata S, Yamaguchi T, Yoshida K. Release of liposomally formulated near-infrared fluorescent probes included in giant cluster vesicles by ultrasound irradiation. ULTRASONICS 2023; 134:107102. [PMID: 37454454 DOI: 10.1016/j.ultras.2023.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Detection of tumors and regional lymph nodes during surgery has been proposed in the diagnosis of lymphatic metastasis and the surgical treatment of malignant diseases. Giant cluster vesicles (GCVs), including liposomally formulated indocyanine green (LP-ICG) derivatives, are a possible candidate for agents to realize the two contradictory properties, i.e., retention in tissue for lesion-marking and trace for sentinel lymph nodes (SLNs) identification. We attempted to release the LP-ICG derivatives from GCVs using ultrasound contrast agents (UCAs) under ultrasound irradiation. An absorption spectrophotometer quantitatively evaluated the amounts of released LP-ICG derivatives. As a result, we demonstrated that it depended on conditions for sound pressure, burst length, and number density of UCAs, and had a sound pressure threshold independent of burst length and number density of UCAs. The results will aid to determine appropriate conditions to maximize the released amount of LP-ICG derivatives while keeping safety.
Collapse
Affiliation(s)
- Kota Seo
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yiting Zhang
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Taro Toyota
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shinnosuke Hirata
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
12
|
de Maar JS, Zandvliet MMJM, Veraa S, Tobón Restrepo M, Moonen CTW, Deckers R. Ultrasound and Microbubbles Mediated Bleomycin Delivery in Feline Oral Squamous Cell Carcinoma—An In Vivo Veterinary Study. Pharmaceutics 2023; 15:pharmaceutics15041166. [PMID: 37111651 PMCID: PMC10142092 DOI: 10.3390/pharmaceutics15041166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
To investigate the feasibility and tolerability of ultrasound and microbubbles (USMB)-enhanced chemotherapy delivery for head and neck cancer, we performed a veterinary trial in feline companion animals with oral squamous cell carcinomas. Six cats were treated with a combination of bleomycin and USMB therapy three times, using the Pulse Wave Doppler mode on a clinical ultrasound system and EMA/FDA approved microbubbles. They were evaluated for adverse events, quality of life, tumour response and survival. Furthermore, tumour perfusion was monitored before and after USMB therapy using contrast-enhanced ultrasound (CEUS). USMB treatments were feasible and well tolerated. Among 5 cats treated with optimized US settings, 3 had stable disease at first, but showed disease progression 5 or 11 weeks after first treatment. One cat had progressive disease one week after the first treatment session, maintaining a stable disease thereafter. Eventually, all cats except one showed progressive disease, but each survived longer than the median overall survival time of 44 days reported in literature. CEUS performed immediately before and after USMB therapy suggested an increase in tumour perfusion based on an increase in median area under the curve (AUC) in 6 out of 12 evaluated treatment sessions. In this small hypothesis-generating study, USMB plus chemotherapy was feasible and well-tolerated in a feline companion animal model and showed potential for enhancing tumour perfusion in order to increase drug delivery. This could be a forward step toward clinical translation of USMB therapy to human patients with a clinical need for locally enhanced treatment.
Collapse
Affiliation(s)
- Josanne S. de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Maurice M. J. M. Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Stefanie Veraa
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Mauricio Tobón Restrepo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Chrit T. W. Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
13
|
Kaushik A, Khan AH, Pratibha, Dalvi SV, Shekhar H. Effect of temperature on the acoustic response and stability of size-isolated protein-shelled ultrasound contrast agents and SonoVue. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2324. [PMID: 37092939 DOI: 10.1121/10.0017682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Limited work has been reported on the acoustic and physical characterization of protein-shelled UCAs. This study characterized bovine serum albumin (BSA)-shelled microbubbles filled with perfluorobutane gas, along with SonoVue, a clinically approved contrast agent. Broadband attenuation spectroscopy was performed at room (23 ± 0.5 °C) and physiological (37 ± 0.5 °C) temperatures over the period of 20 min for these agents. Three size distributions of BSA-shelled microbubbles, with mean sizes of 1.86 μm (BSA1), 3.54 μm (BSA2), and 4.24 μm (BSA3) used. Viscous and elastic coefficients for the microbubble shell were assessed by fitting de Jong model to the measured attenuation spectra. Stable cavitation thresholds (SCT) and inertial cavitation thresholds (ICT) were assessed at room and physiological temperatures. At 37 °C, a shift in resonance frequency was observed, and the attenuation coefficient was increased relative to the measurement at room temperature. At physiological temperature, SCT and ICT were lower than the room temperature measurement. The ICT was observed to be higher than SCT at both temperatures. These results enhance our understanding of temperature-dependent properties of protein-shelled UCAs. These findings study may guide the rational design of protein-shelled microbubbles and help choose suitable acoustic parameters for applications in imaging and therapy.
Collapse
Affiliation(s)
- Anuj Kaushik
- Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Pratibha
- Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Himanshu Shekhar
- Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
14
|
Keller SB, Lai TY, De Koninck L, Averkiou MA. Investigation of the Phase of Nonlinear Echoes From Microbubbles During Amplitude Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1032-1040. [PMID: 35073259 DOI: 10.1109/tuffc.2022.3143810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) imaging relies on distinguishing between microbubble and tissue echoes. Amplitude modulation (AM), a nonlinear pulsing scheme, has been developed to take advantage of the amplitude-dependent nonlinearity of microbubble echoes. However, with AM, tissue nonlinear propagation can also degrade the image contrast. Segmentation of CEUS images based on amplitude-dependent phase difference in the echoes, defined in this article as [Formula: see text], has been proposed as an additional method of enhancing contrast-to-tissue ratio as tissue is not expected to create the same degree of [Formula: see text]; however, this has not been robustly investigated. In this work, we evaluate the source of [Formula: see text] through simulations of unshelled versus shelled microbubble oscillation and simulations of nonlinear propagation in tissue. We then validate the simulated [Formula: see text] results with experimental [Formula: see text] measurements during in vitro scattering and imaging in a flow phantom. We show that shelled and unshelled microbubbles resulted in a [Formula: see text] with similar overall magnitude with some differences in trends, and that tissue echoes have a small yet detectable degree of [Formula: see text] due to nonlinear propagation. The results from this work can help inform optimal parameter selection for phase segmentation and implementation on a clinical scanner.
Collapse
|
15
|
Rousou C, de Maar J, Qiu B, van der Wurff-Jacobs K, Ruponen M, Urtti A, Oliveira S, Moonen C, Storm G, Mastrobattista E, Deckers R. The Effect of Microbubble-Assisted Ultrasound on Molecular Permeability across Cell Barriers. Pharmaceutics 2022; 14:494. [PMID: 35335871 PMCID: PMC8949944 DOI: 10.3390/pharmaceutics14030494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
The combination of ultrasound and microbubbles (USMB) has been applied to enhance drug permeability across tissue barriers. Most studies focused on only one physicochemical aspect (i.e., molecular weight of the delivered molecule). Using an in vitro epithelial (MDCK II) cell barrier, we examined the effects of USMB on the permeability of five molecules varying in molecular weight (182 Da to 20 kDa) and hydrophilicity (LogD at pH 7.4 from 1.5 to highly hydrophilic). Treatment of cells with USMB at increasing ultrasound pressures did not have a significant effect on the permeability of small molecules (molecular weight 259 to 376 Da), despite their differences in hydrophilicity (LogD at pH 7.4 from -3.2 to 1.5). The largest molecules (molecular weight 4 and 20 kDa) showed the highest increase in the epithelial permeability (3-7-fold). Simultaneously, USMB enhanced intracellular accumulation of the same molecules. In the case of the clinically relevant anti- C-X-C Chemokine Receptor Type 4 (CXCR4) nanobody (molecular weight 15 kDa), USMB enhanced paracellular permeability by two-fold and increased binding to retinoblastoma cells by five-fold. Consequently, USMB is a potential tool to improve the efficacy and safety of the delivery of drugs to organs protected by tissue barriers, such as the eye and the brain.
Collapse
Affiliation(s)
- Charis Rousou
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| | - Josanne de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| | - Boning Qiu
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
| | - Kim van der Wurff-Jacobs
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland; (M.R.); (A.U.)
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland; (M.R.); (A.U.)
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
- Institute of Chemistry, Saint Petersburg State University, Lieutenant Schmidt emb., 11/2, 199034 Saint Petersburg, Russia
| | - Sabrina Oliveira
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Chrit Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| | - Gert Storm
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
- Department of Biomaterials Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| |
Collapse
|
16
|
de Maar JS, Rousou C, van Elburg B, Vos HJ, Lajoinie GPR, Bos C, Moonen CTW, Deckers R. Ultrasound-Mediated Drug Delivery With a Clinical Ultrasound System: In Vitro Evaluation. Front Pharmacol 2021; 12:768436. [PMID: 34737709 PMCID: PMC8560689 DOI: 10.3389/fphar.2021.768436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.
Collapse
Affiliation(s)
- Josanne S de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Charis Rousou
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Benjamin van Elburg
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Hendrik J Vos
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Guillaume P R Lajoinie
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens Bos
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chrit T W Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Keller SB, Averkiou MA. The Role of Ultrasound in Modulating Interstitial Fluid Pressure in Solid Tumors for Improved Drug Delivery. Bioconjug Chem 2021; 33:1049-1056. [PMID: 34514776 DOI: 10.1021/acs.bioconjchem.1c00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The unique microenvironment of solid tumors, including desmoplasia within the extracellular matrix, enhanced vascular permeability, and poor lymphatic drainage, leads to an elevated interstitial fluid pressure which is a major barrier to drug delivery. Reducing tumor interstitial fluid pressure is one proposed method of increasing drug delivery to the tumor. The goal of this topical review is to describe recent work using focused ultrasound with or without microbubbles to modulate tumor interstitial fluid pressure, through either thermal or mechanical effects on the extracellular matrix and the vasculature. Furthermore, we provide a review on techniques in which ultrasound imaging may be used to diagnose elevated interstitial fluid pressure within solid tumors. Ultrasound-based techniques show high promise in diagnosing and treating elevated interstitial pressure to enhance drug delivery.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Michalakis A Averkiou
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Clark A, Bonilla S, Suo D, Shapira Y, Averkiou M. Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2296-2309. [PMID: 33985825 PMCID: PMC8243806 DOI: 10.1016/j.ultrasmedbio.2021.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 05/11/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive tool that can be used for targeted thermal ablation treatments. Currently, HIFU is clinically approved for treatment of uterine fibroids, various cancers, and certain brain applications. However, for brain applications such as essential tremors, HIFU can only be used to treat limited areas confined to the center of the brain because of geometrical limitations (shape of the transducer and skull). A major obstacle to advancing this technology is the inability to treat non-central brain locations without causing damage to the skin and/or skull. Previous research has indicated that cavitation-induced bubbles or microbubble contrast agents can be used to enhance HIFU treatments by increasing ablation regions and shortening acoustic exposures at lower acoustic pressures. However, little research has been done to explore the interplay between microbubble concentration and pressure amplitude on HIFU treatments. We developed an in vitro experimental setup to study lesion formation at three different acoustic pressures and three microbubble concentrations. Real-time ultrasound imaging was integrated to monitor initial microbubble concentration and subsequent behavior during the HIFU treatments. Depending on the pressure used for the HIFU treatment, there was an optimal concentration of microbubbles that led to enhanced heating in the focal area. If the concentration of microbubbles was too high, the treatment was detrimentally affected because of non-linear attenuation by the pre-focal microbubbles. Additionally, the real-time ultrasound imaging provided a reliable method to monitor microbubble activity during the HIFU treatments, which is important for translation to in vivo HIFU applications with microbubbles.
Collapse
Affiliation(s)
- Alicia Clark
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sierra Bonilla
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | - Michalakis Averkiou
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|