1
|
Williams RP, Kreider W, Nartov FA, Karzova MM, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. Synthesized acoustic holography: A method to evaluate steering and focusing performance of ultrasound arrays. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2750-2762. [PMID: 40214264 PMCID: PMC11993273 DOI: 10.1121/10.0036225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/26/2025] [Accepted: 03/05/2025] [Indexed: 04/14/2025]
Abstract
Acoustic holography is a commonly used tool to characterize the three-dimensional acoustic fields and the vibration patterns of ultrasound (US) transducers and arrays. It involves recording the pressure distribution over a transverse plane in front of the transducer via a two-dimensional hydrophone scan, and subsequent forward or backward field projection. For multi-element arrays capable of electronic focus steering, a separate hologram is needed to describe each beam configuration of interest. Since medical US arrays commonly use tens to hundreds of beam configurations, their characterization is very time consuming. Here, we show that holograms for the field of each array element can be recorded with a single hydrophone scan by pulsing the elements sequentially at each location. This approach was validated using a 1 MHz 64-element diagnostic-therapeutic linear array. Holograms of each element combined with backpropagation to the array surface revealed the variability of vibration patterns and crosstalk between channels and elements. Electronically steered beam configurations resulting from boundary conditions synthesized from elemental holograms and directly measured holograms were found to be in excellent agreement. The results demonstrate the method's potential in detecting defects and other nonideal array behavior and in rapid and accurate characterization of all relevant beam configurations.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, University of Washington School of Medicine, 1959 Northeast Pacific Street, Box 356510, Seattle, Washington 98195, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
| | - Fedor A Nartov
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Maria M Karzova
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, University of Washington School of Medicine, 1959 Northeast Pacific Street, Box 356510, Seattle, Washington 98195, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle, Washington 98105, USA
| |
Collapse
|
2
|
Ponomarchuk E, Thomas G, Song M, Wang YN, Totten S, Schade G, Thiel J, Bruce M, Khokhlova V, Khokhlova T. Advancing Boiling Histotripsy Dose in Ex Vivo And In Vivo Renal Tissues Via Quantitative Histological Analysis and Shear Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1936-1944. [PMID: 39317625 DOI: 10.1016/j.ultrasmedbio.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE In the context of developing boiling histotripsy (BH) as a potential clinical approach for non-invasive mechanical ablation of kidney tumors, the concept of BH dose (BHD) was quantitatively investigated in porcine and canine kidney models in vivo and ex vivo. METHODS Volumetric lesions were produced in renal tissue using a 1.5-MHz 256-element HIFU-array with various pulsing protocols: pulse duration tp = 1-10 ms, number of pulses per point ppp = 1-15. Two BHD metrics were evaluated: BHD1 = ppp, BHD2 = tp × ppp. Quantitative assessment of lesion completeness was performed by their histological analysis and assignment of damage score to different renal compartments (i.e., cortex, medulla, and sinus). Shear wave elastography (SWE) was used to measure the Young's modulus of renal compartments in vivo vs ex vivo, and before vs after BH treatments. RESULTS In vivo tissue required lower BH doses to achieve identical degree of fractionation as compared to ex vivo. Renal cortex (homogeneous, low in collagen) was equal or higher in stiffness than medulla (anisotropic, collagenous), 5.8-12.2 kPa vs 4.7-9.6 kPa, but required lower BH doses to be fully fractionated. Renal sinus (fatty, irregular, with abundant collagenous structures) was significantly softer ex vivo vs in vivo, 4.9-5.1 kPa vs 9.7-15.2 kPa, but was barely damaged in either case with any tested BH protocols. BHD1 was shown to be relevant for planning the treatment of renal cortex (sufficient BHD1 = 5 pulses in vivo and 10 pulses ex vivo), while none of the tested doses resulted in complete fractionation of medulla or sinus. Post-treatment SWE imaging revealed reduction of tissue stiffness ex vivo by 27-58%, increasing with the applied dose, and complete absence of shear waves within in vivo lesions, both indicative of tissue liquefaction. CONCLUSION The results imply that tissue resistance to mechanical fractionation, and hence required BH dose, are not solely determined by tissue stiffness but also depend on its composition and structural arrangement, as well as presence of perfusion. The SWE-derived reduction of tissue stiffness with increasing BH doses correlated with tissue damage score, indicating potential of SWE for post-treatment confirmation of BH lesion completeness.
Collapse
Affiliation(s)
| | - Gilles Thomas
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Minho Song
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Stephanie Totten
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - George Schade
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jeff Thiel
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Tatiana Khokhlova
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Rosnitskiy PB, Khokhlova TD, Schade GR, Sapozhnikov OA, Khokhlova VA. Treatment Planning and Aberration Correction Algorithm for HIFU Ablation of Renal Tumors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:341-353. [PMID: 38231825 PMCID: PMC11003458 DOI: 10.1109/tuffc.2024.3355390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-intensity focused ultrasound (HIFU) applications for thermal or mechanical ablation of renal tumors often encounter challenges due to significant beam aberration and refraction caused by oblique beam incidence, inhomogeneous tissue layers, and presence of gas and bones within the beam. These losses can be significantly mitigated through sonication geometry planning, patient positioning, and aberration correction using multielement phased arrays. Here, a sonication planning algorithm is introduced, which uses the simulations to select the optimal transducer position and evaluate the effect of aberrations and acoustic field quality at the target region after aberration correction. Optimization of transducer positioning is implemented using a graphical user interface (GUI) to visualize a segmented 3-D computed tomography (CT)-based acoustic model of the body and to select sonication geometry through a combination of manual and automated approaches. An HIFU array (1.5 MHz, 256 elements) and three renal cell carcinoma (RCC) cases with different tumor locations and patient body habitus were considered. After array positioning, the correction of aberrations was performed using a combination of backpropagation from the focus with an ordinary least squares (OLS) optimization of phases at the array elements. The forward propagation was simulated using a combination of the Rayleigh integral and k-space pseudospectral method (k-Wave toolbox). After correction, simulated HIFU fields showed tight focusing and up to threefold higher maximum pressure within the target region. The addition of OLS optimization to the aberration correction method yielded up to 30% higher maximum pressure compared to the conventional backpropagation and up to 250% higher maximum pressure compared to the ray-tracing method, particularly in strongly distorted cases.
Collapse
|
5
|
Ponomarchuk E, Thomas G, Song M, Krokhmal A, Kvashennikova A, Wang YN, Khokhlova V, Khokhlova T. Histology-based quantification of boiling histotripsy outcomes via ResNet-18 network: Towards mechanical dose metrics. ULTRASONICS 2024; 138:107225. [PMID: 38141356 DOI: 10.1016/j.ultras.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
This work was focused on the newly developed ultrasonic approach for non-invasive surgery - boiling histotripsy (BH) - recently proposed for mechanical ablation of tissues using pulsed high intensity focused ultrasound (HIFU). The BH lesion is known to depend in size and shape on exposure parameters and mechanical properties, structure and composition of tissue being treated. The aim of this work was to advance the concept of BH dose by investigating quantitative relationships between the parameters of the lesion, pulsing protocols, and targeted tissue properties. A HIFU focus of a 1.5 MHz 256-element array driven by power-enhanced Verasonics system was electronically steered along the grid within 12 × 4 × 12 mm volume to produce volumetric lesions in porcine liver (soft, with abundant collagenous structures) and bovine myocardium (stiff, homogenous cellular) ex vivo tissues with various pulsing protocols (1-10 ms pulses, 1-15 pulses per point). Quantification of the lesion size and completeness was performed through serial histological sectioning, and a computer vision approach using a combination of manual and automated detection of fully fractionated and residual tissue based on neural network ResNet-18 was developed. Histological sample fixation led to underestimation of BH ablation rate compared to the ultrasound-based estimations, and provided similar qualitative feedback as did gross inspection. This suggests that gross observation may be sufficient for qualitatively evaluating the BH treatment completeness. BH efficiency in liver tissue was shown to be insensitive to the changes in pulsing protocol within the tested parameter range, whereas in bovine myocardium the efficiency increased with either increasing pulse length or number of pulses per point or both. The results imply that one universal mechanical dose metric applicable to an arbitrary tissue type is unlikely to be established. The dose metric as a product of the BH pulse duration and the number of pulses per sonication point (BHD1) was shown to be more relevant for initial planning of fractionation of collagenous tissues. The dose metric as a number of pulses per point (BHD2) is more suitable for the treatment planning of softer targets primarily containing cellular tissue, allowing for significant acceleration of treatment using shorter pulses.
Collapse
Affiliation(s)
| | - Gilles Thomas
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Minho Song
- Department of Gastroenterology, University of Washington, Seattle, USA
| | - Alisa Krokhmal
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Tatiana Khokhlova
- Department of Gastroenterology, University of Washington, Seattle, USA
| |
Collapse
|
6
|
Thomas GPL, Khokhlova TD, Sapozhnikov OA, Khokhlova VA. Enhancement of Boiling Histotripsy by Steering the Focus Axially During the Pulse Delivery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:865-875. [PMID: 37318967 PMCID: PMC10671942 DOI: 10.1109/tuffc.2023.3286759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Boiling histotripsy (BH) is a pulsed high-intensity focused ultrasound (HIFU) method relying on the generation of high-amplitude shocks at the focus, localized enhanced shock-wave heating, and bubble activity driven by shocks to induce tissue liquefaction. BH uses sequences of 1-20 ms long pulses with shock fronts of over 60 MPa amplitude, initiates boiling at the focus of the HIFU transducer within each pulse, and the remainder shocks of the pulse then interact with the boiling vapor cavities. One effect of this interaction is the creation of a prefocal bubble cloud due to reflection of shocks from the initially generated mm-sized cavities: the shocks are inverted when reflected from a pressure-release cavity wall resulting in sufficient negative pressure to reach intrinsic cavitation threshold in front of the cavity. Secondary clouds then form due to shock-wave scattering from the first one. Formation of such prefocal bubble clouds has been known as one of the mechanisms of tissue liquefaction in BH. Here, a methodology is proposed to enlarge the axial dimension of this bubble cloud by steering the HIFU focus toward the transducer after the initiation of boiling until the end of each BH pulse and thus to accelerate treatment. A BH system comprising a 1.5 MHz 256-element phased array connected to a Verasonics V1 system was used. High-speed photography of BH sonications in transparent gels was performed to observe the extension of the bubble cloud resulting from shock reflections and scattering. Volumetric BH lesions were then generated in ex vivo tissue using the proposed approach. Results showed up to almost threefold increase of the tissue ablation rate with axial focus steering during the BH pulse delivery compared to standard BH.
Collapse
|
7
|
Williams RP, Karzova MM, Yuldashev PV, Kaloev AZ, Nartov FA, Khokhlova VA, Cunitz BW, Morrison KP, Khokhlova TD. Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:693-707. [PMID: 37074881 PMCID: PMC10712801 DOI: 10.1109/tuffc.2023.3268603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) uses nonlinearly distorted millisecond-long ultrasound pulses of moderate intensity to induce inertial cavitation in tissue without administration of contrast agents. The resulting mechanical disruption permeabilizes the tissue and enhances the diffusion of systemically administered drugs. This is especially beneficial for tissues with poor perfusion such as pancreatic tumors. Here, we characterize the performance of a dual-mode ultrasound array designed for image-guided pHIFU therapies in producing inertial cavitation and ultrasound imaging. The 64-element linear array (1.071 MHz, an aperture of 14.8×51.2 mm, and a pitch of 0.8 mm) with an elevational focal length of 50 mm was driven by the Verasonics V-1 ultrasound system with extended burst option. The attainable focal pressures and electronic steering range in linear and nonlinear operating regimes (relevant to pHIFU treatments) were characterized through hydrophone measurements, acoustic holography, and numerical simulations. The steering range at ±10% from the nominal focal pressure was found to be ±6 mm axially and ±11 mm azimuthally. Focal waveforms with shock fronts of up to 45 MPa and peak negative pressures up to 9 MPa were achieved at focusing distances of 38-75 mm from the array. Cavitation behaviors induced by isolated 1-ms pHIFU pulses in optically transparent agarose gel phantoms were observed by high-speed photography across a range of excitation amplitudes and focal distances. For all focusing configurations, the appearance of sparse, stationary cavitation bubbles occurred at the same P- threshold of 2 MPa. As the output level increased, a qualitative change in cavitation behavior occurred, to pairs and sets of proliferating bubbles. The pressure P- at which this transition was observed corresponded to substantial nonlinear distortion and shock formation in the focal region and was thus dependent on the focal distance of the beam ranging within 3-4 MPa for azimuthal F -numbers of 0.74-1.5. The array was capable of B-mode imaging at 1.5 MHz of centimeter-sized targets in phantoms and in vivo pig tissues at depths of 3-7 cm, relevant to pHIFU applications in abdominal targets.
Collapse
|
8
|
Karzova MM, Kreider W, Partanen A, Khokhlova TD, Sapozhnikov OA, Yuldashev PV, Khokhlova VA. Comparative Characterization of Nonlinear Ultrasound Fields Generated by Sonalleve V1 and V2 MR-HIFU Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:521-537. [PMID: 37030675 PMCID: PMC10280052 DOI: 10.1109/tuffc.2023.3261420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A Sonalleve magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) clinical system (Profound Medical, Mississauga, ON, Canada) has been shown to generate nonlinear ultrasound fields with shocks up to 100 MPa at the focus as required for HIFU applications such as boiling histotripsy of hepatic and renal tumors. The Sonalleve system has two versions V1 and V2 of the therapeutic array, with differences in focusing angle, focus depth, arrangement of elements, and the size of a central opening that is twice larger in the V2 system compared to the V1. The goal of this study was to compare the performance of the V1 and V2 transducers for generating high-amplitude shock-wave fields and to reveal the impact of different array geometries on shock amplitudes at the focus. Nonlinear modeling of the field in water using boundary conditions reconstructed from holography measurements shows that at the same power output, the V2 array generates 10-15-MPa lower shock amplitudes at the focus. Consequently, substantially higher power levels are required for the V2 system to reach the same shock-wave exposure conditions in histotripsy-type treatments. Although this difference is mainly caused by the smaller focusing angle of the V2 array, the larger central opening of the V2 array has a nontrivial impact. By excluding coherently interacting weakly focused waves coming from the central part of the source, the presence of the central opening results in a somewhat higher effective focusing angle and thus higher shock amplitudes at the focus. Axisymmetric equivalent source models were constructed for both arrays, and the importance of including the central opening was demonstrated. These models can be used in the "HIFU beam" software for simulating nonlinear fields of the Sonalleve V1 and V2 systems in water and flat-layered biological tissues.
Collapse
|
9
|
Wear KA, Shah A. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:112-119. [PMID: 36178990 DOI: 10.1109/tuffc.2022.3211183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequency-dependent effective sensitive element radius [Formula: see text] is a key parameter for elucidating physical mechanisms of hydrophone operation. In addition, it is essential to know [Formula: see text] to correct for hydrophone output voltage reduction due to spatial averaging across the hydrophone sensitive element surface. At low frequencies, [Formula: see text] is greater than geometrical sensitive element radius ag . Consequently, at low frequencies, investigators can overrate their hydrophone spatial resolution. Empirical models for [Formula: see text] for membrane, needle, and fiber-optic hydrophones have been obtained previously. In this article, an empirical model for [Formula: see text] for capsule hydrophones is presented, so that models are now available for the four most common hydrophone types used in biomedical ultrasound. The [Formula: see text] value was estimated from directivity measurements (over the range from 1 to 20 MHz) for five capsule hydrophones (three with [Formula: see text] and two with [Formula: see text]). The results suggest that capsule hydrophones behave according to a "rigid piston" model for k a g ≥ 0.7 ( k = 2π /wavelength). Comparing the four hydrophone types, the low-frequency discrepancy between [Formula: see text] and ag was found to be greatest for membrane hydrophones, followed by capsule hydrophones, and smallest for needle and fiber-optic hydrophones. Empirical models for [Formula: see text] are helpful for choosing an appropriate hydrophone for an experiment and for correcting for spatial averaging (over the sensitive element surface) in pressure and beamwidth measurements. When reporting hydrophone-based pressure measurements, investigators should specify [Formula: see text] at the center frequency (which may be estimated from the models presented here) in addition to ag .
Collapse
|
10
|
Harris GR, Howard SM, Hurrell AM, Lewin PA, Schafer ME, Wear KA, Wilkens V, Zeqiri B. Hydrophone Measurements for Biomedical Ultrasound Applications: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:85-100. [PMID: 36215339 PMCID: PMC10079648 DOI: 10.1109/tuffc.2022.3213185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article presents basic principles of hydrophone measurements, including mechanisms of action for various hydrophone designs, sensitivity and directivity calibration procedures, practical considerations for performing measurements, signal processing methods to correct for both frequency-dependent sensitivity and spatial averaging across the hydrophone sensitive element, uncertainty in hydrophone measurements, special considerations for high-intensity therapeutic ultrasound, and advice for choosing an appropriate hydrophone for a particular measurement task. Recommendations are made for information to be included in hydrophone measurement reporting.
Collapse
|
11
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Song M, Thomas GPL, Khokhlova VA, Sapozhnikov OA, Bailey MR, Maxwell AD, Yuldashev PV, Khokhlova TD. Quantitative Assessment of Boiling Histotripsy Progression Based on Color Doppler Measurements. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3255-3269. [PMID: 36197870 PMCID: PMC9741864 DOI: 10.1109/tuffc.2022.3212266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boiling histotripsy (BH) is a mechanical tissue liquefaction method that uses sequences of millisecond-long high intensity focused ultrasound (HIFU) pulses with shock fronts. The BH treatment generates bubbles that move within the sonicated volume due to acoustic radiation force. Since the velocity of the bubbles and tissue debris is expected to depend on the lesion size and liquefaction completeness, it could provide a quantitative metric of the treatment progression. In this study, the motion of bubble remnants and tissue debris immediately following BH pulses was investigated using high-pulse repetition frequency (PRF) plane-wave color Doppler ultrasound in ex vivo myocardium tissue. A 256-element 1.5 MHz spiral HIFU array with a coaxially integrated ultrasound imaging probe (ATL P4-2) produced 10 ms BH pulses to form volumetric lesions with electronic beam steering. Prior to performing volumetric BH treatments, the motion of intact myocardium tissue and anticoagulated bovine blood following isolated BH pulses was assessed as two limiting cases. In the liquid blood the velocity of BH-induced streaming at the focus reached over 200 cm/s, whereas the intact tissue was observed to move toward the HIFU array consistent with elastic rebound of tissue. Over the course of volumetric BH treatments tissue motion at the focus locations was dependent on the axial size of the forming lesion relative to the corresponding size of the HIFU focal area. For axially small lesions, the maximum velocity after the BH pulse was directed toward the HIFU transducer and monotonically increased over time from about 20-100 cm/s as liquefaction progressed, then saturated when tissue was fully liquefied. For larger lesions obtained by merging multiple smaller lesions in the axial direction, the high-speed streaming away from the HIFU transducer was observed at the point of full liquefaction. Based on these observations, the maximum directional velocity and its location along the HIFU propagation axis were proposed and evaluated as candidate metrics of BH treatment completeness.
Collapse
|
13
|
Thomas GPL, Khokhlova TD, Sapozhnikov OA, Wang YN, Totten SI, Khokhlova VA. In Vivo Aberration Correction for Transcutaneous HIFU Therapy Using a Multielement Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2955-2964. [PMID: 35981067 PMCID: PMC9714798 DOI: 10.1109/tuffc.2022.3200309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the challenges of transcutaneous high-intensity focused ultrasound (HIFU) therapies, especially ones relying heavily on shock formation, such as boiling histotripsy (BH), is the loss of focusing from aberration induced by the heterogeneities of the body wall. Here, a methodology to execute aberration correction in vivo is proposed. A custom BH system consisting of a 1.5-MHz phased array of 256 elements connected to a Verasonics V1 system is used in pulse/echo mode on a porcine model under general anesthesia. Estimation of the time shifts needed to correct for aberration in the liver and kidney is done by maximizing the value of the coherence factor on the acquired backscattered signals. As this process requires multiple pulse/echo sequences on a moving target to converge to a solution, tracking is also implemented to ensure that the same target is used between each iteration. The method was validated by comparing the acoustic power needed to generate a boiling bubble at one target with aberration correction and at another target within a 5-mm radius without aberration correction. Results show that the aberration correction effectively lowers the acoustic power required to reach boiling by up to 45%, confirming that it indeed restored formation of the nonlinear shock front at the focus.
Collapse
|
14
|
Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 2022; 16:984953. [PMID: 36117633 PMCID: PMC9475195 DOI: 10.3389/fnins.2022.984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
15
|
Glickstein B, Levron M, Shitrit S, Aronovich R, Feng Y, Ilovitsh T. Nanodroplet-Mediated Low-Energy Mechanical Ultrasound Surgery. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1229-1239. [PMID: 35351316 DOI: 10.1016/j.ultrasmedbio.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Mechanical ultrasound surgery methods use short, high-intensity pulses to fractionate tissues. This study reports the development of a two-step technology for low-energy mechanical ultrasound surgery of tissues using nanodroplets to reduce the pressure threshold. Step 1 consists of vaporizing the nanodroplets into gaseous microbubbles via megahertz ultrasound excitation. Then, low-frequency ultrasound is applied to the microbubbles, which turns them into therapeutic warheads that trigger potent mechanical effects in the surrounding tissue. The use of nanoscale nanodroplets coupled with low-frequency ultrasound reduces the pressure threshold required for mechanical ultrasound surgery by an order of magnitude. In addition, their average diameter of 300 nm can overcome challenges associated with the size of microbubbles. Optimization experiments were performed to determine the ultrasound parameters for nanodroplet vaporization and the subsequent microbubble implosion processes. Optimal vaporization was obtained when transmitting a 2-cycle excitation pulse at a center frequency of 5 MHz and a peak negative pressure of 4.1 MPa (mechanical index = 1.8). Low-frequency insonation of the generated microbubbles at a center frequency of 850, 250 or 80 kHz caused enhanced contrast reduction at a center frequency of 80 kHz, compared with the other frequencies, while operating at the same mechanical index of 0.9. Nanodroplet-mediated insonation of ex vivo chicken liver samples generated mechanical damage. Low-frequency treatment at a mechanical index of 0.9 and a center frequency of 80 kHz induced the largest lesion area (average of 0.59 mm2) compared with 250- and 850-kHz treatments with the same mechanical index (average lesions areas of 0.29 and 0.19 mm2, respectively, p < 0.001). The two-step approach makes it possible to conduct both the vaporization and implosion stages at mechanical indices below 1.9, thus avoiding undesired mechanical damage. The findings indicate that coupled with low-frequency ultrasound, nanodroplets can be used for low-energy mechanical ultrasound surgery.
Collapse
Affiliation(s)
- Bar Glickstein
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mika Levron
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Shitrit
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Ponomarchuk EM, Rosnitskiy PB, Khokhlova TD, Buravkov SV, Tsysar SA, Karzova MM, Tumanova KD, Kunturova AV, Wang YN, Sapozhnikov OA, Trakhtman PE, Starostin NN, Khokhlova VA. Ultrastructural Analysis of Volumetric Histotripsy Bio-effects in Large Human Hematomas. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2608-2621. [PMID: 34116880 PMCID: PMC8355095 DOI: 10.1016/j.ultrasmedbio.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Large-volume soft tissue hematomas are a serious clinical problem, which, if untreated, can have severe consequences. Current treatments are associated with significant pain and discomfort. It has been reported that in an in vitro bovine hematoma model, pulsed high-intensity focused ultrasound (HIFU) ablation, termed histotripsy, can be used to rapidly and non-invasively liquefy the hematoma through localized bubble activity, enabling fine-needle aspiration. The goals of this study were to evaluate the efficiency and speed of volumetric histotripsy liquefaction using a large in vitro human hematoma model. Large human hematoma phantoms (85 cc) were formed by recalcifying blood anticoagulated with citrate phosphate dextrose/saline-adenine-glucose-mannitol solution. Typical boiling histotripsy pulses (10 or 2 ms) or hybrid histotripsy pulses using higher-amplitude and shorter pulses (0.4 ms) were delivered at 1% duty cycle while continuously translating the HIFU focus location. Histotripsy exposures were performed under ultrasound guidance with a 1.5-MHz transducer (8-cm aperture, F# = 0.75). The volume of liquefied lesions was determined by ultrasound imaging and gross inspection. Untreated hematoma samples and samples of the liquefied lesions aspirated using a fine needle were analyzed cytologically and ultrastructurally with scanning electron microscopy. All exposures resulted in uniform liquid-filled voids with sharp edges; liquefaction speed was higher for exposures with shorter pulses and higher shock amplitudes at the focus (up to 0.32, 0.68 and 2.62 mL/min for 10-, 2- and 0.4-ms pulses, respectively). Cytological and ultrastructural observations revealed completely homogenized blood cells and fibrin fragments in the lysate. Most of the fibrin fragments were less than 20 μm in length, but a number of fragments were up to 150 μm. The lysate with residual debris of that size would potentially be amenable to fine-needle aspiration without risk for needle clogging in clinical implementation.
Collapse
Affiliation(s)
- Ekaterina M Ponomarchuk
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Pavel B Rosnitskiy
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Sergey V Buravkov
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A Tsysar
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria M Karzova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kseniya D Tumanova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna V Kunturova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Y-N Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Oleg A Sapozhnikov
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Pavel E Trakhtman
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Nicolay N Starostin
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Vera A Khokhlova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Thomas GPL, Khokhlova TD, Khokhlova VA. Partial Respiratory Motion Compensation for Abdominal Extracorporeal Boiling Histotripsy Treatments With a Robotic Arm. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2861-2870. [PMID: 33905328 PMCID: PMC8513721 DOI: 10.1109/tuffc.2021.3075938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Extracorporeal boiling histotripsy (BH), a noninvasive method for mechanical tissue disintegration, is getting closer to clinical applications. However, the motion of the targeted organs, mostly resulting from the respiratory motion, reduces the efficiency of the treatment. Here, a practical and affordable unidirectional respiratory motion compensation method for BH is proposed and evaluated in ex vivo tissues. The BH transducer is fixed on a robotic arm following the motion of the skin, which is tracked using an inline ultrasound imaging probe. In order to compensate for system lags and obtain a more accurate compensation, an autoregressive motion prediction model is implemented. BH pulse gating is also implemented to ensure targeting accuracy. The system is then evaluated with ex vivo BH treatments of tissue samples undergoing motion simulating breathing with the movement of amplitudes between 5 and 10 mm, the frequency between 16 and 18 breaths/min, and a maximum speed of 14.2 mm/s. Results show a reduction of at least 89% of the value of the targeting error during treatment while only increasing the treatment time by no more than 1%. The lesions obtained by treating with the motion compensation were close in size and affected area to the no-motion case, whereas lesions obtained without the compensation were often incomplete and had larger affected areas. This approach to motion compensation could benefit extracorporeal BH and other histotripsy methods in clinical translation.
Collapse
|
18
|
Karzova MM, Yuldashev PV, Khokhlova VA, Nartov FA, Morrison KP, Khokhlova TD. Dual-Use Transducer for Ultrasound Imaging and Pulsed Focused Ultrasound Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2930-2941. [PMID: 33793399 PMCID: PMC8443157 DOI: 10.1109/tuffc.2021.3070528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pulsed focused ultrasound (pFUS) uses short acoustic pulses delivered at low duty cycle and moderate intensity to noninvasively apply mechanical stress or introduce disruption to tissue. Ultrasound-guided pFUS has primarily been used for inducing cavitation at the focus, with or without contrast agents, to promote drug delivery to tumors. When applied in tandem with contrast agents, pFUS is often administered using an ultrasound imaging probe, which has a small footprint and does not require a large acoustic window. The use of nonlinear pFUS without contrast agents was recently shown to be beneficial for localized tissue disruption, but required higher ultrasound pressure levels than a conventional ultrasound imaging probe could produce. In this work, we present the design of a compact dual-use 1-MHz transducer for ultrasound-guided pFUS without contrast agents. Nonlinear pressure fields that could be generated by the probe, under realistic power input, were simulated using the Westervelt equation. In water, fully developed shocks of 42-MPa amplitude and peak negative pressure of 8 MPa were predicted to form at the focus at 458-W acoustic power or 35% of the maximum reachable power of the transducer. In absorptive soft tissue, fully developed shocks formed at higher power (760 W or 58% of the maximum reachable power) with the shock amplitude of 33 MPa and peak negative pressure of 7.5 MPa. The electronic focus-steering capabilities of the array were evaluated and found to be sufficient to cover a target with dimensions of 19 mm in axial direction and 44 mm in transversal direction.
Collapse
|
19
|
Bismuth M, Katz S, Rosenblatt H, Twito M, Aronovich R, Ilovitsh T. Acoustically Detonated Microbubbles Coupled with Low Frequency Insonation: Multiparameter Evaluation of Low Energy Mechanical Ablation. Bioconjug Chem 2021; 33:1069-1079. [PMID: 34280311 PMCID: PMC9204695 DOI: 10.1021/acs.bioconjchem.1c00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Noninvasive
ultrasound surgery can be achieved using focused ultrasound
to locally affect the targeted site without damaging intervening tissues.
Mechanical ablation and histotripsy use short and intense acoustic
pulses to destroy the tissue via a purely mechanical effect. Here,
we show that coupled with low-frequency excitation, targeted microbubbles
can serve as mechanical therapeutic warheads that trigger potent mechanical
effects in tumors using focused ultrasound. Upon low frequency excitation
(250 kHz and below), high amplitude microbubble oscillations occur
at substantially lower pressures as compared to higher MHz ultrasonic
frequencies. For example, inertial cavitation was initiated at a pressure
of 75 kPa for a center frequency of 80 kHz. Low frequency insonation
of targeted microbubbles was then used to achieve low energy tumor
cell fractionation at pressures below a mechanical index of 1.9, and
in accordance with the Food and Drug Administration guidelines. We
demonstrate these capabilities in vitro and in vivo. In cell cultures,
cell viability was reduced to 16% at a peak negative pressure of 800
kPa at the 250 kHz frequency (mechanical index of 1.6) and to 10%
at a peak negative pressure of 250 kPa at a frequency of 80 kHz (mechanical
index of 0.9). Following an intratumoral injection of targeted microbubbles
into tumor-bearing mice, and coupled with low frequency ultrasound
application, significant tumor debulking and cancer cell death was
observed. Our findings suggest that reducing the center frequency
enhances microbubble-mediated mechanical ablation; thus, this technology
provides a unique theranostic platform for safe low energy tumor fractionation,
while reducing off-target effects.
Collapse
Affiliation(s)
- Mike Bismuth
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hagar Rosenblatt
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maayan Twito
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
Thomas GPL, Khokhlova TD, Bawiec CR, Peek AT, Sapozhnikov OA, O'Donnell M, Khokhlova VA. Phase-Aberration Correction for HIFU Therapy Using a Multielement Array and Backscattering of Nonlinear Pulses. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1040-1050. [PMID: 33052845 PMCID: PMC8476183 DOI: 10.1109/tuffc.2020.3030890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phase aberrations induced by heterogeneities in body wall tissues introduce a shift and broadening of the high-intensity focused ultrasound (HIFU) focus, associated with decreased focal intensity. This effect is particularly detrimental for HIFU therapies that rely on shock front formation at the focus, such as boiling histotripsy (BH). In this article, an aberration correction method based on the backscattering of nonlinear ultrasound pulses from the focus is proposed and evaluated in tissue-mimicking phantoms. A custom BH system comprising a 1.5-MHz 256-element array connected to a Verasonics V1 engine was used as a pulse/echo probe. Pulse inversion imaging was implemented to visualize the second harmonic of the backscattered signal from the focus inside a phantom when propagating through an aberrating layer. Phase correction for each array element was derived from an aberration-correction method for ultrasound imaging that combines both the beamsum and the nearest neighbor correlation method and adapted it to the unique configuration of the array. The results were confirmed by replacing the target tissue with a fiber-optic hydrophone. Comparing the shock amplitude before and after phase-aberration correction showed that the majority of losses due to tissue heterogeneity were compensated, enabling fully developed shocks to be generated while focusing through aberrating layers. The feasibility of using a HIFU phased-array transducer as a pulse-echo probe in harmonic imaging mode to correct for phase aberrations was demonstrated.
Collapse
|