1
|
Lu HY, Li Y, Garcia B, Tu SP, Ma KL. A Study of Healthcare Team Communication Networks using Visual Analytics. PROCEEDINGS OF THE 2023 7TH INTERNATIONAL CONFERENCE ON MEDICAL AND HEALTH INFORMATICS (ICMHI 2023) : MAY 12-14, 2023, KYOTO, JAPAN. INTERNATIONAL CONFERENCE ON MEDICAL AND HEALTH INFORMATICS (7TH : 2023 : KYOTO, JAPAN) 2023; 2023:104-111. [PMID: 38638863 PMCID: PMC11025723 DOI: 10.1145/3608298.3608319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Cooperation among teams or individuals of healthcare professionals (HCPs) is one of the crucial factors towards patients' survival outcome. However, it is challenging to uncover and understand such factors in the complex Multiteam System (MTS) communication networks representing daily HCP cooperation. In this paper, we present a study on MTS communication networks constructed with real-world cancer patients' Electronic Health Record (EHR) access logs. We adopt a visual analytics workflow to extract associations between semantic characteristics of MTS communication networks and the patients' survival outcomes. The workflow consists of a neural network learning phase to classify the data based on the chosen input and output attributes, a dimensionality reduction and optimization phase to produce a simplified set of results for examination, and finally an interpreting phase conducted by the user through an interactive visualization interface. We provide the insights found using this workflow with two case studies and an expert interview.
Collapse
Affiliation(s)
| | - Yiran Li
- University of California at Davis, Davis, CA, USA
| | | | | | - Kwan-Liu Ma
- University of California at Davis, Davis, USA
| |
Collapse
|
2
|
Liu Q, Ren Y, Zhu Z, Li D, Ma X, Li Q. RankAxis: Towards a Systematic Combination of Projection and Ranking in Multi-Attribute Data Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:701-711. [PMID: 36155453 DOI: 10.1109/tvcg.2022.3209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Projection and ranking are frequently used analysis techniques in multi-attribute data exploration. Both families of techniques help analysts with tasks such as identifying similarities between observations and determining ordered subgroups, and have shown good performances in multi-attribute data exploration. However, they often exhibit problems such as distorted projection layouts, obscure semantic interpretations, and non-intuitive effects produced by selecting a subset of (weighted) attributes. Moreover, few studies have attempted to combine projection and ranking into the same exploration space to complement each other's strengths and weaknesses. For this reason, we propose RankAxis, a visual analytics system that systematically combines projection and ranking to facilitate the mutual interpretation of these two techniques and jointly support multi-attribute data exploration. A real-world case study, expert feedback, and a user study demonstrate the efficacy of RankAxis.
Collapse
|
3
|
Li J, Zhou CQ. Incorporation of Human Knowledge into Data Embeddings to Improve Pattern Significance and Interpretability. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:723-733. [PMID: 36155441 DOI: 10.1109/tvcg.2022.3209382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Embedding is a common technique for analyzing multi-dimensional data. However, the embedding projection cannot always form significant and interpretable visual structures that foreshadow underlying data patterns. We propose an approach that incorporates human knowledge into data embeddings to improve pattern significance and interpretability. The core idea is (1) externalizing tacit human knowledge as explicit sample labels and (2) adding a classification loss in the embedding network to encode samples' classes. The approach pulls samples of the same class with similar data features closer in the projection, leading to more compact (significant) and class-consistent (interpretable) visual structures. We give an embedding network with a customized classification loss to implement the idea and integrate the network into a visualization system to form a workflow that supports flexible class creation and pattern exploration. Patterns found on open datasets in case studies, subjects' performance in a user study, and quantitative experiment results illustrate the general usability and effectiveness of the approach.
Collapse
|
4
|
Fujiwara T, Wei X, Zhao J, Ma KL. Interactive Dimensionality Reduction for Comparative Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:758-768. [PMID: 34591765 DOI: 10.1109/tvcg.2021.3114807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.
Collapse
|
5
|
SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Dmitriev K, Marino J, Baker K, Kaufman AE. Visual Analytics of a Computer-Aided Diagnosis System for Pancreatic Lesions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2174-2185. [PMID: 31613771 DOI: 10.1109/tvcg.2019.2947037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal decision process, impossibility to gain insights, and ultimately to skepticism from clinicians. We present a visual analytics approach to uncover the decision-making process of a CAD system for classifying pancreatic cystic lesions. This CAD algorithm consists of two distinct components: random forest (RF), which classifies a set of predefined features, including demographic features, and a convolutional neural network (CNN), which analyzes radiological (imaging) features of the lesions. We study the class probabilities generated by the RF and the semantical meaning of the features learned by the CNN. We also use an eye tracker to better understand which radiological features are particularly useful for a radiologist to make a diagnosis and to quantitatively compare with the features that lead the CNN to its final classification decision. Additionally, we evaluate the effects and benefits of supplying the CAD system with a case-based visual aid in a second-reader setting.
Collapse
|
7
|
Knittel J, Lalama A, Koch S, Ertl T. Visual Neural Decomposition to Explain Multivariate Data Sets. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1374-1384. [PMID: 33048724 DOI: 10.1109/tvcg.2020.3030420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Investigating relationships between variables in multi-dimensional data sets is a common task for data analysts and engineers. More specifically, it is often valuable to understand which ranges of which input variables lead to particular values of a given target variable. Unfortunately, with an increasing number of independent variables, this process may become cumbersome and time-consuming due to the many possible combinations that have to be explored. In this paper, we propose a novel approach to visualize correlations between input variables and a target output variable that scales to hundreds of variables. We developed a visual model based on neural networks that can be explored in a guided way to help analysts find and understand such correlations. First, we train a neural network to predict the target from the input variables. Then, we visualize the inner workings of the resulting model to help understand relations within the data set. We further introduce a new regularization term for the backpropagation algorithm that encourages the neural network to learn representations that are easier to interpret visually. We apply our method to artificial and real-world data sets to show its utility.
Collapse
|
8
|
Bernstein MN, Ma Z, Gleicher M, Dewey CN. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. iScience 2020; 24:101913. [PMID: 33364592 PMCID: PMC7753962 DOI: 10.1016/j.isci.2020.101913] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification of cell clusters by considering the rich hierarchical structure of known cell types. Furthermore, CellO comes pre-trained on a comprehensive data set of human, healthy, untreated primary samples in the Sequence Read Archive. CellO's comprehensive training set enables it to run out of the box on diverse cell types and achieves competitive or even superior performance when compared to existing state-of-the-art methods. Lastly, CellO's linear models are easily interpreted, thereby enabling exploration of cell-type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO's models across the ontology.
Collapse
Affiliation(s)
| | - Zhongjie Ma
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Michael Gleicher
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53792, USA
| |
Collapse
|
9
|
Lai C, Zhao Y, Yuan X. Exploring high-dimensional data through locally enhanced projections. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Faust R, Glickenstein D, Scheidegger C. DimReader: Axis lines that explain non-linear projections. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:481-490. [PMID: 30136997 DOI: 10.1109/tvcg.2018.2865194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-linear dimensionality reduction (NDR) methods such as LLE and t-SNE are popular with visualization researchers and experienced data analysts, but present serious problems of interpretation. In this paper, we present DimReader, a technique that recovers readable axes from such techniques. DimReader is based on analyzing infinitesimal perturbations of the dataset with respect to variables of interest. The perturbations define exactly how we want to change each point in the original dataset and we measure the effect that these changes have on the projection. The recovered axes are in direct analogy with the axis lines (grid lines) of traditional scatterplots. We also present methods for discovering perturbations on the input data that change the projection the most. The calculation of the perturbations is efficient and easily integrated into programs written in modern programming languages. We present results of DimReader on a variety of NDR methods and datasets both synthetic and real-life, and show how it can be used to compare different NDR methods. Finally, we discuss limitations of our proposal and situations where further research is needed.
Collapse
|
11
|
Self JZ, Dowling M, Wenskovitch J, Crandell I, Wang M, House L, Leman S, North C. Observation-Level and Parametric Interaction for High-Dimensional Data Analysis. ACM T INTERACT INTEL 2018. [DOI: 10.1145/3158230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Exploring high-dimensional data is challenging. Dimension reduction algorithms, such as weighted multidimensional scaling, support data exploration by projecting datasets to two dimensions for visualization. These projections can be explored through parametric interaction, tweaking underlying parameterizations, and observation-level interaction, directly interacting with the points within the projection. In this article, we present the results of a controlled usability study determining the differences, advantages, and drawbacks among parametric interaction, observation-level interaction, and their combination. The study assesses both interaction technique effects on domain-specific high-dimensional data analyses performed by non-experts of statistical algorithms. This study is performed using Andromeda, a tool that enables both parametric and observation-level interaction to provide in-depth data exploration. The results indicate that the two forms of interaction serve different, but complementary, purposes in gaining insight through steerable dimension reduction algorithms.
Collapse
|
12
|
|
13
|
Kahng M, Andrews PY, Kalro A, Polo Chau DH. ACTIVIS: Visual Exploration of Industry-Scale Deep Neural Network Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:88-97. [PMID: 28866557 DOI: 10.1109/tvcg.2017.2744718] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.
Collapse
|
14
|
Turkay C, Slingsby A, Lahtinen K, Butt S, Dykes J. Supporting theoretically-grounded model building in the social sciences through interactive visualisation. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.11.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Liu S, Maljovec D, Wang B, Bremer PT, Pascucci V. Visualizing High-Dimensional Data: Advances in the Past Decade. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1249-1268. [PMID: 28113321 DOI: 10.1109/tvcg.2016.2640960] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Massive simulations and arrays of sensing devices, in combination with increasing computing resources, have generated large, complex, high-dimensional datasets used to study phenomena across numerous fields of study. Visualization plays an important role in exploring such datasets. We provide a comprehensive survey of advances in high-dimensional data visualization that focuses on the past decade. We aim at providing guidance for data practitioners to navigate through a modular view of the recent advances, inspiring the creation of new visualizations along the enriched visualization pipeline, and identifying future opportunities for visualization research.
Collapse
|
16
|
Abstract
Comprehensibility in modeling is the ability of stakeholders to understand relevant aspects of the modeling process. In this article, we provide a framework to help guide exploration of the space of comprehensibility challenges. We consider facets organized around key questions: Who is comprehending? Why are they trying to comprehend? Where in the process are they trying to comprehend? How can we help them comprehend? How do we measure their comprehension? With each facet we consider the broad range of options. We discuss why taking a broad view of comprehensibility in modeling is useful in identifying challenges and opportunities for solutions.
Collapse
Affiliation(s)
- Michael Gleicher
- Address correspondence to: Michael Gleicher, Department of Computer Sciences,University of Wisconsin-Madison,1210 West Dayton St., Madison, WI 53706, E-mail:
| |
Collapse
|
17
|
|
18
|
Stahnke J, Dörk M, Müller B, Thom A. Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:629-638. [PMID: 26390487 DOI: 10.1109/tvcg.2015.2467717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We introduce a set of integrated interaction techniques to interpret and interrogate dimensionality-reduced data. Projection techniques generally aim to make a high-dimensional information space visible in form of a planar layout. However, the meaning of the resulting data projections can be hard to grasp. It is seldom clear why elements are placed far apart or close together and the inevitable approximation errors of any projection technique are not exposed to the viewer. Previous research on dimensionality reduction focuses on the efficient generation of data projections, interactive customisation of the model, and comparison of different projection techniques. There has been only little research on how the visualization resulting from data projection is interacted with. We contribute the concept of probing as an integrated approach to interpreting the meaning and quality of visualizations and propose a set of interactive methods to examine dimensionality-reduced data as well as the projection itself. The methods let viewers see approximation errors, question the positioning of elements, compare them to each other, and visualize the influence of data dimensions on the projection space. We created a web-based system implementing these methods, and report on findings from an evaluation with data analysts using the prototype to examine multidimensional datasets.
Collapse
|
19
|
Kim H, Choo J, Park H, Endert A. InterAxis: Steering Scatterplot Axes via Observation-Level Interaction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:131-140. [PMID: 26357399 DOI: 10.1109/tvcg.2015.2467615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique to properly interpret, define, and change an axis in a user-driven manner. Users are given the ability to define and modify axes by dragging data items to either side of the x or y axes. from which the system computes a linear combination of data attributes and binds it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through two scenarios.
Collapse
|
20
|
Sedlmair M, Heinzl C, Bruckner S, Piringer H, Möller T. Visual Parameter Space Analysis: A Conceptual Framework. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:2161-2170. [PMID: 26356930 DOI: 10.1109/tvcg.2014.2346321] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Various case studies in different application domains have shown the great potential of visual parameter space analysis to support validating and using simulation models. In order to guide and systematize research endeavors in this area, we provide a conceptual framework for visual parameter space analysis problems. The framework is based on our own experience and a structured analysis of the visualization literature. It contains three major components: (1) a data flow model that helps to abstractly describe visual parameter space analysis problems independent of their application domain; (2) a set of four navigation strategies of how parameter space analysis can be supported by visualization tools; and (3) a characterization of six analysis tasks. Based on our framework, we analyze and classify the current body of literature, and identify three open research gaps in visual parameter space analysis. The framework and its discussion are meant to support visualization designers and researchers in characterizing parameter space analysis problems and to guide their design and evaluation processes.
Collapse
|
21
|
Poco J, Dasgupta A, Wei Y, Hargrove W, Schwalm CR, Huntzinger DN, Cook R, Bertini E, Silva CT. Visual Reconciliation of Alternative Similarity Spaces in Climate Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:1923-1932. [PMID: 26356906 DOI: 10.1109/tvcg.2014.2346755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Visual data analysis often requires grouping of data objects based on their similarity. In many application domains researchers use algorithms and techniques like clustering and multidimensional scaling to extract groupings from data. While extracting these groups using a single similarity criteria is relatively straightforward, comparing alternative criteria poses additional challenges. In this paper we define visual reconciliation as the problem of reconciling multiple alternative similarity spaces through visualization and interaction. We derive this problem from our work on model comparison in climate science where climate modelers are faced with the challenge of making sense of alternative ways to describe their models: one through the output they generate, another through the large set of properties that describe them. Ideally, they want to understand whether groups of models with similar spatio-temporal behaviors share similar sets of criteria or, conversely, whether similar criteria lead to similar behaviors. We propose a visual analytics solution based on linked views, that addresses this problem by allowing the user to dynamically create, modify and observe the interaction among groupings, thereby making the potential explanations apparent. We present case studies that demonstrate the usefulness of our technique in the area of climate science.
Collapse
|