1
|
Al-Naami N, Medoc N, Magnani M, Ghoniem M. Improved Visual Saliency of Graph Clusters with Orderable Node-Link Layouts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1028-1038. [PMID: 39259626 DOI: 10.1109/tvcg.2024.3456167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Graphs are often used to model relationships between entities. The identification and visualization of clusters in graphs enable insight discovery in many application areas, such as life sciences and social sciences. Force-directed graph layouts promote the visual saliency of clusters, as they bring adjacent nodes closer together, and push non-adjacent nodes apart. At the same time, matrices can effectively show clusters when a suitable row/column ordering is applied, but are less appealing to untrained users not providing an intuitive node-link metaphor. It is thus worth exploring layouts combining the strengths of the node-link metaphor and node ordering. In this work, we study the impact of node ordering on the visual saliency of clusters in orderable node-link diagrams, namely radial diagrams, arc diagrams and symmetric arc diagrams. Through a crowdsourced controlled experiment, we show that users can count clusters consistently more accurately, and to a large extent faster, with orderable node-link diagrams than with three state-of-the art force-directed layout algorithms, i.e., 'Linlog', 'Backbone' and 'sfdp'. The measured advantage is greater in case of low cluster separability and/or low compactness. A free copy of this paper and all supplemental materials are available at https://osf.io/kc3dg/.
Collapse
|
2
|
Wang J, Shu X, Bach B, Hinrichs U. Visualization Atlases: Explaining and Exploring Complex Topics Through Data, Visualization, and Narration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:437-447. [PMID: 39302770 DOI: 10.1109/tvcg.2024.3456311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This paper defines, analyzes, and discusses the emerging genre of visualization atlases. We currently witness an increase in web-based, data-driven initiatives that call themselves "atlases" while explaining complex, contemporary issues through data and visualizations: climate change, sustainability, AI, or cultural discoveries. To understand this emerging genre and inform their design, study, and authoring support, we conducted a systematic analysis of 33 visualization atlases and semi-structured interviews with eight visualization atlas creators. Based on our results, we contribute (1) a definition of a visualization atlas as a compendium of (web) pages aimed at explaining and supporting exploration of data about a dedicated topic through data, visualizations and narration. (2) a set of design patterns of 8 design dimensions, (3) insights into the atlas creation from interviews and (4) the definition of 5 visualization atlas genres. We found that visualization atlases are unique in the way they combine i) exploratory visualization, ii) narrative elements from data-driven storytelling and iii) structured navigation mechanisms. They target a wide range of audiences with different levels of domain knowledge, acting as tools for study, communication, and discovery. We conclude with a discussion of current design practices and emerging questions around the ethics and potential real-world impact of visualization atlases, aimed to inform the design and study of visualization atlases.
Collapse
|
3
|
Ji Y, Perin C, Nacenta MA. The Effect of Visual Aids on Reading Numeric Data Tables. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:995-1005. [PMID: 39250406 DOI: 10.1109/tvcg.2024.3456403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Data tables are one of the most common ways in which people encounter data. Although mostly built with text and numbers, data tables have a spatial layout and often exhibit visual elements meant to facilitate their reading. Surprisingly, there is an empirical knowledge gap on how people read tables and how different visual aids affect people's reading of tables. In this work, we seek to address this vacuum through a controlled study. We asked participants to repeatedly perform four different tasks with four table representation conditions (plain tables, tables with zebra striping, tables with cell background color encoding cell value, and tables with in-cell bars with lengths encoding cell value). We analyzed completion time, error rate, gaze-tracking data, mouse movement and participant preferences. We found that color and bar encodings help for finding maximum values. For a more complex task (comparison of proportional differences) color and bar helped less than zebra striping. We also characterize typical human behavior for the four tasks. These findings inform the design of tables and research directions for improving presentation of data in tabular form.
Collapse
|
4
|
Li G, Li R, Wang Z, Liu CH, Lu M, Wang G. HiTailor: Interactive Transformation and Visualization for Hierarchical Tabular Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:139-148. [PMID: 36155464 DOI: 10.1109/tvcg.2022.3209354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tabular visualization techniques integrate visual representations with tabular data to avoid additional cognitive load caused by splitting users' attention. However, most of the existing studies focus on simple flat tables instead of hierarchical tables, whose complex structure limits the expressiveness of visualization results and affects users' efficiency in visualization construction. We present HiTailor, a technique for presenting and exploring hierarchical tables. HiTailor constructs an abstract model, which defines row/column headings as biclustering and hierarchical structures. Based on our abstract model, we identify three pairs of operators, Swap/Transpose, ToStacked/ToLinear, Fold/Unfold, for transformations of hierarchical tables to support users' comprehensive explorations. After transformation, users can specify a cell or block of interest in hierarchical tables as a TableUnit for visualization, and HiTailor recommends other related TableUnits according to the abstract model using different mechanisms. We demonstrate the usability of the HiTailor system through a comparative study and a case study with domain experts, showing that HiTailor can present and explore hierarchical tables from different viewpoints. HiTailor is available at https://github.com/bitvis2021/HiTailor.
Collapse
|
5
|
Dy B, Ibrahim N, Poorthuis A, Joyce S. Improving Visualization Design for Effective Multi-Objective Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3405-3416. [PMID: 33690120 DOI: 10.1109/tvcg.2021.3065126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decision-makers across many professions are often required to make multi-objective decisions over increasingly larger volumes of data with several competing criteria. Data visualization is a powerful tool for exploring these complex 'solution spaces', but there is limited research on its ability to support multi-objective decisions. In this article, we explore the effects of chart complexity and data volume on decision quality in multi-objective scenarios with complex trade-offs. We look at the impact of four common multidimensional chart types (scatter plot matrices, parallel coordinates plots, heat maps, radar charts), the number of options and dimensions and participant chart usage experience on decision time and accuracy when selecting the 'optimal option'. As objectively evaluating the quality of multi-objective decisions and the trade-offs involved is challenging, we employ rank- and score-based accuracy metrics. While heat maps demonstrate a time advantage, our findings show no strong performance benefit for one chart type over another for accuracy. We find mixed evidence for the impact of chart complexity on performance, with our results suggesting the existence of a 'ceiling' in the number of dimensions considered by participants. This points to a potential limit to data complexity that is useful for decision making. Lastly, participants who use charts frequently performed better, suggesting that users can potentially be trained to effectively use complex visualizations in their decision-making.
Collapse
|
6
|
Bartram L, Correll M, Tory M. Untidy Data: The Unreasonable Effectiveness of Tables. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:686-696. [PMID: 34591767 DOI: 10.1109/tvcg.2021.3114830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Working with data in table form is usually considered a preparatory and tedious step in the sensemaking pipeline; a way of getting the data ready for more sophisticated visualization and analytical tools. But for many people, spreadsheets - the quintessential table tool - remain a critical part of their information ecosystem, allowing them to interact with their data in ways that are hidden or abstracted in more complex tools. This is particularly true for data workers [61], people who work with data as part of their job but do not identify as professional analysts or data scientists. We report on a qualitative study of how these workers interact with and reason about their data. Our findings show that data tables serve a broader purpose beyond data cleanup at the initial stage of a linear analytic flow: users want to see and "get their hands on" the underlying data throughout the analytics process, reshaping and augmenting it to support sensemaking. They reorganize, mark up, layer on levels of detail, and spawn alternatives within the context of the base data. These direct interactions and human-readable table representations form a rich and cognitively important part of building understanding of what the data mean and what they can do with it. We argue that interactive tables are an important visualization idiom in their own right; that the direct data interaction they afford offers a fertile design space for visual analytics; and that sense making can be enriched by more flexible human-data interaction than is currently supported in visual analytics tools.
Collapse
|
7
|
Brehmer M, Kosara R, Hull C. Generative Design Inspiration for Glyphs with Diatoms. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:389-399. [PMID: 34587035 DOI: 10.1109/tvcg.2021.3114792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce Diatoms, a technique that generates design inspiration for glyphs by sampling from palettes of mark shapes, encoding channels, and glyph scaffold shapes. Diatoms allows for a degree of randomness while respecting constraints imposed by columns in a data table: their data types and domains as well as semantic associations between columns as specified by the designer. We pair this generative design process with two forms of interactive design externalization that enable comparison and critique of the design alternatives. First, we incorporate a familiar small multiples configuration in which every data point is drawn according to a single glyph design, coupled with the ability to page between alternative glyph designs. Second, we propose a small permutables design gallery, in which a single data point is drawn according to each alternative glyph design, coupled with the ability to page between data points. We demonstrate an implementation of our technique as an extension to Tableau featuring three example palettes, and to better understand how Diatoms could fit into existing design workflows, we conducted interviews and chauffeured demos with 12 designers. Finally, we reflect on our process and the designers' reactions, discussing the potential of our technique in the context of visualization authoring systems. Ultimately, our approach to glyph design and comparison can kickstart and inspire visualization design, allowing for the serendipitous discovery of shape and channel combinations that would have otherwise been overlooked.
Collapse
|
8
|
Horak T, Berger P, Schumann H, Dachselt R, Tominski C. Responsive Matrix Cells: A Focus+Context Approach for Exploring and Editing Multivariate Graphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1644-1654. [PMID: 33074814 DOI: 10.1109/tvcg.2020.3030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Matrix visualizations are a useful tool to provide a general overview of a graph's structure. For multivariate graphs, a remaining challenge is to cope with the attributes that are associated with nodes and edges. Addressing this challenge, we propose responsive matrix cells as a focus+context approach for embedding additional interactive views into a matrix. Responsive matrix cells are local zoomable regions of interest that provide auxiliary data exploration and editing facilities for multivariate graphs. They behave responsively by adapting their visual contents to the cell location, the available display space, and the user task. Responsive matrix cells enable users to reveal details about the graph, compare node and edge attributes, and edit data values directly in a matrix without resorting to external views or tools. We report the general design considerations for responsive matrix cells covering the visual and interactive means necessary to support a seamless data exploration and editing. Responsive matrix cells have been implemented in a web-based prototype based on which we demonstrate the utility of our approach. We describe a walk-through for the use case of analyzing a graph of soccer players and report on insights from a preliminary user feedback session.
Collapse
|
9
|
Saket B, Huron S, Perin C, Endert A. Investigating Direct Manipulation of Graphical Encodings as a Method for User Interaction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:482-491. [PMID: 31442983 DOI: 10.1109/tvcg.2019.2934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate direct manipulation of graphical encodings as a method for interacting with visualizations. There is an increasing interest in developing visualization tools that enable users to perform operations by directly manipulating graphical encodings rather than external widgets such as checkboxes and sliders. Designers of such tools must decide which direct manipulation operations should be supported, and identify how each operation can be invoked. However, we lack empirical guidelines for how people convey their intended operations using direct manipulation of graphical encodings. We address this issue by conducting a qualitative study that examines how participants perform 15 operations using direct manipulation of standard graphical encodings. From this study, we 1) identify a list of strategies people employ to perform each operation, 2) observe commonalities in strategies across operations, and 3) derive implications to help designers leverage direct manipulation of graphical encoding as a method for user interaction.
Collapse
|
10
|
Sun M, Zhao J, Wu H, Luther K, North C, Ramakrishnan N. The Effect of Edge Bundling and Seriation on Sensemaking of Biclusters in Bipartite Graphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2983-2998. [PMID: 30059310 DOI: 10.1109/tvcg.2018.2861397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exploring coordinated relationships (e.g., shared relationships between two sets of entities) is an important analytics task in a variety of real-world applications, such as discovering similarly behaved genes in bioinformatics, detecting malware collusions in cyber security, and identifying products bundles in marketing analysis. Coordinated relationships can be formalized as biclusters. In order to support visual exploration of biclusters, bipartite graphs based visualizations have been proposed, and edge bundling is used to show biclusters. However, it suffers from edge crossings due to possible overlaps of biclusters, and lacks in-depth understanding of its impact on user exploring biclusters in bipartite graphs. To address these, we propose a novel bicluster-based seriation technique that can reduce edge crossings in bipartite graphs drawing and conducted a user experiment to study the effect of edge bundling and this proposed technique on visualizing biclusters in bipartite graphs. We found that they both had impact on reducing entity visits for users exploring biclusters, and edge bundles helped them find more justified answers. Moreover, we identified four key trade-offs that inform the design of future bicluster visualizations. The study results suggest that edge bundling is critical for exploring biclusters in bipartite graphs, which helps to reduce low-level perceptual problems and support high-level inferences.
Collapse
|
11
|
Okoe M, Jianu R, Kobourov S. Node-Link or Adjacency Matrices: Old Question, New Insights. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2940-2952. [PMID: 30130228 DOI: 10.1109/tvcg.2018.2865940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the two visualizations. Our work adds to existing research in several ways. First, we explore a broad spectrum of network tasks, many of which had not been previously evaluated. Second, our study uses two large datasets, typical of many real-life networks not explored by previous studies. Third, we leverage crowdsourcing to evaluate many tasks with many participants. This paper is an expanded journal version of a Graph Drawing (GD'17) conference paper. We evaluated a second dataset, added a qualitative feedback section, and expanded the procedure, results, discussion, and limitations sections.
Collapse
|
12
|
Sun G, Zhou Z, Chang B, Tang J, Liang R. PermVizor: visual analysis of multivariate permutations. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00599-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Behrisch M, Schreck T, Pfister H. GUIRO: User-Guided Matrix Reordering. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019:1-1. [PMID: 31442977 DOI: 10.1109/tvcg.2019.2934300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matrix representations are one of the main established and empirically proven to be effective visualization techniques for relational (or network) data. However, matrices-similar to node-link diagrams-are most effective if their layout reveals the underlying data topology. Given the many developed algorithms, a practical problem arises: "Which matrix reordering algorithm should I choose for my dataset at hand?" To make matters worse, different reordering algorithms applied to the same dataset may let significantly different visual matrix patterns emerge. This leads to the question of trustworthiness and explainability of these fully automated, often heuristic, black-box processes. We present GUIRO, a Visual Analytics system that helps novices, network analysts, and algorithm designers to open the black-box. Users can investigate the usefulness and expressiveness of 70 accessible matrix reordering algorithms. For network analysts, we introduce a novel model space representation and two interaction techniques for a user-guided reordering of rows or columns, and especially groups thereof (submatrix reordering). These novel techniques contribute to the understanding of the global and local dataset topology. We support algorithm designers by giving them access to 16 reordering quality metrics and visual exploration means for comparing reordering implementations on a row/column permutation level. We evaluated GUIRO in a guided explorative user study with 12 subjects, a case study demonstrating its usefulness in a real-world scenario, and through an expert study gathering feedback on our design decisions. We found that our proposed methods help even inexperienced users to understand matrix patterns and allow a user-guided steering of reordering algorithms. GUIRO helps to increase the transparency of matrix reordering algorithms, thus helping a broad range of users to get a better insight into the complex reordering process, in turn supporting data and reordering algorithm insights.
Collapse
|
14
|
Bernard J, Sessler D, Kohlhammer J, Ruddle RA. Using Dashboard Networks to Visualize Multiple Patient Histories: A Design Study on Post-Operative Prostate Cancer. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:1615-1628. [PMID: 29994364 DOI: 10.1109/tvcg.2018.2803829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this design study, we present a visualization technique that segments patients' histories instead of treating them as raw event sequences, aggregates the segments using criteria such as the whole history or treatment combinations, and then visualizes the aggregated segments as static dashboards that are arranged in a dashboard network to show longitudinal changes. The static dashboards were developed in nine iterations, to show 15 important attributes from the patients' histories. The final design was evaluated with five non-experts, five visualization experts and four medical experts, who successfully used it to gain an overview of a 2,000 patient dataset, and to make observations about longitudinal changes and differences between two cohorts. The research represents a step-change in the detail of large-scale data that may be successfully visualized using dashboards, and provides guidance about how the approach may be generalized.
Collapse
|
15
|
Chan GYY, Xu P, Dai Z, Ren L. VIBR: Visualizing Bipartite Relations at Scale with the Minimum Description Length Principle. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:321-330. [PMID: 30130217 DOI: 10.1109/tvcg.2018.2864826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bipartite graphs model the key relations in many large scale real-world data: customers purchasing items, legislators voting for bills, people's affiliation with different social groups, faults occurring in vehicles, etc. However, it is challenging to visualize large scale bipartite graphs with tens of thousands or even more nodes or edges. In this paper, we propose a novel visual summarization technique for bipartite graphs based on the minimum description length (MDL) principle. The method simultaneously groups the two different set of nodes and constructs aggregated bipartite relations with balanced granularity and precision. It addresses the key trade-off that often occurs for visualizing large scale and noisy data: acquiring a clear and uncluttered overview while maximizing the information content in it. We formulate the visual summarization task as a co-clustering problem and propose an efficient algorithm based on locality sensitive hashing (LSH) that can easily scale to large graphs under reasonable interactive time constraints that previous related methods cannot satisfy. The method leads to the opportunity of introducing a visual analytics framework with multiple levels-of-detail to facilitate interactive data exploration. In the framework, we also introduce a compact visual design inspired by adjacency list representation of graphs as the building block for a small multiples display to compare the bipartite relations for different subsets of data. We showcase the applicability and effectiveness of our approach by applying it on synthetic data with ground truth and performing case studies on real-world datasets from two application domains including roll-call vote record analysis and vehicle fault pattern analysis. Interviews with experts in the political science community and the automotive industry further highlight the benefits of our approach.
Collapse
|
16
|
Goc ML, Perin C, Follmer S, Fekete JD, Dragicevic P. Dynamic Composite Data Physicalization Using Wheeled Micro-Robots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:737-747. [PMID: 30136993 DOI: 10.1109/tvcg.2018.2865159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work.
Collapse
|
17
|
Badam SK, Liu Z, Elmqvist N. Elastic Documents: Coupling Text and Tables through Contextual Visualizations for Enhanced Document Reading. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:661-671. [PMID: 30136984 DOI: 10.1109/tvcg.2018.2865119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Today's data-rich documents are often complex datasets in themselves, consisting of information in different formats such as text, figures, and data tables. These additional media augment the textual narrative in the document. However, the static layout of a traditional for-print document often impedes deep understanding of its content because of the need to navigate to access content scattered throughout the text. In this paper, we seek to facilitate enhanced comprehension of such documents through a contextual visualization technique that couples text content with data tables contained in the document. We parse the text content and data tables, cross-link the components using a keyword-based matching algorithm, and generate on-demand visualizations based on the reader's current focus within a document. We evaluate this technique in a user study comparing our approach to a traditional reading experience. Results from our study show that (1) participants comprehend the content better with tighter coupling of text and data, (2) the contextual visualizations enable participants to develop better summaries that capture the main data-rich insights within the document, and (3) overall, our method enables participants to develop a more detailed understanding of the document content.
Collapse
|
18
|
Koytek P, Perin C, Vermeulen J, Andre E, Carpendale S. MyBrush: Brushing and Linking with Personal Agency. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:605-615. [PMID: 28866500 DOI: 10.1109/tvcg.2017.2743859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We extend the popular brushing and linking technique by incorporating personal agency in the interaction. We map existing research related to brushing and linking into a design space that deconstructs the interaction technique into three components: source (what is being brushed), link (the expression of relationship between source and target), and target (what is revealed as related to the source). Using this design space, we created MyBrush, a unified interface that offers personal agency over brushing and linking by giving people the flexibility to configure the source, link, and target of multiple brushes. The results of three focus groups demonstrate that people with different backgrounds leveraged personal agency in different ways, including performing complex tasks and showing links explicitly. We reflect on these results, paving the way for future research on the role of personal agency in information visualization.
Collapse
|
19
|
Dimara E, Bezerianos A, Dragicevic P. Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:749-759. [PMID: 28866571 DOI: 10.1109/tvcg.2017.2745138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explore how to rigorously evaluate multidimensional visualizations for their ability to support decision making. We first define multi-attribute choice tasks, a type of decision task commonly performed with such visualizations. We then identify which of the existing multidimensional visualizations are compatible with such tasks, and set out to evaluate three elementary visualizations: parallel coordinates, scatterplot matrices and tabular visualizations. Our method consists in first giving participants low-level analytic tasks, in order to ensure that they properly understood the visualizations and their interactions. Participants are then given multi-attribute choice tasks consisting of choosing holiday packages. We assess decision support through multiple objective and subjective metrics, including a decision accuracy metric based on the consistency between the choice made and self-reported preferences for attributes. We found the three visualizations to be comparable on most metrics, with a slight advantage for tabular visualizations. In particular, tabular visualizations allow participants to reach decisions faster. Thus, although decision time is typically not central in assessing decision support, it can be used as a tie-breaker when visualizations achieve similar decision accuracy. Our results also suggest that indirect methods for assessing choice confidence may allow to better distinguish between visualizations than direct ones. We finally discuss the limitations of our methods and directions for future work, such as the need for more sensitive metrics of decision support.
Collapse
|
20
|
Walny J, Huron S, Perin C, Wun T, Pusch R, Carpendale S. Active Reading of Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:770-780. [PMID: 28866591 DOI: 10.1109/tvcg.2017.2745958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate whether the notion of active reading for text might be usefully applied to visualizations. Through a qualitative study we explored whether people apply observable active reading techniques when reading paper-based node-link visualizations. Participants used a range of physical actions while reading, and from these we synthesized an initial set of active reading techniques for visualizations. To learn more about the potential impact such techniques may have on visualization reading, we implemented support for one type of physical action from our observations (making freeform marks) in an interactive node-link visualization. Results from our quantitative study of this implementation show that interactive support for active reading techniques can improve the accuracy of performing low-level visualization tasks. Together, our studies suggest that the active reading space is ripe for research exploration within visualization and can lead to new interactions that make for a more flexible and effective visualization reading experience.
Collapse
|
21
|
Perin C, Wun T, Pusch R, Carpendale S. Assessing the Graphical Perception of Time and Speed on 2D+Time Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:698-708. [PMID: 28866502 DOI: 10.1109/tvcg.2017.2743918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We empirically evaluate the extent to which people perceive non-constant time and speed encoded on 2D paths. In our graphical perception study, we evaluate nine encodings from the literature for both straight and curved paths. Visualizing time and speed information is a challenge when the x and y axes already encode other data dimensions, for example when plotting a trip on a map. This is particularly true in disciplines such as time-geography and movement analytics that often require visualizing spatio-temporal trajectories. A common approach is to use 2D+time trajectories, which are 2D paths for which time is an additional dimension. However, there are currently no guidelines regarding how to represent time and speed on such paths. Our study results provide InfoVis designers with clear guidance regarding which encodings to use and which ones to avoid; in particular, we suggest using color value to encode speed and segment length to encode time whenever possible.
Collapse
|
22
|
He C, Micallef L, Tanoli ZUR, Kaski S, Aittokallio T, Jacucci G. MediSyn: uncertainty-aware visualization of multiple biomedical datasets to support drug treatment selection. BMC Bioinformatics 2017; 18:393. [PMID: 28929971 PMCID: PMC5606218 DOI: 10.1186/s12859-017-1785-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Dispersed biomedical databases limit user exploration to generate structured knowledge. Linked Data unifies data structures and makes the dispersed data easy to search across resources, but it lacks supporting human cognition to achieve insights. In addition, potential errors in the data are difficult to detect in their free formats. Devising a visualization that synthesizes multiple sources in such a way that links between data sources are transparent, and uncertainties, such as data conflicts, are salient is challenging. Results To investigate the requirements and challenges of uncertainty-aware visualizations of linked data, we developed MediSyn, a system that synthesizes medical datasets to support drug treatment selection. It uses a matrix-based layout to visually link drugs, targets (e.g., mutations), and tumor types. Data uncertainties are salient in MediSyn; for example, (i) missing data are exposed in the matrix view of drug-target relations; (ii) inconsistencies between datasets are shown via overlaid layers; and (iii) data credibility is conveyed through links to data provenance. Conclusions Through the synthesis of two manually curated datasets, cancer treatment biomarkers and drug-target bioactivities, a use case shows how MediSyn effectively supports the discovery of drug-repurposing opportunities. A study with six domain experts indicated that MediSyn benefited the drug selection and data inconsistency discovery. Though linked publication sources supported user exploration for further information, the causes of inconsistencies were not easy to find. Additionally, MediSyn could embrace more patient data to increase its informativeness. We derive design implications from the findings. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1785-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen He
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Gustaf Hällströmin katu 2b, Helsinki, 00560, Finland.
| | - Luana Micallef
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Konemiehentie 2, Espoo, 02150, Finland
| | - Zia-Ur-Rehman Tanoli
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland
| | - Samuel Kaski
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Konemiehentie 2, Espoo, 02150, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland
| | - Giulio Jacucci
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Gustaf Hällströmin katu 2b, Helsinki, 00560, Finland
| |
Collapse
|
23
|
|
24
|
Loorak MH, Perin C, Collins C, Carpendale S. Exploring the Possibilities of Embedding Heterogeneous Data Attributes in Familiar Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:581-590. [PMID: 27875173 DOI: 10.1109/tvcg.2016.2598586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heterogeneous multi-dimensional data are now sufficiently common that they can be referred to as ubiquitous. The most frequent approach to visualizing these data has been to propose new visualizations for representing these data. These new solutions are often inventive but tend to be unfamiliar. We take a different approach. We explore the possibility of extending well-known and familiar visualizations through including Heterogeneous Embedded Data Attributes (HEDA) in order to make familiar visualizations more powerful. We demonstrate how HEDA is a generic, interactive visualization component that can extend common visualization techniques while respecting the structure of the familiar layout. HEDA is a tabular visualization building block that enables individuals to visually observe, explore, and query their familiar visualizations through manipulation of embedded multivariate data. We describe the design space of HEDA by exploring its application to familiar visualizations in the D3 gallery. We characterize these familiar visualizations by the extent to which HEDA can facilitate data queries based on attribute reordering.
Collapse
|
25
|
Glueck M, Gvozdik A, Chevalier F, Khan A, Brudno M, Wigdor D. PhenoStacks: Cross-Sectional Cohort Phenotype Comparison Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:191-200. [PMID: 27514055 DOI: 10.1109/tvcg.2016.2598469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cross-sectional phenotype studies are used by genetics researchers to better understand how phenotypes vary across patients with genetic diseases, both within and between cohorts. Analyses within cohorts identify patterns between phenotypes and patients (e.g., co-occurrence) and isolate special cases (e.g., potential outliers). Comparing the variation of phenotypes between two cohorts can help distinguish how different factors affect disease manifestation (e.g., causal genes, age of onset, etc.). PhenoStacks is a novel visual analytics tool that supports the exploration of phenotype variation within and between cross-sectional patient cohorts. By leveraging the semantic hierarchy of the Human Phenotype Ontology, phenotypes are presented in context, can be grouped and clustered, and are summarized via overviews to support the exploration of phenotype distributions. The design of PhenoStacks was motivated by formative interviews with genetics researchers: we distil high-level tasks, present an algorithm for simplifying ontology topologies for visualization, and report the results of a deployment evaluation with four expert genetics researchers. The results suggest that PhenoStacks can help identify phenotype patterns, investigate data quality issues, and inform data collection design.
Collapse
|
26
|
Perin C, Boy J, Vernier F. Using Gap Charts to Visualize the Temporal Evolution of Ranks and Scores. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2016; 36:38-49. [PMID: 28113147 DOI: 10.1109/mcg.2016.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To address the limitations of traditional line chart approaches, in particular rank charts (RCs) and score charts (SCs), a novel class of line charts called gap charts (GCs) show entries that are ranked over time according to a performance metric. The main advantages of GCs are that entries never overlap (only changes in rank generate limited overlap between time steps) and gaps between entries show the magnitude of their score difference. The authors evaluate the effectiveness of GCs for performing different types of tasks and find that they outperform standard time-dependent ranking visualizations for tasks that involve identifying and understanding evolutions in both ranks and scores. They also show that GCs are a generic and scalable class of line charts by applying them to a variety of different datasets.
Collapse
|
27
|
Loorak MH, Perin C, Kamal N, Hill M, Carpendale S. TimeSpan: Using Visualization to Explore Temporal Multi-dimensional Data of Stroke Patients. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:409-418. [PMID: 26390482 DOI: 10.1109/tvcg.2015.2467325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present TimeSpan, an exploratory visualization tool designed to gain a better understanding of the temporal aspects of the stroke treatment process. Working with stroke experts, we seek to provide a tool to help improve outcomes for stroke victims. Time is of critical importance in the treatment of acute ischemic stroke patients. Every minute that the artery stays blocked, an estimated 1.9 million neurons and 12 km of myelinated axons are destroyed. Consequently, there is a critical need for efficiency of stroke treatment processes. Optimizing time to treatment requires a deep understanding of interval times. Stroke health care professionals must analyze the impact of procedures, events, and patient attributes on time-ultimately, to save lives and improve quality of life after stroke. First, we interviewed eight domain experts, and closely collaborated with two of them to inform the design of TimeSpan. We classify the analytical tasks which a visualization tool should support and extract design goals from the interviews and field observations. Based on these tasks and the understanding gained from the collaboration, we designed TimeSpan, a web-based tool for exploring multi-dimensional and temporal stroke data. We describe how TimeSpan incorporates factors from stacked bar graphs, line charts, histograms, and a matrix visualization to create an interactive hybrid view of temporal data. From feedback collected from domain experts in a focus group session, we reflect on the lessons we learned from abstracting the tasks and iteratively designing TimeSpan.
Collapse
|
28
|
|
29
|
Patterns comportementaux sur la page d’accueil et performances de navigation sur les sites web. PSYCHOLOGIE FRANCAISE 2015. [DOI: 10.1016/j.psfr.2015.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|