1
|
Hilasaca GM, Marcilio-Jr WE, Eler DM, Martins RM, Paulovich FV. A Grid-Based Method for Removing Overlaps of Dimensionality Reduction Scatterplot Layouts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5733-5749. [PMID: 37647195 DOI: 10.1109/tvcg.2023.3309941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Dimensionality Reduction (DR) scatterplot layouts have become a ubiquitous visualization tool for analyzing multidimensional datasets. Despite their popularity, such scatterplots suffer from occlusion, especially when informative glyphs are used to represent data instances, potentially obfuscating critical information for the analysis under execution. Different strategies have been devised to address this issue, either producing overlap-free layouts that lack the powerful capabilities of contemporary DR techniques in uncovering interesting data patterns or eliminating overlaps as a post-processing strategy. Despite the good results of post-processing techniques, most of the best methods typically expand or distort the scatterplot area, thus reducing glyphs' size (sometimes) to unreadable dimensions, defeating the purpose of removing overlaps. This article presents Distance Grid (DGrid), a novel post-processing strategy to remove overlaps from DR layouts that faithfully preserves the original layout's characteristics and bounds the minimum glyph sizes. We show that DGrid surpasses the state-of-the-art in overlap removal (through an extensive comparative evaluation considering multiple different metrics) while also being one of the fastest techniques, especially for large datasets. A user study with 51 participants also shows that DGrid is consistently ranked among the top techniques for preserving the original scatterplots' visual characteristics and the aesthetics of the final results.
Collapse
|
2
|
Hou Y, Zhu H, Liang HN, Yu L. A study of the effect of star glyph parameters on value estimation and comparison. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Kinkeldey C, Fekete JD, Blascheck T, Isenberg P. BitConduite: Exploratory Visual Analysis of Entity Activity on the Bitcoin Network. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2022; 42:84-94. [PMID: 33848242 DOI: 10.1109/mcg.2021.3070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present BitConduite, a visual analytics approach for explorative analysis of financial activity within the Bitcoin network, offering a view on transactions aggregated by entities, i.e., by individuals, companies, or other groups actively using Bitcoin. BitConduite makes Bitcoin data accessible to nontechnical experts through a guided workflow around entities analyzed according to several activity metrics. Analyses can be conducted at different scales, from large groups of entities down to single entities. BitConduite also enables analysts to cluster entities to identify groups of similar activities as well as to explore characteristics and temporal patterns of transactions. To assess the value of our approach, we collected feedback from domain experts.
Collapse
|
4
|
Dong X, Gao Y, Dong J, Chantler MJ. The Importance of Phase to Texture Discrimination and Similarity. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3755-3768. [PMID: 32191889 DOI: 10.1109/tvcg.2020.2981063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we investigate the importance of phase for texture discrimination and similarity estimation tasks. We first use two psychophysical experiments to investigate the relative importance of phase and magnitude spectra for human texture discrimination and similarity estimation. The results show that phase is more important to humans for both tasks. We further examine the ability of 51 computational feature sets to perform these two tasks. In contrast with the psychophysical experiments, it is observed that the magnitude data is more important to these computational feature sets than the phase data. We hypothesise that this inconsistency is due to the difference between the abilities of humans and the computational feature sets to utilise phase data. This motivates us to investigate the application of the 51 feature sets to phase-only images in addition to their use on the original data set. This investigation is extended to exploit Convolutional Neural Network (CNN) features. The results show that our feature fusion scheme improves the average performance of those feature sets for estimating humans' perceptual texture similarity. The superior performance should be attributed to the importance of phase to texture similarity.
Collapse
|
5
|
Hu R, Chen B, Xu J, van Kaick O, Deussen O, Huang H. Shape-Driven Coordinate Ordering for Star Glyph Sets via Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3034-3047. [PMID: 33460381 DOI: 10.1109/tvcg.2021.3052167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a neural optimization model trained with reinforcement learning to solve the coordinate ordering problem for sets of star glyphs. Given a set of star glyphs associated to multiple class labels, we propose to use shape context descriptors to measure the perceptual distance between pairs of glyphs, and use the derived silhouette coefficient to measure the perception of class separability within the entire set. To find the optimal coordinate order for the given set, we train a neural network using reinforcement learning to reward orderings with high silhouette coefficients. The network consists of an encoder and a decoder with an attention mechanism. The encoder employs a recurrent neural network (RNN) to encode input shape and class information, while the decoder together with the attention mechanism employs another RNN to output a sequence with the new coordinate order. In addition, we introduce a neural network to efficiently estimate the similarity between shape context descriptors, which allows to speed up the computation of silhouette coefficients and thus the training of the axis ordering network. Two user studies demonstrate that the orders provided by our method are preferred by users for perceiving class separation. We tested our model on different settings to show its robustness and generalization abilities and demonstrate that it allows to order input sets with unseen data size, data dimension, or number of classes. We also demonstrate that our model can be adapted to coordinate ordering of other types of plots such as RadViz by replacing the proposed shape-aware silhouette coefficient with the corresponding quality metric to guide network training.
Collapse
|
6
|
Lamy JB. A data science approach to drug safety: Semantic and visual mining of adverse drug events from clinical trials of pain treatments. Artif Intell Med 2021; 115:102074. [PMID: 34001324 DOI: 10.1016/j.artmed.2021.102074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Clinical trials are the basis of Evidence-Based Medicine. Trial results are reviewed by experts and consensus panels for producing meta-analyses and clinical practice guidelines. However, reviewing these results is a long and tedious task, hence the meta-analyses and guidelines are not updated each time a new trial is published. Moreover, the independence of experts may be difficult to appraise. On the contrary, in many other domains, including medical risk analysis, the advent of data science, big data and visual analytics allowed moving from expert-based to fact-based knowledge. Since 12 years, many trial results are publicly available online in trial registries. Nevertheless, data science methods have not yet been applied widely to trial data. In this paper, we present a platform for analyzing the safety events reported during clinical trials and published in trial registries. This platform is based on an ontological model including 582 trials on pain treatments, and uses semantic web technologies for querying this dataset at various levels of granularity. It also relies on a 26-dimensional flower glyph for the visualization of the Adverse Drug Events (ADE) rates in 13 categories and 2 levels of seriousness. We illustrate the interest of this platform through several use cases and we were able to find back conclusions that were initially found during meta-analyses. The platform was presented to four experts in drug safety, and is publicly available online, with the ontology of pain treatment ADE.
Collapse
Affiliation(s)
- Jean-Baptiste Lamy
- Université Sorbonne Paris Nord, LIMICS, Sorbonne Université, INSERM, UMR 1142, F-93000 Bobigny, France; Laboratoire de Recherche en Informatique, CNRS/Université Paris-Sud/Université Paris-Saclay, Orsay, France.
| |
Collapse
|
7
|
Waldner M, Diehl A, Gracanin D, Splechtna R, Delrieux C, Matkovic K. A Comparison of Radial and Linear Charts for Visualizing Daily Patterns. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1033-1042. [PMID: 31443015 DOI: 10.1109/tvcg.2019.2934784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radial charts are generally considered less effective than linear charts. Perhaps the only exception is in visualizing periodical time-dependent data, which is believed to be naturally supported by the radial layout. It has been demonstrated that the drawbacks of radial charts outweigh the benefits of this natural mapping. Visualization of daily patterns, as a special case, has not been systematically evaluated using radial charts. In contrast to yearly or weekly recurrent trends, the analysis of daily patterns on a radial chart may benefit from our trained skill on reading radial clocks that are ubiquitous in our culture. In a crowd-sourced experiment with 92 non-expert users, we evaluated the accuracy, efficiency, and subjective ratings of radial and linear charts for visualizing daily traffic accident patterns. We systematically compared juxtaposed 12-hours variants and single 24-hours variants for both layouts in four low-level tasks and one high-level interpretation task. Our results show that over all tasks, the most elementary 24-hours linear bar chart is most accurate and efficient and is also preferred by the users. This provides strong evidence for the use of linear layouts - even for visualizing periodical daily patterns.
Collapse
|
8
|
Foote FO, Benson H, Berger A, Berman B, DeLeo J, Deuster PA, Lary DJ, Silverman MN, Sternberg EM. Advanced Metrics for Assessing Holistic Care: The "Epidaurus 2" Project. Glob Adv Health Med 2018; 7:2164957X18755981. [PMID: 29497586 PMCID: PMC5824899 DOI: 10.1177/2164957x18755981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
In response to the challenge of military traumatic brain injury and posttraumatic stress disorder, the US military developed a wide range of holistic care modalities at the new Walter Reed National Military Medical Center, Bethesda, MD, from 2001 to 2017, guided by civilian expert consultation via the Epidaurus Project. These projects spanned a range from healing buildings to wellness initiatives and healing through nature, spirituality, and the arts. The next challenge was to develop whole-body metrics to guide the use of these therapies in clinical care. Under the "Epidaurus 2" Project, a national search produced 5 advanced metrics for measuring whole-body therapeutic effects: genomics, integrated stress biomarkers, language analysis, machine learning, and "Star Glyphs." This article describes the metrics, their current use in guiding holistic care at Walter Reed, and their potential for operationalizing personalized care, patient self-management, and the improvement of public health. Development of these metrics allows the scientific integration of holistic therapies with organ-system-based care, expanding the powers of medicine.
Collapse
Affiliation(s)
| | - Herbert Benson
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ann Berger
- National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Brian Berman
- The Institute for Integrative Health, Baltimore, Maryland
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, Maryland
| | - James DeLeo
- The NIH Clinical Center Department of Clinical Research Informatics, Bethesda, Maryland
| | | | - David J Lary
- The University of Texas at Dallas, Richardson, Texas
| | - Marni N. Silverman
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | |
Collapse
|
9
|
Gleicher M. Considerations for Visualizing Comparison. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:413-423. [PMID: 28866530 DOI: 10.1109/tvcg.2017.2744199] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supporting comparison is a common and diverse challenge in visualization. Such support is difficult to design because solutions must address both the specifics of their scenario as well as the general issues of comparison. This paper aids designers by providing a strategy for considering those general issues. It presents four considerations that abstract comparison. These considerations identify issues and categorize solutions in a domain independent manner. The first considers how the common elements of comparison-a target set of items that are related and an action the user wants to perform on that relationship-are present in an analysis problem. The second considers why these elements lead to challenges because of their scale, in number of items, complexity of items, or complexity of relationship. The third considers what strategies address the identified scaling challenges, grouping solutions into three broad categories. The fourth considers which visual designs map to these strategies to provide solutions for a comparison analysis problem. In sequence, these considerations provide a process for developers to consider support for comparison in the design of visualization tools. Case studies show how these considerations can help in the design and evaluation of visualization solutions for comparison problems.
Collapse
|
10
|
Fuchs J, Isenberg P, Bezerianos A, Keim D. A Systematic Review of Experimental Studies on Data Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1863-1879. [PMID: 27046902 DOI: 10.1109/tvcg.2016.2549018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We systematically reviewed 64 user-study papers on data glyphs to help researchers and practitioners gain an informed understanding of tradeoffs in the glyph design space. The glyphs we consider are individual representations of multi-dimensional data points, often meant to be shown in small-multiple settings. Over the past 60 years many different glyph designs were proposed and many of these designs have been subjected to perceptual or comparative evaluations. Yet, a systematic overview of the types of glyphs and design variations tested, the tasks under which they were analyzed, or even the study goals and results does not yet exist. In this paper we provide such an overview by systematically sampling and tabulating the literature on data glyph studies, listing their designs, questions, data, and tasks. In addition we present a concise overview of the types of glyphs and their design characteristics analyzed by researchers in the past, and a synthesis of the study results. Based on our meta analysis of all results we further contribute a set of design implications and a discussion on open research directions.
Collapse
|
11
|
Yang B, Ganascia JG. Creating knowledge maps using Memory Island. INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES 2017. [DOI: 10.1007/s00799-016-0196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Englund R, Kottravel S, Ropinski T. A crowdsourcing system for integrated and reproducible evaluation in scientific visualization. 2016 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS) 2016. [DOI: 10.1109/pacificvis.2016.7465249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
13
|
Perin C, Dragicevic P, Fekete JD. Revisiting Bertin Matrices: New Interactions for Crafting Tabular Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:2082-2091. [PMID: 26356922 DOI: 10.1109/tvcg.2014.2346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present Bertifier, a web app for rapidly creating tabular visualizations from spreadsheets. Bertifier draws from Jacques Bertin's matrix analysis method, whose goal was to "simplify without destroying" by encoding cell values visually and grouping similar rows and columns. Although there were several attempts to bring this method to computers, no implementation exists today that is both exhaustive and accessible to a large audience. Bertifier remains faithful to Bertin's method while leveraging the power of today's interactive computers. Tables are formatted and manipulated through crossets, a new interaction technique for rapidly applying operations on rows and columns. We also introduce visual reordering, a semi-interactive reordering approach that lets users apply and tune automatic reordering algorithms in a WYSIWYG manner. Sessions with eight users from different backgrounds suggest that Bertifier has the potential to bring Bertin's method to a wider audience of both technical and non-technical users, and empower them with data analysis and communication tools that were so far only accessible to a handful of specialists.
Collapse
|