1
|
Ekinci S, Izci D, Gider V, Abualigah L, Bajaj M, Zaitsev I. Optimized FOPID controller for steam condenser system in power plants using the sinh-cosh optimizer. Sci Rep 2025; 15:6876. [PMID: 40011505 DOI: 10.1038/s41598-025-90005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
Steam condensers in power plants are crucial for improving the efficiency of the power generation cycle by condensing and recycling steam from the turbine. We used fractional-order proportional-integral-derivative (FOPID) controller to regulate the pressure inside the steam condenser system. We adopted sinh-cosh optimizer (SCHO) to tune this controller. We analyzed the pressure fluctuations and transient responses to verify the system balance between different operational states. Several well-known algorithms, including the gravitational search algorithm, whale optimization algorithm, manta ray foraging optimization and aquila optimizer, are tested against the SCHO. The simulation demonstrates that the SCHO-based method outperforms other approaches in terms of integral of time-weighted absolute error (ITAE), normalized overshoot, and normalized settling time. The SCHO-based FOPID controller attained a minimal error of 14.80 for ITAE, a minimum percentage overshoot of 6.06%, and the shortest settling time of 17.66 s. The stated values confirm that SCHO-based FOPID controller offers superior and more consistent performance for the system under study. Nonlinear analyses further demonstrate the efficacy of the proposed method in terms of circulating water outlet temperature, cooling water flow rate, steam heat and condenser pressure.
Collapse
Affiliation(s)
- Serdar Ekinci
- Department of Computer Engineering, Batman University, Batman, 72100, Turkey
| | - Davut Izci
- Department of Electrical and Electronics Engineering, Bursa Uludag University, Bursa, 16059, Turkey
- Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
| | - Veysel Gider
- Distance Education Application and Researcher Center, Batman University, Batman, Turkey
| | - Laith Abualigah
- Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Mohit Bajaj
- Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India.
- College of Engineering, University of Business and Technology, Jeddah, 21448, Saudi Arabia.
- Graphic Era Hill University, Dehradun, 248002, India.
| | - Ievgen Zaitsev
- Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
- Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring, National Academy of Sciences of Ukraine, Akademika Palladina Avenue, 34-A, Kyiv, Ukraine.
| |
Collapse
|
2
|
Kang YH, Kim JY, Kim YJ, Kim SH, Kim KG, Rhee CS. Airway and Airway Obstruction Site Segmentation Study Using U-Net with Drug-Induced Sleep Endoscopy Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:281-290. [PMID: 39103563 PMCID: PMC11810856 DOI: 10.1007/s10278-024-01208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Obstructive sleep apnea is characterized by a decrease or cessation of breathing due to repetitive closure of the upper airway during sleep, leading to a decrease in blood oxygen saturation. In this study, employing a U-Net model, we utilized drug-induced sleep endoscopy images to segment the major causes of airway obstruction, including the epiglottis, oropharynx lateral walls, and tongue base. The evaluation metrics included sensitivity, specificity, accuracy, and Dice score, with airway sensitivity at 0.93 (± 0.06), specificity at 0.96 (± 0.01), accuracy at 0.95 (± 0.01), and Dice score at 0.84 (± 0.03), indicating overall high performance. The results indicate the potential for artificial intelligence (AI)-driven automatic interpretation of sleep disorder diagnosis, with implications for standardizing medical procedures and improving healthcare services. The study suggests that advancements in AI technology hold promise for enhancing diagnostic accuracy and treatment efficacy in sleep and respiratory disorders, fostering competitiveness in the medical AI market.
Collapse
Affiliation(s)
- Yeong Hun Kang
- Dept. of Biomedical Engineering, College of Medicine, Gachon Univ, Incheon, Korea
| | - Jin Youp Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsan Hospital, Dongguk University, Goyang, Gyeonggi, South Korea
- Sensory Organ Research Institute, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - Young Jae Kim
- Dept. of Biomedical Engineering, College of Medicine, Gachon Univ, Incheon, Korea
- Gachon Biomedical & Convergence Institute, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sung Hyun Kim
- Department of Data, National Information Society Agency (NIA), Daegu, Korea
| | - Kwang Gi Kim
- Dept. of Biomedical Engineering, College of Medicine, Gachon Univ, Incheon, Korea.
- Gachon Biomedical & Convergence Institute, Gachon University Gil Medical Center, Incheon, South Korea.
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.
- Sensory Organ Research Institute and Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
3
|
Li G, Liu Y, Shan G, Cheng S, Cao W, Wang J, Wang KC. ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:624-634. [PMID: 39250408 DOI: 10.1109/tvcg.2024.3456338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters. Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based approaches, we demonstrate the efficacy of our solution.
Collapse
|
4
|
Valdrighi G, Ferreira N, Poco J. MoReVis: A Visual Summary for Spatiotemporal Moving Regions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1927-1941. [PMID: 37028073 DOI: 10.1109/tvcg.2023.3250166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spatial and temporal interactions are central and fundamental in many activities in our world. A common problem faced when visualizing this type of data is how to provide an overview that helps users navigate efficiently. Traditional approaches use coordinated views or 3D metaphors like the Space-time cube to tackle this problem. However, they suffer from overplotting and often lack spatial context, hindering data exploration. More recent techniques, such as MotionRugs, propose compact temporal summaries based on 1D projection. While powerful, these techniques do not support the situation for which the spatial extent of the objects and their intersections is relevant, such as the analysis of surveillance videos or tracking weather storms. In this article, we propose MoReVis, a visual overview of spatiotemporal data that considers the objects' spatial extent and strives to show spatial interactions among these objects by displaying spatial intersections. Like previous techniques, our method involves projecting the spatial coordinates to 1D to produce compact summaries. However, our solution's core consists of performing a layout optimization step that sets the size and positions of the visual marks on the summary to resemble the actual values on the original space. We also provide multiple interactive mechanisms to make interpreting the results more straightforward for the user. We perform an extensive experimental evaluation and usage scenarios. Moreover, we evaluated the usefulness of MoReVis in a study with 9 participants. The results point out the effectiveness and suitability of our method in representing different datasets compared to traditional techniques.
Collapse
|
5
|
Zhang M, Li Q, Chen L, Yuan X, Yong J. EnConVis: A Unified Framework for Ensemble Contour Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2067-2079. [PMID: 34982686 DOI: 10.1109/tvcg.2021.3140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ensemble simulation is a crucial method to handle potential uncertainty in modern simulation and has been widely applied in many disciplines. Many ensemble contour visualization methods have been introduced to facilitate ensemble data analysis. On the basis of deep exploration and summarization of existing techniques and domain requirements, we propose a unified framework of ensemble contour visualization, EnConVis (Ensemble Contour Visualization), which systematically combines state-of-the-art methods. We model ensemble contour visualization as a four-step pipeline consisting of four essential procedures: member filtering, point-wise modeling, uncertainty band extraction, and visual mapping. For each of the four essential procedures, we compare different methods they use, analyze their pros and cons, highlight research gaps, and attempt to fill them. Specifically, we add Kernel Density Estimation in the point-wise modeling procedure and multi-layer extraction in the uncertainty band extraction procedure. This step shows the ensemble data's details accurately and provides abstract levels. We also analyze existing methods from a global perspective. We investigate their mechanisms and compare their effects, on the basis of which, we offer selection guidelines for them. From the overall perspective of this framework, we find choices and combinations that have not been tried before, which can be well compensated by our method. Synthetic data and real-world data are leveraged to verify the efficacy of our method. Domain experts' feedback suggests that our approach helps them better understand ensemble data analysis.
Collapse
|
6
|
Pont M, Vidal J, Tierny J. Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams). IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1573-1589. [PMID: 36251893 DOI: 10.1109/tvcg.2022.3215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework (K. Pearson 1901) to the Wasserstein metric space of merge trees (Pont et al. 2022). We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of orthogonal geodesic axes, while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-memory parallelism, as well as an analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach also trivially extends to extremum persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our approach - with MT-PGA computations in the orders of minutes for the largest examples. We show the utility of our contributions by extending to merge trees two typical PCA applications. First, we apply MT-PGA to data reduction and reliably compress merge trees by concisely representing them by their first coordinates in the MT-PGA basis. Second, we present a dimensionality reduction framework exploiting the first two directions of the MT-PGA basis to generate two-dimensional layouts of the ensemble. We augment these layouts with persistence correlation views, enabling global and local visual inspections of the feature variability in the ensemble. In both applications, quantitative experiments assess the relevance of our framework. Finally, we provide a C++ implementation that can be used to reproduce our results.
Collapse
|
7
|
Nipu N, Floricel C, Naghashzadeh N, Paoli R, Marai GE. Visual Analysis and Detection of Contrails in Aircraft Engine Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:798-808. [PMID: 36166562 PMCID: PMC10621327 DOI: 10.1109/tvcg.2022.3209356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contrails are condensation trails generated from emitted particles by aircraft engines, which perturb Earth's radiation budget. Simulation modeling is used to interpret the formation and development of contrails. These simulations are computationally intensive and rely on high-performance computing solutions, and the contrail structures are not well defined. We propose a visual computing system to assist in defining contrails and their characteristics, as well as in the analysis of parameters for computer-generated aircraft engine simulations. The back-end of our system leverages a contrail-formation criterion and clustering methods to detect contrails' shape and evolution and identify similar simulation runs. The front-end system helps analyze contrails and their parameters across multiple simulation runs. The evaluation with domain experts shows this approach successfully aids in contrail data investigation.
Collapse
|
8
|
Affiliation(s)
- Zhuo Qu
- Statistics Program, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Marc G. Genton
- Statistics Program, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Chen M, Abdul-Rahman A, Archambault D, Dykes J, Ritsos P, Slingsby A, Torsney-Weir T, Turkay C, Bach B, Borgo R, Brett A, Fang H, Jianu R, Khan S, Laramee R, Matthews L, Nguyen P, Reeve R, Roberts J, Vidal F, Wang Q, Wood J, Xu K. RAMPVIS: Answering the challenges of building visualisation capabilities for large-scale emergency responses. Epidemics 2022; 39:100569. [PMID: 35597098 PMCID: PMC9045880 DOI: 10.1016/j.epidem.2022.100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/09/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
|
10
|
Huang R, Li Q, Chen L, Yuan X. A Probability Density-Based Visual Analytics Approach to Forecast Bias Calibration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1732-1744. [PMID: 32946394 DOI: 10.1109/tvcg.2020.3025072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biases inevitably occur in numerical weather prediction (NWP) due to an idealized numerical assumption for modeling chaotic atmospheric systems. Therefore, the rapid and accurate identification and calibration of biases is crucial for NWP in weather forecasting. Conventional approaches, such as various analog post-processing forecast methods, have been designed to aid in bias calibration. However, these approaches fail to consider the spatiotemporal correlations of forecast bias, which can considerably affect calibration efficacy. In this article, we propose a novel bias pattern extraction approach based on forecasting-observation probability density by merging historical forecasting and observation datasets. Given a spatiotemporal scope, our approach extracts and fuses bias patterns and automatically divides regions with similar bias patterns. Termed BicaVis, our spatiotemporal bias pattern visual analytics system is proposed to assist experts in drafting calibration curves on the basis of these bias patterns. To verify the effectiveness of our approach, we conduct two case studies with real-world reanalysis datasets. The feedback collected from domain experts confirms the efficacy of our approach.
Collapse
|
11
|
Prediction Model of Tunnel Boring Machine Disc Cutter Replacement Using Kernel Support Vector Machine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During tunneling processes, disc cutters of a tunnel boring machine (TBM) usually need to be frequently and unexpectedly replaced. Regular inspections are needed to check disc cutters’ status, which significantly reduces the work efficiency and increases the cost. This paper proposes a new prediction model based on TBM operational parameters and geological conditions that determines whether disc cutter replacement is needed. Firstly, an evaluation criterion for whether the cutters need to be replaced is constructed. Secondly, specific parameters related to the evaluation criterion are analyzed and 18 features are established on tunneling monitoring information. Then, the mapping model between the cutter replacement judgement and the established features is built based on a kernel support vector machine (KSVM). Finally, the data obtained from a Jilin water transport tunnel project is utilized to verify the performance of the proposed model. Test results show that the new model can obtain an average accuracy of 90.0% and an average F1 score of 86.2% on field data prediction based on data from past tunneling days. Therefore, the proposed data-predictive model can be used in tunneling to accurately predict whether disc cutters need to be replaced before human judgment, and thereby greatly improve tunneling safety and efficiency.
Collapse
|
12
|
Weiskopf D. Uncertainty Visualization: Concepts, Methods, and Applications in Biological Data Visualization. FRONTIERS IN BIOINFORMATICS 2022; 2:793819. [PMID: 36304261 PMCID: PMC9580861 DOI: 10.3389/fbinf.2022.793819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
This paper provides an overview of uncertainty visualization in general, along with specific examples of applications in bioinformatics. Starting from a processing and interaction pipeline of visualization, components are discussed that are relevant for handling and visualizing uncertainty introduced with the original data and at later stages in the pipeline, which shows the importance of making the stages of the pipeline aware of uncertainty and allowing them to propagate uncertainty. We detail concepts and methods for visual mappings of uncertainty, distinguishing between explicit and implict representations of distributions, different ways to show summary statistics, and combined or hybrid visualizations. The basic concepts are illustrated for several examples of graph visualization under uncertainty. Finally, this review paper discusses implications for the visualization of biological data and future research directions.
Collapse
|
13
|
Pont M, Vidal J, Delon J, Tierny J. Wasserstein Distances, Geodesics and Barycenters of Merge Trees. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:291-301. [PMID: 34596544 DOI: 10.1109/tvcg.2021.3114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the $L$2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [110] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach - with barycenter computations in the orders of minutes for the largest examples - as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking, temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.
Collapse
|
14
|
Affiliation(s)
| | | | - Myriam Vimond
- Univ Rennes, Ensai, CNRS, CREST – UMR 9194, Bruz, France
| |
Collapse
|
15
|
Li Z, Menon H, Maljovec D, Livnat Y, Liu S, Mohror K, Bremer PT, Pascucci V. SpotSDC: Revealing the Silent Data Corruption Propagation in High-Performance Computing Systems. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3938-3952. [PMID: 32746251 DOI: 10.1109/tvcg.2020.2994954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The trend of rapid technology scaling is expected to make the hardware of high-performance computing (HPC) systems more susceptible to computational errors due to random bit flips. Some bit flips may cause a program to crash or have a minimal effect on the output, but others may lead to silent data corruption (SDC), i.e., undetected yet significant output errors. Classical fault injection analysis methods employ uniform sampling of random bit flips during program execution to derive a statistical resiliency profile. However, summarizing such fault injection result with sufficient detail is difficult, and understanding the behavior of the fault-corrupted program is still a challenge. In this article, we introduce SpotSDC, a visualization system to facilitate the analysis of a program's resilience to SDC. SpotSDC provides multiple perspectives at various levels of detail of the impact on the output relative to where in the source code the flipped bit occurs, which bit is flipped, and when during the execution it happens. SpotSDC also enables users to study the code protection and provide new insights to understand the behavior of a fault-injected program. Based on lessons learned, we demonstrate how what we found can improve the fault injection campaign method.
Collapse
|
16
|
Lv Z, Xiao F, Wu Z, Liu Z, Wang Y. Hand gestures recognition from surface electromyogram signal based on self-organizing mapping and radial basis function network. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Kamal A, Dhakal P, Javaid AY, Devabhaktuni VK, Kaur D, Zaientz J, Marinier R. Recent advances and challenges in uncertainty visualization: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhang M, Chen L, Li Q, Yuan X, Yong J. Uncertainty-Oriented Ensemble Data Visualization and Exploration using Variable Spatial Spreading. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1808-1818. [PMID: 33048703 DOI: 10.1109/tvcg.2020.3030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As an important method of handling potential uncertainties in numerical simulations, ensemble simulation has been widely applied in many disciplines. Visualization is a promising and powerful ensemble simulation analysis method. However, conventional visualization methods mainly aim at data simplification and highlighting important information based on domain expertise instead of providing a flexible data exploration and intervention mechanism. Trial-and-error procedures have to be repeatedly conducted by such approaches. To resolve this issue, we propose a new perspective of ensemble data analysis using the attribute variable dimension as the primary analysis dimension. Particularly, we propose a variable uncertainty calculation method based on variable spatial spreading. Based on this method, we design an interactive ensemble analysis framework that provides a flexible interactive exploration of the ensemble data. Particularly, the proposed spreading curve view, the region stability heat map view, and the temporal analysis view, together with the commonly used 2D map view, jointly support uncertainty distribution perception, region selection, and temporal analysis, as well as other analysis requirements. We verify our approach by analyzing a real-world ensemble simulation dataset. Feedback collected from domain experts confirms the efficacy of our framework.
Collapse
|
19
|
Zhou L, Johnson CR, Weiskopf D. Data-Driven Space-Filling Curves. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1591-1600. [PMID: 33048752 PMCID: PMC8464196 DOI: 10.1109/tvcg.2020.3030473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abstract-We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data via quadtrees and octrees. Our method is useful in many areas of visualization including multivariate or comparative visualization ensemble visualization of 2D and 3D data on regular grids or multiscale visual analysis of particle simulations. The effectiveness of our method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.
Collapse
|
20
|
Athawale TM, Ma B, Sakhaee E, Johnson CR, Entezari A. Direct Volume Rendering with Nonparametric Models of Uncertainty. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1797-1807. [PMID: 33052857 DOI: 10.1109/tvcg.2020.3030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a nonparametric statistical framework for the quantification, analysis, and propagation of data uncertainty in direct volume rendering (DVR). The state-of-the-art statistical DVR framework allows for preserving the transfer function (TF) of the ground truth function when visualizing uncertain data; however, the existing framework is restricted to parametric models of uncertainty. In this paper, we address the limitations of the existing DVR framework by extending the DVR framework for nonparametric distributions. We exploit the quantile interpolation technique to derive probability distributions representing uncertainty in viewing-ray sample intensities in closed form, which allows for accurate and efficient computation. We evaluate our proposed nonparametric statistical models through qualitative and quantitative comparisons with the mean-field and parametric statistical models, such as uniform and Gaussian, as well as Gaussian mixtures. In addition, we present an extension of the state-of-the-art rendering parametric framework to 2D TFs for improved DVR classifications. We show the applicability of our uncertainty quantification framework to ensemble, downsampled, and bivariate versions of scalar field datasets.
Collapse
|
21
|
Wang Q, Li S. Nonlinear impact of COVID-19 on pollutions - Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. SUSTAINABLE CITIES AND SOCIETY 2021; 65:102629. [PMID: 35702662 PMCID: PMC9183786 DOI: 10.1016/j.scs.2020.102629] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/08/2020] [Accepted: 11/29/2020] [Indexed: 05/02/2023]
Abstract
The majority of existing COVID-19 and pollution research are from a linear perspective, ignoring the nonlinear relationship between COVID-19 and pollution. This work is aimed to systematically investigate the nonlinear impact of COVID-19 lockdown on four typical pollutants (NO2, PM2.5, O3 and SO2) in the selected eight cities (Wuhan of China, New York of the United States, Milan of Italy, Madrid of Spain, Bandra of India, London of United Kingdom, Tokyo of Japan and Mexico City of Mexico) using the updated data and spearman correlation function model. To a certain extent, the global lockdown caused by the coronavirus only reduces nitrogen dioxide and particles, but does not reduce ozone . Specifically, compared with the average concentration in the same period from 2017 to 2019, NO2 in 2020 decreased by 40-50 %, PM2.5 in 2020 decreased by 10-30 %, O3 in 2020 increased by 17-20 % and SO2 in 2020 increased slightly. In addition, the changes of new confirmed cases of COVID-19 and change of pollutants were not synchronized. On the contrary, there was a 0-7 days lag between the new confirmed cases and changes of pollutants.
Collapse
Affiliation(s)
- Qiang Wang
- Qingdao Institute of Humanities and Social Science, Shandong University, No. 72 Bin hai Road, Jimo District, Qingdao, 266237, People's Republic China
| | - Shuyu Li
- School of Economics and Management, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic China
| |
Collapse
|
22
|
A visual uncertainty analytics approach for weather forecast similarity measurement based on fuzzy clustering. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Xie W, Chkrebtii O, Kurtek S. Visualization and Outlier Detection for Multivariate Elastic Curve Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:3353-3364. [PMID: 31180861 PMCID: PMC7589786 DOI: 10.1109/tvcg.2019.2921541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose a new method for the construction and visualization of geometrically-motivated boxplot displays for elastic curve data. We use a recent shape analysis framework, based on the square-root velocity function representation of curves, to extract different sources of variability from elastic curves, which include location, scale, shape, orientation and parametrization. We then focus on constructing separate displays for these various components using the Riemannian geometry of their representation spaces. This involves computation of a median, two quartiles, and two extremes based on geometric considerations. The outlyingness of an elastic curve is also defined separately based on each of the five components. We evaluate the proposed methods using multiple simulations, and then focus our attention on real data applications. In particular, we study variability in (a) 3D spirals, (b) handwritten signatures, (c) 3D fibers from diffusion tensor magnetic resonance imaging, and (d) trajectories of the Lorenz system.
Collapse
|
24
|
Affiliation(s)
- Zonghui Yao
- Statistics Program King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia
| | - Wenlin Dai
- Institute of Statistics and Big Data Renmin University of China Beijing 100872 China
| | - Marc G. Genton
- Statistics Program King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia
| |
Collapse
|
25
|
He W, Guo H, Shen HW, Peterka T. eFESTA: Ensemble Feature Exploration with Surface Density Estimates. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1716-1731. [PMID: 30418881 DOI: 10.1109/tvcg.2018.2879866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose surface density estimate (SDE) to model the spatial distribution of surface features-isosurfaces, ridge surfaces, and streamsurfaces-in 3D ensemble simulation data. The inputs of SDE computation are surface features represented as polygon meshes, and no field datasets are required (e.g., scalar fields or vector fields). The SDE is defined as the kernel density estimate of the infinite set of points on the input surfaces and is approximated by accumulating the surface densities of triangular patches. We also propose an algorithm to guide the selection of a proper kernel bandwidth for SDE computation. An ensemble Feature Exploration method based on Surface densiTy EstimAtes (eFESTA) is then proposed to extract and visualize the major trends of ensemble surface features. For an ensemble of surface features, each surface is first transformed into a density field based on its contribution to the SDE, and the resulting density fields are organized into a hierarchical representation based on the pairwise distances between them. The hierarchical representation is then used to guide visual exploration of the density fields as well as the underlying surface features. We demonstrate the application of our method using isosurface in ensemble scalar fields, Lagrangian coherent structures in uncertain unsteady flows, and streamsurfaces in ensemble fluid flows.
Collapse
|
26
|
|
27
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
28
|
Vidal J, Budin J, Tierny J. Progressive Wasserstein Barycenters of Persistence Diagrams. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019:1-1. [PMID: 31403427 DOI: 10.1109/tvcg.2019.2934256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents an efficient algorithm for the progressive approximation of Wasserstein barycenters of persistence diagrams, with applications to the visual analysis of ensemble data. Given a set of scalar fields, our approach enables the computation of a persistence diagram which is representative of the set, and which visually conveys the number, data ranges and saliences of the main features of interest found in the set. Such representative diagrams are obtained by computing explicitly the discrete Wasserstein barycenter of the set of persistence diagrams, a notoriously computationally intensive task. In particular, we revisit efficient algorithms for Wasserstein distance approximation [12,51] to extend previous work on barycenter estimation [94]. We present a new fast algorithm, which progressively approximates the barycenter by iteratively increasing the computation accuracy as well as the number of persistent features in the output diagram. Such a progressivity drastically improves convergence in practice and allows to design an interruptible algorithm, capable of respecting computation time constraints. This enables the approximation of Wasserstein barycenters within interactive times. We present an application to ensemble clustering where we revisit the k-means algorithm to exploit our barycenters and compute, within execution time constraints, meaningful clusters of ensemble data along with their barycenter diagram. Extensive experiments on synthetic and real-life data sets report that our algorithm converges to barycenters that are qualitatively meaningful with regard to the applications, and quantitatively comparable to previous techniques, while offering an order of magnitude speedup when run until convergence (without time constraint). Our algorithm can be trivially parallelized to provide additional speedups in practice on standard workstations. We provide a lightweight C++ implementation of our approach that can be used to reproduce our results.
Collapse
|
29
|
Rautenhaus M, Bottinger M, Siemen S, Hoffman R, Kirby RM, Mirzargar M, Rober N, Westermann R. Visualization in Meteorology-A Survey of Techniques and Tools for Data Analysis Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:3268-3296. [PMID: 29990196 DOI: 10.1109/tvcg.2017.2779501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.
Collapse
|
30
|
Tang T, Yuan K, Tang J, Wu Y. Toward the better modeling and visualization of uncertainty for streaming data. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0518-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Favelier G, Faraj N, Summa B, Tierny J. Persistence Atlas for Critical Point Variability in Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1152-1162. [PMID: 30207954 DOI: 10.1109/tvcg.2018.2864432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a new approach for the visualization and analysis of the spatial variability of features of interest represented by critical points in ensemble data. Our framework, called Persistence Atlas, enables the visualization of the dominant spatial patterns of critical points, along with statistics regarding their occurrence in the ensemble. The persistence atlas represents in the geometrical domain each dominant pattern in the form of a confidence map for the appearance of critical points. As a by-product, our method also provides 2-dimensional layouts of the entire ensemble, highlighting the main trends at a global level. Our approach is based on the new notion of Persistence Map, a measure of the geometrical density in critical points which leverages the robustness to noise of topological persistence to better emphasize salient features. We show how to leverage spectral embedding to represent the ensemble members as points in a low-dimensional Euclidean space, where distances between points measure the dissimilarities between critical point layouts and where statistical tasks, such as clustering, can be easily carried out. Further, we show how the notion of mandatory critical point can be leveraged to evaluate for each cluster confidence regions for the appearance of critical points. Most of the steps of this framework can be trivially parallelized and we show how to efficiently implement them. Extensive experiments demonstrate the relevance of our approach. The accuracy of the confidence regions provided by the persistence atlas is quantitatively evaluated and compared to a baseline strategy using an off-the-shelf clustering approach. We illustrate the importance of the persistence atlas in a variety of real-life datasets, where clear trends in feature layouts are identified and analyzed. We provide a lightweight VTK-based C++ implementation of our approach that can be used for reproduction purposes.
Collapse
|
32
|
Liu L, Padilla L, Creem-Regehr SH, House DH. Visualizing Uncertain Tropical Cyclone Predictions using Representative Samples from Ensembles of Forecast Tracks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:882-891. [PMID: 30136996 DOI: 10.1109/tvcg.2018.2865193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A common approach to sampling the space of a prediction is the generation of an ensemble of potential outcomes, where the ensemble's distribution reveals the statistical structure of the prediction space. For example, the US National Hurricane Center generates multiple day predictions for a storm's path, size, and wind speed, and then uses a Monte Carlo approach to sample this prediction into a large ensemble of potential storm outcomes. Various forms of summary visualizations are generated from such an ensemble, often using spatial spread to indicate its statistical characteristics. However, studies have shown that changes in the size of such summary glyphs, representing changes in the uncertainty of the prediction, are frequently confounded with other attributes of the phenomenon, such as its size or strength. In addition, simulation ensembles typically encode multivariate information, which can be difficult or confusing to include in a summary display. This problem can be overcome by directly displaying the ensemble as a set of annotated trajectories, however this solution will not be effective if ensembles are densely overdrawn or structurally disorganized. We propose to overcome these difficulties by selectively sampling the original ensemble, constructing a smaller representative and spatially well organized ensemble. This can be drawn directly as a set of paths that implicitly reveals the underlying spatial uncertainty distribution of the prediction. Since this approach does not use a visual channel to encode uncertainty, additional information can more easily be encoded in the display without leading to visual confusion. To demonstrate our argument, we describe the development of a visualization for ensembles of tropical cyclone forecast tracks, explaining how their spatial and temporal predictions, as well as other crucial storm characteristics such as size and intensity, can be clearly revealed. We verify the effectiveness of this visualization approach through a cognitive study exploring how storm damage estimates are affected by the density of tracks drawn, and by the presence or absence of annotating information on storm size and intensity.
Collapse
|
33
|
Orban D, Keefe DF, Biswas A, Ahrens J, Rogers D. Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:256-266. [PMID: 30136980 DOI: 10.1109/tvcg.2018.2865051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a direct manipulation technique that allows material scientists to interactively highlight relevant parameterized simulation instances located in dimensionally reduced spaces, enabling a user-defined understanding of a continuous parameter space. Our goals are two-fold: first, to build a user-directed intuition of dimensionally reduced data, and second, to provide a mechanism for creatively exploring parameter relationships in parameterized simulation sets, called ensembles. We start by visualizing ensemble data instances in dimensionally reduced scatter plots. To understand these abstract views, we employ user-defined virtual data instances that, through direct manipulation, search an ensemble for similar instances. Users can create multiple of these direct manipulation queries to visually annotate the spaces with sets of highlighted ensemble data instances. User-defined goals are therefore translated into custom illustrations that are projected onto the dimensionally reduced spaces. Combined forward and inverse searches of the parameter space follow naturally allowing for continuous parameter space prediction and visual query comparison in the context of an ensemble. The potential for this visualization technique is confirmed via expert user feedback for a shock physics application and synthetic model analysis.
Collapse
|
34
|
Weissenbock J, Frohler B, Groller E, Kastner J, Heinzl C. Dynamic Volume Lines: Visual Comparison of 3D Volumes through Space-filling Curves. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1040-1049. [PMID: 30130203 DOI: 10.1109/tvcg.2018.2864510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The comparison of many members of an ensemble is difficult, tedious, and error-prone, which is aggravated by often just subtle differences. In this paper, we introduce Dynamic Volume Lines for the interactive visual analysis and comparison of sets of 3D volumes. Each volume is linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which depicts the intensities over the Hilbert indices. We present a nonlinear scaling of these 1D Hilbert line plots based on the intensity variations in the ensemble of 3D volumes, which enables a more effective use of the available screen space. The nonlinear scaling builds the basis for our interactive visualization techniques. An interactive histogram heatmap of the intensity frequencies serves as overview visualization. When zooming in, the frequencies are replaced by detailed 1D Hilbert line plots and optional functional boxplots. To focus on important regions of the volume ensemble, nonlinear scaling is incorporated into the plots. An interactive scaling widget depicts the local ensemble variations. Our brushing and linking interface reveals, for example, regions with a high ensemble variation by showing the affected voxels in a 3D spatial view. We show the applicability of our concepts using two case studies on ensembles of 3D volumes resulting from tomographic reconstruction. In the first case study, we evaluate an artificial specimen from simulated industrial 3D X-ray computed tomography (XCT). In the second case study, a real-world XCT foam specimen is investigated. Our results show that Dynamic Volume Lines can identify regions with high local intensity variations, allowing the user to draw conclusions, for example, about the choice of reconstruction parameters. Furthermore, it is possible to detect ring artifacts in reconstructions volumes.
Collapse
|
35
|
Effects of ensemble and summary displays on interpretations of geospatial uncertainty data. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2017; 2:40. [PMID: 29051918 PMCID: PMC5626802 DOI: 10.1186/s41235-017-0076-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
Abstract
Ensemble and summary displays are two widely used methods to represent visual-spatial uncertainty; however, there is disagreement about which is the most effective technique to communicate uncertainty to the general public. Visualization scientists create ensemble displays by plotting multiple data points on the same Cartesian coordinate plane. Despite their use in scientific practice, it is more common in public presentations to use visualizations of summary displays, which scientists create by plotting statistical parameters of the ensemble members. While prior work has demonstrated that viewers make different decisions when viewing summary and ensemble displays, it is unclear what components of the displays lead to diverging judgments. This study aims to compare the salience of visual features – or visual elements that attract bottom-up attention – as one possible source of diverging judgments made with ensemble and summary displays in the context of hurricane track forecasts. We report that salient visual features of both ensemble and summary displays influence participant judgment. Specifically, we find that salient features of summary displays of geospatial uncertainty can be misunderstood as displaying size information. Further, salient features of ensemble displays evoke judgments that are indicative of accurate interpretations of the underlying probability distribution of the ensemble data. However, when participants use ensemble displays to make point-based judgments, they may overweight individual ensemble members in their decision-making process. We propose that ensemble displays are a promising alternative to summary displays in a geospatial context but that decisions about visualization methods should be informed by the viewer’s task.
Collapse
|
36
|
Liu L, Boone AP, Ruginski IT, Padilla L, Hegarty M, Creem-Regehr SH, Thompson WB, Yuksel C, House DH. Uncertainty Visualization by Representative Sampling from Prediction Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2165-2178. [PMID: 28113666 DOI: 10.1109/tvcg.2016.2607204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Data ensembles are often used to infer statistics to be used for a summary display of an uncertain prediction. In a spatial context, these summary displays have the drawback that when uncertainty is encoded via a spatial spread, display glyph area increases in size with prediction uncertainty. This increase can be easily confounded with an increase in the size, strength or other attribute of the phenomenon being presented. We argue that by directly displaying a carefully chosen subset of a prediction ensemble, so that uncertainty is conveyed implicitly, such misinterpretations can be avoided. Since such a display does not require uncertainty annotation, an information channel remains available for encoding additional information about the prediction. We demonstrate these points in the context of hurricane prediction visualizations, showing how we avoid occlusion of selected ensemble elements while preserving the spatial statistics of the original ensemble, and how an explicit encoding of uncertainty can also be constructed from such a selection. We conclude with the results of a cognitive experiment demonstrating that the approach can be used to construct storm prediction displays that significantly reduce the confounding of uncertainty with storm size, and thus improve viewers' ability to estimate potential for storm damage.
Collapse
|
37
|
Raj M, Mirzargar M, Ricci R, Kirby RM, Whitaker RT. Path Boxplots: A Method for Characterizing Uncertainty in Path Ensembles on a Graph. J Comput Graph Stat 2017. [DOI: 10.1080/10618600.2016.1209115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mukund Raj
- Scientific Computing and Imaging Institute and School of Computing, University of Utah, Salt Lake City, Utah
| | - Mahsa Mirzargar
- Scientific Computing and Imaging Institute and School of Computing, University of Utah, Salt Lake City, Utah
| | - Robert Ricci
- School of Computing, University of Utah, Salt Lake City, Utah
| | - Robert M. Kirby
- Scientific Computing and Imaging Institute and School of Computing, University of Utah, Salt Lake City, Utah
| | - Ross T. Whitaker
- Scientific Computing and Imaging Institute and School of Computing, University of Utah, Salt Lake City, Utah
| |
Collapse
|
38
|
Abstract
Background In the field of root biology there has been a remarkable progress in root phenotyping, which is the efficient acquisition and quantitative description of root morphology. What is currently missing are means to efficiently explore, exchange and present the massive amount of acquired, and often time dependent root phenotypes. Results In this work, we present visual summaries of root ensembles by aggregating root images with identical genetic characteristics. We use the generalized box plot concept with a new formulation of data depth. In addition to spatial distributions, we created a visual representation to encode temporal distributions associated with the development of root individuals. Conclusions The new formulation of data depth allows for much faster implementation close to interactive frame rates. This allows us to present the statistics from bootstrapping that characterize the root sample set quality. As a positive side effect of the new data-depth formulation we are able to define the geometric median for the curve ensemble, which was well received by the domain experts.
Collapse
Affiliation(s)
- Viktor Vad
- TU WIEN, Karlsplatz 13, Vienna, 1040, Austria.
| | - Douglas Cedrim
- ICMC - University of São Paulo, São Carlos, 15260, Brazil
| | - Wolfgang Busch
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | | | - Ivan Viola
- TU WIEN, Karlsplatz 13, Vienna, 1040, Austria
| |
Collapse
|
39
|
Arthur Van G, Staals F, Loffler M, Dykes J, Speckmann B. Multi-Granular Trend Detection for Time-Series Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:661-670. [PMID: 27875181 DOI: 10.1109/tvcg.2016.2598619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data sets. Trend detection is an effective way to simplify time-varying data and to summarize salient information for visual display and interactive analysis. We propose a geometric model for trend-detection in one-dimensional time-varying data, inspired by topological grouping structures for moving objects in two- or higher-dimensional space. Our model gives provable guarantees on the trends detected and uses three natural parameters: granularity, support-size, and duration. These parameters can be changed on-demand. Our system also supports a variety of selection brushes and a time-sweep to facilitate refined searches and interactive visualization of (sub-)trends. We explore different visual styles and interactions through which trends, their persistence, and evolution can be explored.
Collapse
|
40
|
Biswas A, Lin G, Liu X, Shen HW. Visualization of Time-Varying Weather Ensembles across Multiple Resolutions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:841-850. [PMID: 27875198 DOI: 10.1109/tvcg.2016.2598869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncertainty quantification in climate ensembles is an important topic for the domain scientists, especially for decision making in the real-world scenarios. With powerful computers, simulations now produce time-varying and multi-resolution ensemble data sets. It is of extreme importance to understand the model sensitivity given the input parameters such that more computation power can be allocated to the parameters with higher influence on the output. Also, when ensemble data is produced at different resolutions, understanding the accuracy of different resolutions helps the total time required to produce a desired quality solution with improved storage and computation cost. In this work, we propose to tackle these non-trivial problems on the Weather Research and Forecasting (WRF) model output. We employ a moment independent sensitivity measure to quantify and analyze parameter sensitivity across spatial regions and time domain. A comparison of clustering structures across three resolutions enables the users to investigate the sensitivity variation over the spatial regions of the five input parameters. The temporal trend in the sensitivity values is explored via an MDS view linked with a line chart for interactive brushing. The spatial and temporal views are connected to provide a full exploration system for complete spatio-temporal sensitivity analysis. To analyze the accuracy across varying resolutions, we formulate a Bayesian approach to identify which regions are better predicted at which resolutions compared to the observed precipitation. This information is aggregated over the time domain and finally encoded in an output image through a custom color map that guides the domain experts towards an adaptive grid implementation given a cost model. Users can select and further analyze the spatial and temporal error patterns for multi-resolution accuracy analysis via brushing and linking on the produced image. In this work, we collaborate with a domain expert whose feedback shows the effectiveness of our proposed exploration work-flow.
Collapse
|
41
|
|
42
|
Ferstl F, Bürger K, Westermann R. Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:767-776. [PMID: 26390476 DOI: 10.1109/tvcg.2015.2467204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a new method to visualize from an ensemble of flow fields the statistical properties of streamlines passing through a selected location. We use principal component analysis to transform the set of streamlines into a low-dimensional Euclidean space. In this space the streamlines are clustered into major trends, and each cluster is in turn approximated by a multivariate Gaussian distribution. This yields a probabilistic mixture model for the streamline distribution, from which confidence regions can be derived in which the streamlines are most likely to reside. This is achieved by transforming the Gaussian random distributions from the low-dimensional Euclidean space into a streamline distribution that follows the statistical model, and by visualizing confidence regions in this distribution via iso-contours. We further make use of the principal component representation to introduce a new concept of streamline-median, based on existing median concepts in multidimensional Euclidean spaces. We demonstrate the potential of our method in a number of real-world examples, and we compare our results to alternative clustering approaches for particle trajectories as well as curve boxplots.
Collapse
|
43
|
Hao L, Healey CG, Bass SA. Effective Visualization of Temporal Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:787-796. [PMID: 26529728 DOI: 10.1109/tvcg.2015.2468093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An ensemble is a collection of related datasets, called members, built from a series of runs of a simulation or an experiment. Ensembles are large, temporal, multidimensional, and multivariate, making them difficult to analyze. Another important challenge is visualizing ensembles that vary both in space and time. Initial visualization techniques displayed ensembles with a small number of members, or presented an overview of an entire ensemble, but without potentially important details. Recently, researchers have suggested combining these two directions, allowing users to choose subsets of members to visualization. This manual selection process places the burden on the user to identify which members to explore. We first introduce a static ensemble visualization system that automatically helps users locate interesting subsets of members to visualize. We next extend the system to support analysis and visualization of temporal ensembles. We employ 3D shape comparison, cluster tree visualization, and glyph based visualization to represent different levels of detail within an ensemble. This strategy is used to provide two approaches for temporal ensemble analysis: (1) segment based ensemble analysis, to capture important shape transition time-steps, clusters groups of similar members, and identify common shape changes over time across multiple members; and (2) time-step based ensemble analysis, which assumes ensemble members are aligned in time by combining similar shapes at common time-steps. Both approaches enable users to interactively visualize and analyze a temporal ensemble from different perspectives at different levels of detail. We demonstrate our techniques on an ensemble studying matter transition from hadronic gas to quark-gluon plasma during gold-on-gold particle collisions.
Collapse
|