1
|
Kumar A, Garg S, Dutta S. Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1343-1353. [PMID: 39250384 DOI: 10.1109/tvcg.2024.3456360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The widespread use of Deep Neural Networks (DNNs) has recently resulted in their application to challenging scientific visualization tasks. While advanced DNNs demonstrate impressive generalization abilities, understanding factors like prediction quality, confidence, robustness, and uncertainty is crucial. These insights aid application scientists in making informed decisions. However, DNNs lack inherent mechanisms to measure prediction uncertainty, prompting the creation of distinct frameworks for constructing robust uncertainty-aware models tailored to various visualization tasks. In this work, we develop uncertainty-aware implicit neural representations to model steady-state vector fields effectively. We comprehensively evaluate the efficacy of two principled deep uncertainty estimation techniques: (1) Deep Ensemble and (2) Monte Carlo Dropout, aimed at enabling uncertainty-informed visual analysis of features within steady vector field data. Our detailed exploration using several vector data sets indicate that uncertainty-aware models generate informative visualization results of vector field features. Furthermore, incorporating prediction uncertainty improves the resilience and interpretability of our DNN model, rendering it applicable for the analysis of non-trivial vector field data sets.
Collapse
|
2
|
Li G, Liu Y, Shan G, Cheng S, Cao W, Wang J, Wang KC. ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:624-634. [PMID: 39250408 DOI: 10.1109/tvcg.2024.3456338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters. Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based approaches, we demonstrate the efficacy of our solution.
Collapse
|
3
|
Athawale TM, Wang Z, Pugmire D, Moreland K, Gong Q, Klasky S, Johnson CR, Rosen P. Uncertainty Visualization of Critical Points of 2D Scalar Fields for Parametric and Nonparametric Probabilistic Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:108-118. [PMID: 39255107 DOI: 10.1109/tvcg.2024.3456393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
This paper presents a novel end-to-end framework for closed-form computation and visualization of critical point uncertainty in 2D uncertain scalar fields. Critical points are fundamental topological descriptors used in the visualization and analysis of scalar fields. The uncertainty inherent in data (e.g., observational and experimental data, approximations in simulations, and compression), however, creates uncertainty regarding critical point positions. Uncertainty in critical point positions, therefore, cannot be ignored, given their impact on downstream data analysis tasks. In this work, we study uncertainty in critical points as a function of uncertainty in data modeled with probability distributions. Although Monte Carlo (MC) sampling techniques have been used in prior studies to quantify critical point uncertainty, they are often expensive and are infrequently used in production-quality visualization software. We, therefore, propose a new end-to-end framework to address these challenges that comprises a threefold contribution. First, we derive the critical point uncertainty in closed form, which is more accurate and efficient than the conventional MC sampling methods. Specifically, we provide the closed-form and semianalytical (a mix of closed-form and MC methods) solutions for parametric (e.g., uniform, Epanechnikov) and nonparametric models (e.g., histograms) with finite support. Second, we accelerate critical point probability computations using a parallel implementation with the VTK-m library, which is platform portable. Finally, we demonstrate the integration of our implementation with the ParaView software system to demonstrate near-real-time results for real datasets.
Collapse
|
4
|
Zhang M, Li Q, Chen L, Yuan X, Yong J. EnConVis: A Unified Framework for Ensemble Contour Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2067-2079. [PMID: 34982686 DOI: 10.1109/tvcg.2021.3140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ensemble simulation is a crucial method to handle potential uncertainty in modern simulation and has been widely applied in many disciplines. Many ensemble contour visualization methods have been introduced to facilitate ensemble data analysis. On the basis of deep exploration and summarization of existing techniques and domain requirements, we propose a unified framework of ensemble contour visualization, EnConVis (Ensemble Contour Visualization), which systematically combines state-of-the-art methods. We model ensemble contour visualization as a four-step pipeline consisting of four essential procedures: member filtering, point-wise modeling, uncertainty band extraction, and visual mapping. For each of the four essential procedures, we compare different methods they use, analyze their pros and cons, highlight research gaps, and attempt to fill them. Specifically, we add Kernel Density Estimation in the point-wise modeling procedure and multi-layer extraction in the uncertainty band extraction procedure. This step shows the ensemble data's details accurately and provides abstract levels. We also analyze existing methods from a global perspective. We investigate their mechanisms and compare their effects, on the basis of which, we offer selection guidelines for them. From the overall perspective of this framework, we find choices and combinations that have not been tried before, which can be well compensated by our method. Synthetic data and real-world data are leveraged to verify the efficacy of our method. Domain experts' feedback suggests that our approach helps them better understand ensemble data analysis.
Collapse
|
5
|
Pont M, Vidal J, Tierny J. Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams). IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1573-1589. [PMID: 36251893 DOI: 10.1109/tvcg.2022.3215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework (K. Pearson 1901) to the Wasserstein metric space of merge trees (Pont et al. 2022). We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of orthogonal geodesic axes, while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-memory parallelism, as well as an analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach also trivially extends to extremum persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our approach - with MT-PGA computations in the orders of minutes for the largest examples. We show the utility of our contributions by extending to merge trees two typical PCA applications. First, we apply MT-PGA to data reduction and reliably compress merge trees by concisely representing them by their first coordinates in the MT-PGA basis. Second, we present a dimensionality reduction framework exploiting the first two directions of the MT-PGA basis to generate two-dimensional layouts of the ensemble. We augment these layouts with persistence correlation views, enabling global and local visual inspections of the feature variability in the ensemble. In both applications, quantitative experiments assess the relevance of our framework. Finally, we provide a C++ implementation that can be used to reproduce our results.
Collapse
|
6
|
Athawale TM, Johnson CR, Sane S, Pugmire D. Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:613-623. [PMID: 36155460 DOI: 10.1109/tvcg.2022.3209424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.
Collapse
|
7
|
Nipu N, Floricel C, Naghashzadeh N, Paoli R, Marai GE. Visual Analysis and Detection of Contrails in Aircraft Engine Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:798-808. [PMID: 36166562 PMCID: PMC10621327 DOI: 10.1109/tvcg.2022.3209356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contrails are condensation trails generated from emitted particles by aircraft engines, which perturb Earth's radiation budget. Simulation modeling is used to interpret the formation and development of contrails. These simulations are computationally intensive and rely on high-performance computing solutions, and the contrail structures are not well defined. We propose a visual computing system to assist in defining contrails and their characteristics, as well as in the analysis of parameters for computer-generated aircraft engine simulations. The back-end of our system leverages a contrail-formation criterion and clustering methods to detect contrails' shape and evolution and identify similar simulation runs. The front-end system helps analyze contrails and their parameters across multiple simulation runs. The evaluation with domain experts shows this approach successfully aids in contrail data investigation.
Collapse
|
8
|
PEViz: an in situ progressive visual analytics system for ocean ensemble data. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Thygesen SS, Masood TB, Linares M, Natarajan V, Hotz I. Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering. COMPUTER GRAPHICS FORUM 2022; 41:333-344. [DOI: 10.1111/cgf.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractWe present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected ensemble members supports an in‐depth inspection of transitions in a form that is familiar to chemists. All views are linked and can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.
Collapse
Affiliation(s)
| | | | - Mathieu Linares
- Scientific Visualization Group Linköping University Sweden
- Laboratory of Organic Electronics Linköping University Sweden
| | | | - Ingrid Hotz
- Scientific Visualization Group Linköping University Sweden
| |
Collapse
|
10
|
Huang R, Li Q, Chen L, Yuan X. A Probability Density-Based Visual Analytics Approach to Forecast Bias Calibration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1732-1744. [PMID: 32946394 DOI: 10.1109/tvcg.2020.3025072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biases inevitably occur in numerical weather prediction (NWP) due to an idealized numerical assumption for modeling chaotic atmospheric systems. Therefore, the rapid and accurate identification and calibration of biases is crucial for NWP in weather forecasting. Conventional approaches, such as various analog post-processing forecast methods, have been designed to aid in bias calibration. However, these approaches fail to consider the spatiotemporal correlations of forecast bias, which can considerably affect calibration efficacy. In this article, we propose a novel bias pattern extraction approach based on forecasting-observation probability density by merging historical forecasting and observation datasets. Given a spatiotemporal scope, our approach extracts and fuses bias patterns and automatically divides regions with similar bias patterns. Termed BicaVis, our spatiotemporal bias pattern visual analytics system is proposed to assist experts in drafting calibration curves on the basis of these bias patterns. To verify the effectiveness of our approach, we conduct two case studies with real-world reanalysis datasets. The feedback collected from domain experts confirms the efficacy of our approach.
Collapse
|
11
|
Pont M, Vidal J, Delon J, Tierny J. Wasserstein Distances, Geodesics and Barycenters of Merge Trees. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:291-301. [PMID: 34596544 DOI: 10.1109/tvcg.2021.3114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the $L$2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [110] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach - with barycenter computations in the orders of minutes for the largest examples - as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking, temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.
Collapse
|
12
|
Yue R, Li G, Lu X, Li S, Shan G. EddyVis: A visual system to analyze eddies. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kamal A, Dhakal P, Javaid AY, Devabhaktuni VK, Kaur D, Zaientz J, Marinier R. Recent advances and challenges in uncertainty visualization: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Shi L, Laramee RS, Chen G. Integral Curve Clustering and Simplification for Flow Visualization: A Comparative Evaluation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1967-1985. [PMID: 31514143 DOI: 10.1109/tvcg.2019.2940935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unsupervised clustering techniques have been widely applied to flow simulation data to alleviate clutter and occlusion in the resulting visualization. However, there is an absence of systematic guidelines for users to evaluate (both quantitatively and visually) the appropriate clustering technique and similarity measures for streamline and pathline curves. In this work, we provide an overview of a number of prevailing curve clustering techniques. We then perform a comprehensive experimental study to qualitatively and quantitatively compare these clustering techniques coupled with popular similarity measures used in the flow visualization literature. Based on our experimental results, we derive empirical guidelines for selecting the appropriate clustering technique and similarity measure given the requirements of the visualization task. We believe our work will inform the task of generating meaningful reduced representations for large-scale flow data and inspire the continuous investigation of a more refined guidance on clustering technique selection.
Collapse
|
15
|
Zhang M, Chen L, Li Q, Yuan X, Yong J. Uncertainty-Oriented Ensemble Data Visualization and Exploration using Variable Spatial Spreading. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1808-1818. [PMID: 33048703 DOI: 10.1109/tvcg.2020.3030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As an important method of handling potential uncertainties in numerical simulations, ensemble simulation has been widely applied in many disciplines. Visualization is a promising and powerful ensemble simulation analysis method. However, conventional visualization methods mainly aim at data simplification and highlighting important information based on domain expertise instead of providing a flexible data exploration and intervention mechanism. Trial-and-error procedures have to be repeatedly conducted by such approaches. To resolve this issue, we propose a new perspective of ensemble data analysis using the attribute variable dimension as the primary analysis dimension. Particularly, we propose a variable uncertainty calculation method based on variable spatial spreading. Based on this method, we design an interactive ensemble analysis framework that provides a flexible interactive exploration of the ensemble data. Particularly, the proposed spreading curve view, the region stability heat map view, and the temporal analysis view, together with the commonly used 2D map view, jointly support uncertainty distribution perception, region selection, and temporal analysis, as well as other analysis requirements. We verify our approach by analyzing a real-world ensemble simulation dataset. Feedback collected from domain experts confirms the efficacy of our framework.
Collapse
|
16
|
Zheng B, Sadlo F. Uncertainty in Continuous Scatterplots, Continuous Parallel Coordinates, and Fibers. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1819-1828. [PMID: 33048747 DOI: 10.1109/tvcg.2020.3030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we introduce uncertainty to continuous scatterplots and continuous parallel coordinates. We derive respective models, validate them with sampling-based brute-force schemes, and present acceleration strategies for their computation. At the same time, we show that our approach lends itself as well for introducing uncertainty into the definition of fibers in bivariate data. Finally, we demonstrate the properties and the utility of our approach using specifically designed synthetic cases and simulated data.
Collapse
|
17
|
A visual uncertainty analytics approach for weather forecast similarity measurement based on fuzzy clustering. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
He W, Guo H, Shen HW, Peterka T. eFESTA: Ensemble Feature Exploration with Surface Density Estimates. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1716-1731. [PMID: 30418881 DOI: 10.1109/tvcg.2018.2879866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose surface density estimate (SDE) to model the spatial distribution of surface features-isosurfaces, ridge surfaces, and streamsurfaces-in 3D ensemble simulation data. The inputs of SDE computation are surface features represented as polygon meshes, and no field datasets are required (e.g., scalar fields or vector fields). The SDE is defined as the kernel density estimate of the infinite set of points on the input surfaces and is approximated by accumulating the surface densities of triangular patches. We also propose an algorithm to guide the selection of a proper kernel bandwidth for SDE computation. An ensemble Feature Exploration method based on Surface densiTy EstimAtes (eFESTA) is then proposed to extract and visualize the major trends of ensemble surface features. For an ensemble of surface features, each surface is first transformed into a density field based on its contribution to the SDE, and the resulting density fields are organized into a hierarchical representation based on the pairwise distances between them. The hierarchical representation is then used to guide visual exploration of the density fields as well as the underlying surface features. We demonstrate the application of our method using isosurface in ensemble scalar fields, Lagrangian coherent structures in uncertain unsteady flows, and streamsurfaces in ensemble fluid flows.
Collapse
|
19
|
Orban D, Banesh D, Tauxe C, Biwer CM, Biswas A, Saavedra R, Sweeney C, Sandberg RL, Bolme CA, Ahrens J, Rogers D. Cinema:Bandit: a visualization application for beamline science demonstrated on XFEL shock physics experiments. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1-10. [PMID: 31868729 DOI: 10.1107/s1600577519014322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
A new visualization tool, Cinema:Bandit, and its demonstration with a continuous workflow for analyzing shock physics experiments and visually exploring the data in real time at X-ray light sources is presented. Cinema:Bandit is an open-source, web-based visualization application in which the experimenter may explore an aggregated dataset to inform real-time beamline decisions and enable post hoc data analysis. The tool integrates with experimental workflows that process raw detector data into a simple database format, and it allows visualization of disparate data types, including experimental parameters, line graphs, and images. Use of parallel coordinates accommodates the irregular sampling of experimental parameters and allows for display and filtering of both experimental inputs and measurements. The tool is demonstrated on a dataset of shock-compressed titanium collected at the Matter in Extreme Conditions hutch at the Linac Coherent Light Source.
Collapse
Affiliation(s)
- Daniel Orban
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Divya Banesh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cameron Tauxe
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Ayan Biswas
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ramon Saavedra
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | - C A Bolme
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Ahrens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Rogers
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
20
|
|
21
|
Abstract
Seasonal forecasts for monsoonal rainfall characteristics like the onset of the rainy seasons (ORS) are crucial for national weather services in semi-arid regions to better support decision-making in rain-fed agriculture. In this study an approach for seasonal forecasting of the ORS is proposed using precipitation information from a global seasonal ensemble prediction system. It consists of a quantile–quantile-transformation for eliminating systematic differences between ensemble forecasts and observations, a fuzzy-rule based method for estimating the ORS date and graphical methods for an improved visualization of probabilistic ORS forecasts. The performance of the approach is tested for several climate zones (the Sahel, Sudan and Guinean zone) in West Africa for a period of eleven years (2000 to 2010), using hindcasts from the Seasonal Forecasting System 4 of ECMWF. We indicated that seasonal ORS forecasts can be skillful for individual years and specific regions (e.g., the Guinean coasts), but also associated with large uncertainties. A spatial verification of the ORS fields emphasizes the importance of selecting appropriate performance measures (e.g., the anomaly correlation coefficient) to avoid an overestimation of the forecast skill. The graphical methods consist of several common formats used in seasonal forecasting and a new index-based method for a quicker interpretation of probabilistic ORS forecast. The new index can also be applied to other seasonal forecast variables, providing an important alternative to the common forecast formats used in seasonal forecasting. Moreover, the forecasting approach proposed in this study is not computationally intensive and is therefore operational applicable for forecasting centers in tropical and subtropical regions where computing power and bandwidth are often limited.
Collapse
|
22
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
23
|
Vidal J, Budin J, Tierny J. Progressive Wasserstein Barycenters of Persistence Diagrams. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019:1-1. [PMID: 31403427 DOI: 10.1109/tvcg.2019.2934256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents an efficient algorithm for the progressive approximation of Wasserstein barycenters of persistence diagrams, with applications to the visual analysis of ensemble data. Given a set of scalar fields, our approach enables the computation of a persistence diagram which is representative of the set, and which visually conveys the number, data ranges and saliences of the main features of interest found in the set. Such representative diagrams are obtained by computing explicitly the discrete Wasserstein barycenter of the set of persistence diagrams, a notoriously computationally intensive task. In particular, we revisit efficient algorithms for Wasserstein distance approximation [12,51] to extend previous work on barycenter estimation [94]. We present a new fast algorithm, which progressively approximates the barycenter by iteratively increasing the computation accuracy as well as the number of persistent features in the output diagram. Such a progressivity drastically improves convergence in practice and allows to design an interruptible algorithm, capable of respecting computation time constraints. This enables the approximation of Wasserstein barycenters within interactive times. We present an application to ensemble clustering where we revisit the k-means algorithm to exploit our barycenters and compute, within execution time constraints, meaningful clusters of ensemble data along with their barycenter diagram. Extensive experiments on synthetic and real-life data sets report that our algorithm converges to barycenters that are qualitatively meaningful with regard to the applications, and quantitatively comparable to previous techniques, while offering an order of magnitude speedup when run until convergence (without time constraint). Our algorithm can be trivially parallelized to provide additional speedups in practice on standard workstations. We provide a lightweight C++ implementation of our approach that can be used to reproduce our results.
Collapse
|
24
|
Visual Analytics for the Representation, Exploration, and Analysis of High-Dimensional, Multi-faceted Medical Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1138:137-162. [PMID: 31313263 DOI: 10.1007/978-3-030-14227-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Medicine is among those research fields with a significant impact on humans and their health. Already for decades, medicine has established a tight coupling with the visualization domain, proving the importance of developing visualization techniques, designed exclusively for this research discipline. However, medical data is steadily increasing in complexity with the appearance of heterogeneous, multi-modal, multi-parametric, cohort or population, as well as uncertain data. To deal with this kind of complex data, the field of Visual Analytics has emerged. In this chapter, we discuss the many dimensions and facets of medical data. Based on this classification, we provide a general overview of state-of-the-art visualization systems and solutions dealing with high-dimensional, multi-faceted data. Our particular focus will be on multi-modal, multi-parametric data, on data from cohort or population studies and on uncertain data, especially with respect to Visual Analytics applications for the representation, exploration, and analysis of high-dimensional, multi-faceted medical data.
Collapse
|
25
|
Meuschke M, Oeltze-Jafra S, Beuing O, Preim B, Lawonn K. Classification of Blood Flow Patterns in Cerebral Aneurysms. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2404-2418. [PMID: 29994310 DOI: 10.1109/tvcg.2018.2834923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a Cerebral Aneurysm Vortex Classification (CAVOCLA) that allows to classify blood flow in cerebral aneurysms. Medical studies assume a strong relation between the progression and rupture of aneurysms and flow patterns. To understand how flow patterns impact the vessel morphology, they are manually classified according to predefined classes. However, manual classifications are time-consuming and exhibit a high inter-observer variability. In contrast, our approach is more objective and faster than manual methods. The classification of integral lines, representing steady or unsteady blood flow, is based on a mapping of the aneurysm surface to a hemisphere by calculating polar-based coordinates. The lines are clustered and for each cluster a representative is calculated. Then, the polar-based coordinates are transformed to the representative as basis for the classification. Classes are based on the flow complexity. The classification results are presented by a detail-on-demand approach using a visual transition from the representative over an enclosing surface to the associated lines. Based on seven representative datasets, we conduct an informal interview with five domain experts to evaluate the system. They confirmed that CAVOCLA allows for a robust classification of intra-aneurysmal flow patterns. The detail-on-demand visualization enables an efficient exploration and interpretation of flow patterns.
Collapse
|
26
|
Novotny J, Tveite J, Turner ML, Gatesy S, Drury F, Falkingham P, Laidlaw DH. Developing Virtual Reality Visualizations for Unsteady Flow Analysis of Dinosaur Track Formation using Scientific Sketching. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2145-2154. [PMID: 30908229 DOI: 10.1109/tvcg.2019.2898796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the results of a two-year design study to developing virtual reality (VR) flow visualization tools for the analysis of dinosaur track creation in a malleable substrate. Using Scientific Sketching methodology, we combined input from illustration artists, visualization experts, and domain scientists to create novel visualization methods. By iteratively improving visualization concepts at multiple levels of abstraction we helped domain scientists to gain insights into the relationship between dinosaur foot movements and substrate deformations. We involved over 20 art and computer science students from a VR design course in a rapid visualization sketching cycle, guided by our paleontologist collaborators through multiple critique sessions. This allowed us to explore a wide range of potential visualization methods and select the most promising methods for actual implementation. Our resulting visualization methods provide paleontologists with effective tools to analyze their data through particle, pathline and time surface visualizations. We also introduce a set of visual metaphors to compare foot motion in relation to substrate deformation by using pathsurfaces. This is one of the first large-scale projects using Scientific Sketching as a development methodology. We discuss how the research questions of our collaborators have evolved during the sketching and prototyping phases. Finally, we provide lessons learned and usage considerations for Scientific Sketching based on the experiences gathered during this project.
Collapse
|
27
|
Rautenhaus M, Bottinger M, Siemen S, Hoffman R, Kirby RM, Mirzargar M, Rober N, Westermann R. Visualization in Meteorology-A Survey of Techniques and Tools for Data Analysis Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:3268-3296. [PMID: 29990196 DOI: 10.1109/tvcg.2017.2779501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.
Collapse
|
28
|
Accuracy evaluation of blood flow distribution in the Fontan circulation: effects of resolution and velocity noise. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Favelier G, Faraj N, Summa B, Tierny J. Persistence Atlas for Critical Point Variability in Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1152-1162. [PMID: 30207954 DOI: 10.1109/tvcg.2018.2864432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a new approach for the visualization and analysis of the spatial variability of features of interest represented by critical points in ensemble data. Our framework, called Persistence Atlas, enables the visualization of the dominant spatial patterns of critical points, along with statistics regarding their occurrence in the ensemble. The persistence atlas represents in the geometrical domain each dominant pattern in the form of a confidence map for the appearance of critical points. As a by-product, our method also provides 2-dimensional layouts of the entire ensemble, highlighting the main trends at a global level. Our approach is based on the new notion of Persistence Map, a measure of the geometrical density in critical points which leverages the robustness to noise of topological persistence to better emphasize salient features. We show how to leverage spectral embedding to represent the ensemble members as points in a low-dimensional Euclidean space, where distances between points measure the dissimilarities between critical point layouts and where statistical tasks, such as clustering, can be easily carried out. Further, we show how the notion of mandatory critical point can be leveraged to evaluate for each cluster confidence regions for the appearance of critical points. Most of the steps of this framework can be trivially parallelized and we show how to efficiently implement them. Extensive experiments demonstrate the relevance of our approach. The accuracy of the confidence regions provided by the persistence atlas is quantitatively evaluated and compared to a baseline strategy using an off-the-shelf clustering approach. We illustrate the importance of the persistence atlas in a variety of real-life datasets, where clear trends in feature layouts are identified and analyzed. We provide a lightweight VTK-based C++ implementation of our approach that can be used for reproduction purposes.
Collapse
|
30
|
Ma B, Entezari A. An Interactive Framework for Visualization of Weather Forecast Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1091-1101. [PMID: 30130213 DOI: 10.1109/tvcg.2018.2864815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerical Weather Prediction (NWP) ensembles are commonly used to assess the uncertainty and confidence in weather forecasts. Spaghetti plots are conventional tools for meteorologists to directly examine the uncertainty exhibited by ensembles, where they simultaneously visualize isocontours of all ensemble members. To avoid visual clutter in practical usages, one needs to select a small number of informative isovalues for visual analysis. Moreover, due to the complex topology and variation of ensemble isocontours, it is often a challenging task to interpret the spaghetti plot for even a single isovalue in large ensembles. In this paper, we propose an interactive framework for uncertainty visualization of weather forecast ensembles that significantly improves and expands the utility of spaghetti plots in ensemble analysis. Complementary to state-of-the-art methods, our approach provides a complete framework for visual exploration of ensemble isocontours, including isovalue selection, interactive isocontour variability exploration, and interactive sub-region selection and re-analysis. Our framework is built upon the high-density clustering paradigm, where the mode structure of the density function is represented as a hierarchy of nested subsets of the data. We generalize the high-density clustering for isocontours and propose a bandwidth selection method for estimating the density function of ensemble isocontours. We present novel visualizations based on high-density clustering results, called the mode plot and the simplified spaghetti plot. The proposed mode plot visually encodes the structure provided by the high-density clustering result and summarizes the distribution of ensemble isocontours. It also enables the selection of subsets of interesting isocontours, which are interactively highlighted in a linked spaghetti plot for providing spatial context. To provide an interpretable overview of the positional variability of isocontours, our system allows for selection of informative isovalues from the simplified spaghetti plot. Due to the spatial variability of ensemble isocontours, the system allows for interactive selection and focus on sub-regions for local uncertainty and clustering re-analysis. We examine a number of ensemble datasets to establish the utility of our approach and discuss its advantages over state-of-the-art visual analysis tools for ensemble data.
Collapse
|
31
|
Orban D, Keefe DF, Biswas A, Ahrens J, Rogers D. Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:256-266. [PMID: 30136980 DOI: 10.1109/tvcg.2018.2865051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a direct manipulation technique that allows material scientists to interactively highlight relevant parameterized simulation instances located in dimensionally reduced spaces, enabling a user-defined understanding of a continuous parameter space. Our goals are two-fold: first, to build a user-directed intuition of dimensionally reduced data, and second, to provide a mechanism for creatively exploring parameter relationships in parameterized simulation sets, called ensembles. We start by visualizing ensemble data instances in dimensionally reduced scatter plots. To understand these abstract views, we employ user-defined virtual data instances that, through direct manipulation, search an ensemble for similar instances. Users can create multiple of these direct manipulation queries to visually annotate the spaces with sets of highlighted ensemble data instances. User-defined goals are therefore translated into custom illustrations that are projected onto the dimensionally reduced spaces. Combined forward and inverse searches of the parameter space follow naturally allowing for continuous parameter space prediction and visual query comparison in the context of an ensemble. The potential for this visualization technique is confirmed via expert user feedback for a shock physics application and synthetic model analysis.
Collapse
|
32
|
Hazarika S, Dutta S, Shen HW, Chen JP. CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1214-1224. [PMID: 30130206 DOI: 10.1109/tvcg.2018.2864801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
CoDDA (Copula-based Distribution Driven Analysis) is a flexible framework for large-scale multivariate datasets. A common strategy to deal with large-scale scientific simulation data is to partition the simulation domain and create statistical data summaries. Instead of storing the high-resolution raw data from the simulation, storing the compact statistical data summaries results in reduced storage overhead and alleviated I/O bottleneck. Such summaries, often represented in the form of statistical probability distributions, can serve various post-hoc analysis and visualization tasks. However, for multivariate simulation data using standard multivariate distributions for creating data summaries is not feasible. They are either storage inefficient or are computationally expensive to be estimated in simulation time (in situ) for large number of variables. In this work, using copula functions, we propose a flexible multivariate distribution-based data modeling and analysis framework that offers significant data reduction and can be used in an in situ environment. The framework also facilitates in storing the associated spatial information along with the multivariate distributions in an efficient representation. Using the proposed multivariate data summaries, we perform various multivariate post-hoc analyses like query-driven visualization and sampling-based visualization. We evaluate our proposed method on multiple real-world multivariate scientific datasets. To demonstrate the efficacy of our framework in an in situ environment, we apply it on a large-scale flow simulation.
Collapse
|
33
|
Kumpf A, Tost B, Baumgart M, Riemer M, Westermann R, Rautenhaus M. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:109-119. [PMID: 28866576 DOI: 10.1109/tvcg.2017.2745178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.
Collapse
|
34
|
Gleicher M. Considerations for Visualizing Comparison. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:413-423. [PMID: 28866530 DOI: 10.1109/tvcg.2017.2744199] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supporting comparison is a common and diverse challenge in visualization. Such support is difficult to design because solutions must address both the specifics of their scenario as well as the general issues of comparison. This paper aids designers by providing a strategy for considering those general issues. It presents four considerations that abstract comparison. These considerations identify issues and categorize solutions in a domain independent manner. The first considers how the common elements of comparison-a target set of items that are related and an action the user wants to perform on that relationship-are present in an analysis problem. The second considers why these elements lead to challenges because of their scale, in number of items, complexity of items, or complexity of relationship. The third considers what strategies address the identified scaling challenges, grouping solutions into three broad categories. The fourth considers which visual designs map to these strategies to provide solutions for a comparison analysis problem. In sequence, these considerations provide a process for developers to consider support for comparison in the design of visualization tools. Case studies show how these considerations can help in the design and evaluation of visualization solutions for comparison problems.
Collapse
|
35
|
|
36
|
Ma C, Luciani T, Terebus A, Liang J, Marai GE. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space. BMC Bioinformatics 2017; 18:24. [PMID: 28251874 PMCID: PMC5333168 DOI: 10.1186/s12859-016-1447-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists’ understanding of phenotypic behavior associated with specific genes. Results We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. Conclusions We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1447-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chihua Ma
- Electronic Visualization Laboratory, Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan St (M/C 152), Room 1120 SEO, Chicago, 60607, IL, US.
| | - Timothy Luciani
- Electronic Visualization Laboratory, Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan St (M/C 152), Room 1120 SEO, Chicago, 60607, IL, US
| | - Anna Terebus
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St (M/C 063), Room 218 SEO, Chicago, 60607, IL, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St (M/C 063), Room 218 SEO, Chicago, 60607, IL, USA
| | - G Elisabeta Marai
- Electronic Visualization Laboratory, Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan St (M/C 152), Room 1120 SEO, Chicago, 60607, IL, US
| |
Collapse
|
37
|
Arthur Van G, Staals F, Loffler M, Dykes J, Speckmann B. Multi-Granular Trend Detection for Time-Series Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:661-670. [PMID: 27875181 DOI: 10.1109/tvcg.2016.2598619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data sets. Trend detection is an effective way to simplify time-varying data and to summarize salient information for visual display and interactive analysis. We propose a geometric model for trend-detection in one-dimensional time-varying data, inspired by topological grouping structures for moving objects in two- or higher-dimensional space. Our model gives provable guarantees on the trends detected and uses three natural parameters: granularity, support-size, and duration. These parameters can be changed on-demand. Our system also supports a variety of selection brushes and a time-sweep to facilitate refined searches and interactive visualization of (sub-)trends. We explore different visual styles and interactions through which trends, their persistence, and evolution can be explored.
Collapse
|
38
|
Ferstl F, Kanzler M, Rautenhaus M, Westermann R. Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:831-840. [PMID: 27875197 DOI: 10.1109/tvcg.2016.2598868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.
Collapse
|
39
|
Biswas A, Lin G, Liu X, Shen HW. Visualization of Time-Varying Weather Ensembles across Multiple Resolutions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:841-850. [PMID: 27875198 DOI: 10.1109/tvcg.2016.2598869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncertainty quantification in climate ensembles is an important topic for the domain scientists, especially for decision making in the real-world scenarios. With powerful computers, simulations now produce time-varying and multi-resolution ensemble data sets. It is of extreme importance to understand the model sensitivity given the input parameters such that more computation power can be allocated to the parameters with higher influence on the output. Also, when ensemble data is produced at different resolutions, understanding the accuracy of different resolutions helps the total time required to produce a desired quality solution with improved storage and computation cost. In this work, we propose to tackle these non-trivial problems on the Weather Research and Forecasting (WRF) model output. We employ a moment independent sensitivity measure to quantify and analyze parameter sensitivity across spatial regions and time domain. A comparison of clustering structures across three resolutions enables the users to investigate the sensitivity variation over the spatial regions of the five input parameters. The temporal trend in the sensitivity values is explored via an MDS view linked with a line chart for interactive brushing. The spatial and temporal views are connected to provide a full exploration system for complete spatio-temporal sensitivity analysis. To analyze the accuracy across varying resolutions, we formulate a Bayesian approach to identify which regions are better predicted at which resolutions compared to the observed precipitation. This information is aggregated over the time domain and finally encoded in an output image through a custom color map that guides the domain experts towards an adaptive grid implementation given a cost model. Users can select and further analyze the spatial and temporal error patterns for multi-resolution accuracy analysis via brushing and linking on the produced image. In this work, we collaborate with a domain expert whose feedback shows the effectiveness of our proposed exploration work-flow.
Collapse
|