1
|
Amiri Z, Bayatian M, Mozafari S. Numerical simulation application in occupational health studies: a review. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:946-967. [PMID: 39031049 DOI: 10.1080/10803548.2024.2369423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Most occupational hazardous agents in workplaces should be evaluated and controlled. Different methods exist for identifying, evaluating and controlling these agents, such as numerical simulation tools. Numerical simulations can help experts to improve occupational health. Due to the importance and abilities of numerical simulations, this study divided occupational hazardous agents into 10 subgroups. These subgroups included air pollution, ventilation, respiratory airways, noise and vibration, lighting, radiation, ergonomics, fire and explosion, risk assessment and personal protective equipment. Recent research studies in each subgroup were then reviewed, and the codes and software used in simulations were determined. The results show that Fluent software and k-ϵ turbulence models are the most used in occupational health studies simulations. Today, different codes and software have been developed for simulation, and we suggest their use in occupational health studies.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Occupational Health Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Bayatian
- Department of Occupational Health Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sajjad Mozafari
- Department of Occupational Health Engineering, Faculty of Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
3
|
Piccolotto N, Bögl M, Miksch S. Visual Parameter Space Exploration in Time and Space. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:e14785. [PMID: 38505647 PMCID: PMC10947302 DOI: 10.1111/cgf.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Computational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.
Collapse
Affiliation(s)
- Nikolaus Piccolotto
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Markus Bögl
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Silvia Miksch
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| |
Collapse
|
4
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
5
|
Ivson P, Moreira A, Queiroz F, Santos W, Celes W. A Systematic Review of Visualization in Building Information Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:3109-3127. [PMID: 30932840 DOI: 10.1109/tvcg.2019.2907583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Building Information Modeling (BIM) employs data-rich 3D CAD models for large-scale facility design, construction, and operation. These complex datasets contain a large amount and variety of information, ranging from design specifications to real-time sensor data. They are used by architects and engineers for various analysis and simulations throughout a facility's life cycle. Many techniques from different visualization fields could be used to analyze these data. However, the BIM domain still remains largely unexplored by the visualization community. The goal of this article is to encourage visualization researchers to increase their involvement with BIM. To this end, we present the results of a systematic review of visualization in current BIM practice. We use a novel taxonomy to identify main application areas and analyze commonly employed techniques. From this domain characterization, we highlight future research opportunities brought forth by the unique features of BIM. For instance, exploring the synergies between scientific and information visualization to integrate spatial and non-spatial data. We hope this article raises awareness to interesting new challenges the BIM domain brings to the visualization community.
Collapse
|
6
|
Walch A, Schwarzler M, Luksch C, Eisemann E, Gschwandtner T. LightGuider: Guiding Interactive Lighting Design using Suggestions, Provenance, and Quality Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:569-578. [PMID: 31443004 DOI: 10.1109/tvcg.2019.2934658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
LightGuider is a novel guidance-based approach to interactive lighting design, which typically consists of interleaved 3D modeling operations and light transport simulations. Rather than having designers use a trial-and-error approach to match their illumination constraints and aesthetic goals, LightGuider supports the process by simulating potential next modeling steps that can deliver the most significant improvements. LightGuider takes predefined quality criteria and the current focus of the designer into account to visualize suggestions for lighting-design improvements via a specialized provenance tree. This provenance tree integrates snapshot visualizations of how well a design meets the given quality criteria weighted by the designer's preferences. This integration facilitates the analysis of quality improvements over the course of a modeling workflow as well as the comparison of alternative design solutions. We evaluate our approach with three lighting designers to illustrate its usefulness.
Collapse
|
7
|
Dimara E, Bezerianos A, Dragicevic P. Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:749-759. [PMID: 28866571 DOI: 10.1109/tvcg.2017.2745138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explore how to rigorously evaluate multidimensional visualizations for their ability to support decision making. We first define multi-attribute choice tasks, a type of decision task commonly performed with such visualizations. We then identify which of the existing multidimensional visualizations are compatible with such tasks, and set out to evaluate three elementary visualizations: parallel coordinates, scatterplot matrices and tabular visualizations. Our method consists in first giving participants low-level analytic tasks, in order to ensure that they properly understood the visualizations and their interactions. Participants are then given multi-attribute choice tasks consisting of choosing holiday packages. We assess decision support through multiple objective and subjective metrics, including a decision accuracy metric based on the consistency between the choice made and self-reported preferences for attributes. We found the three visualizations to be comparable on most metrics, with a slight advantage for tabular visualizations. In particular, tabular visualizations allow participants to reach decisions faster. Thus, although decision time is typically not central in assessing decision support, it can be used as a tie-breaker when visualizations achieve similar decision accuracy. Our results also suggest that indirect methods for assessing choice confidence may allow to better distinguish between visualizations than direct ones. We finally discuss the limitations of our methods and directions for future work, such as the need for more sensitive metrics of decision support.
Collapse
|
8
|
Zhao X, Wu Y, Cui W, Du X, Chen Y, Wang Y, Lee DL, Qu H. SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:246-255. [PMID: 28866558 DOI: 10.1109/tvcg.2017.2744738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.
Collapse
|
9
|
Ortner T, Sorger J, Steinlechner H, Hesina G, Piringer H, Groller E. Vis-A-Ware: Integrating Spatial and Non-Spatial Visualization for Visibility-Aware Urban Planning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1139-1151. [PMID: 26812725 DOI: 10.1109/tvcg.2016.2520920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
3D visibility analysis plays a key role in urban planning for assessing the visual impact of proposed buildings on the cityscape. A call for proposals typically yields around 30 candidate buildings that need to be evaluated with respect to selected viewpoints. Current visibility analysis methods are very time-consuming and limited to a small number of viewpoints. Further, analysts neither have measures to evaluate candidates quantitatively, nor to compare them efficiently. The primary contribution of this work is the design study of Vis-A-Ware, a visualization system to qualitatively and quantitatively evaluate, rank, and compare visibility data of candidate buildings with respect to a large number of viewpoints. Vis-A-Ware features a 3D spatial view of an urban scene and non-spatial views of data derived from visibility evaluations, which are tightly integrated by linked interaction. To enable a quantitative evaluation we developed four metrics in accordance with experts from urban planning. We illustrate the applicability of Vis-A-Ware on the basis of a use case scenario and present results from informal feedback sessions with domain experts from urban planning and development. This feedback suggests that Vis-A-Ware is a valuable tool for visibility analysis allowing analysts to answer complex questions more efficiently and objectively.
Collapse
|
10
|
Pajer S, Streit M, Torsney-Weir T, Spechtenhauser F, Muller T, Piringer H. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:611-620. [PMID: 27875176 DOI: 10.1109/tvcg.2016.2598589] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.
Collapse
|
11
|
Ortner T, Sorger J, Piringer H, Hesina G, Gröller E. Visual analytics and rendering for tunnel crack analysis: A methodological approach for integrating geometric and attribute data. THE VISUAL COMPUTER 2016; 32:859-869. [PMID: 31148881 PMCID: PMC6512001 DOI: 10.1007/s00371-016-1257-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The visual analysis of surface cracks plays an essential role in tunnel maintenance when assessing the condition of a tunnel. To identify patterns of cracks, which endanger the structural integrity of its concrete surface, analysts need an integrated solution for visual analysis of geometric and multivariate data to decide if issuing a repair project is necessary. The primary contribution of this work is a design study, supporting tunnel crack analysis by tightly integrating geometric and attribute views to allow users a holistic visual analysis of geometric representations and multivariate attributes. Our secondary contribution is Visual Analytics and Rendering, a methodological approach which addresses challenges and recurring design questions in integrated systems. We evaluated the tunnel crack analysis solution in informal feedback sessions with experts from tunnel maintenance and surveying. We substantiated the derived methodology by providing guidelines and linking it to examples from the literature.
Collapse
|