1
|
Silva JCS, de Lima Silva DF, Ferreira Júnior NR, de Almeida Filho AT. An analytical tool to support public policies and isolation barriers against SARS-CoV-2 based on mobility patterns and socio-economic aspects. Appl Soft Comput 2023; 138:110177. [PMID: 36923646 PMCID: PMC9991329 DOI: 10.1016/j.asoc.2023.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
It is crucial to develop spatiotemporal analysis tools to mitigate risks during a pandemic. Many dashboards encountered in the literature do not consider how the geolocation characteristics and travel patterns may influence the spread of the virus. This work brings an interactive tool that is capable of crossing information about mobility patterns, geolocation characteristics and epidemiologic variables. To do so, our system uses a mobility network, generated through anonymized mobile location data, which enables the division of a region into representative clusters. The clusters' aggregated socioeconomic, and epidemiologic indicators can be analyzed through multiple coordinated views. The proposal is to enable users to understand how different locations commute citizens, monitor risk over time, and understand what locations need more assistance, considering different layers of visualization, such as clusters and individual locations. The main novelty is the interactive way to construct the mobility network that defines the social distancing level and the way that risks are managed, since many different geolocation characteristics can be considered and visualized, such as socioeconomic indicators of a location, the economic importance of a set of locations, and the connection of important neighborhoods of a city with other cities. The proposed tool was built and verified by experts assembled to give scientific recommendations to the city administration of Recife, the capital city of Pernambuco. Our analysis shows how a policymaker could use the tool to evaluate different isolation scenarios considering the trade-off between economic activity and contamination risk, where the practical insights can also be used to tighten and relax mitigation measures in other phases of a pandemic.
Collapse
|
2
|
Li Z. Operating characteristics of the factor flow networks in rural areas: A case study of a typical industrial town in China. PLoS One 2023; 18:e0283232. [PMID: 36928487 PMCID: PMC10019707 DOI: 10.1371/journal.pone.0283232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
The networks of factor flows in rural areas are the main support for rural revitalization, which has become one of the research trends in rural geography. Taking a typical industrial town in China as an example, the study explored the operating characteristics of rural factor flow networks and the relations of multi-factor flows based on the social survey method and fine-grained flows data. Results showed that population flows, capital flows and policy flows increased significantly in rural areas. Thereinto, population flows, especially labor flows, mainly ran into the townships and industrial cluster villages, so did capital inflows and outflows, while policy flows ran around the township. The villages with dense population and capital flows formed the "central villages", which had exceeded the township in the two flow networks. Policy flows and capital flows played a guiding role in population flows, so did the policy flows on the capital flows. Meanwhile, the population flows and the capital flows could reinforce each other. In conclusion, a multi-center structure network with the separation of economic center and administrative center had been formed in rural areas. And there was a close interaction between these factor flows. Furthermore, the theoretical model of town-village symbiotic network was constructed.
Collapse
Affiliation(s)
- Zhi Li
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang, Hebei, China
- Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, Hebei, China
- Hebei Key Research Institute of Humanities and Social Sciences at Universities “GeoComputation and Planning Center of Hebei Normal University”, Shijiazhuang, Hebei, China
- * E-mail:
| |
Collapse
|
3
|
Warchol S, Krueger R, Nirmal AJ, Gaglia G, Jessup J, Ritch CC, Hoffer J, Muhlich J, Burger ML, Jacks T, Santagata S, Sorger PK, Pfister H. Visinity: Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:106-116. [PMID: 36170403 PMCID: PMC10043053 DOI: 10.1109/tvcg.2022.3209378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented detail. These methods are increasingly being applied to understand how cancer cells and immune response change during tumor development, progression, and metastasis, as well as following treatment. Yet, existing analysis approaches focus on investigating small tissue samples on a per-cell basis, not taking into account the spatial proximity of cells, which indicates cell-cell interaction and specific biological processes in the larger cancer microenvironment. We present Visinity, a scalable visual analytics system to analyze cell interaction patterns across cohorts of whole-slide multiplexed tissue images. Our approach is based on a fast regional neighborhood computation, leveraging unsupervised learning to quantify, compare, and group cells by their surrounding cellular neighborhood. These neighborhoods can be visually analyzed in an exploratory and confirmatory workflow. Users can explore spatial patterns present across tissues through a scalable image viewer and coordinated views highlighting the neighborhood composition and spatial arrangements of cells. To verify or refine existing hypotheses, users can query for specific patterns to determine their presence and statistical significance. Findings can be interactively annotated, ranked, and compared in the form of small multiples. In two case studies with biomedical experts, we demonstrate that Visinity can identify common biological processes within a human tonsil and uncover novel white-blood cell networks and immune-tumor interactions.
Collapse
|
4
|
Hulstein G, Pena-Araya V, Bezerianos A. Geo-Storylines: Integrating Maps into Storyline Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:994-1004. [PMID: 36227814 DOI: 10.1109/tvcg.2022.3209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Storyline visualizations are a powerful way to compactly visualize how the relationships between people evolve over time. Real-world relationships often also involve space, for example the cities that two political rivals visited together or alone over the years. By default, Storyline visualizations only show implicitly geospatial co-occurrence between people (drawn as lines), by bringing their lines together. Even the few designs that do explicitly show geographic locations only do so in abstract ways (e.g., annotations) and do not communicate geospatial information, such as the direction or extent of their political campains. We introduce Geo-Storylines, a collection of visualisation designs that integrate geospatial context into Storyline visualizations, using different strategies for compositing time and space. Our contribution is twofold. First, we present the results of a sketching workshop with 11 participants, that we used to derive a design space for integrating maps into Storylines. Second, by analyzing the strengths and weaknesses of the potential designs of the design space in terms of legibility and ability to scale to multiple relationships, we extract the three most promising: Time Glyphs, Coordinated Views, and Map Glyphs. We compare these three techniques first in a controlled study with 18 participants, under five different geospatial tasks and two maps of different complexity. We additionally collected informal feedback about their usefulness from domain experts in data journalism. Our results indicate that, as expected, detailed performance depends on the task. Nevertheless, Coordinated Views remain a highly effective and preferred technique across the board.
Collapse
|
5
|
Wu Y, Deng D, Xie X, He M, Xu J, Zhang H, Zhang H, Wu Y. OBTracker: Visual Analytics of Off-ball Movements in Basketball. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:929-939. [PMID: 36166529 DOI: 10.1109/tvcg.2022.3209373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In a basketball play, players who are not in possession of the ball (i.e., off-ball players) can still effectively contribute to the team's offense, such as making a sudden move to create scoring opportunities. Analyzing the movements of off-ball players can thus facilitate the development of effective strategies for coaches. However, common basketball statistics (e.g., points and assists) primarily focus on what happens around the ball and are mostly result-oriented, making it challenging to objectively assess and fully understand the contributions of off-ball movements. To address these challenges, we collaborate closely with domain experts and summarize the multi-level requirements for off-ball movement analysis in basketball. We first establish an assessment model to quantitatively evaluate the offensive contribution of an off-ball movement considering both the position of players and the team cooperation. Based on the model, we design and develop a visual analytics system called OBTracker to support the multifaceted analysis of off-ball movements. OBTracker enables users to identify the frequency and effectiveness of off-ball movement patterns and learn the performance of different off-ball players. A tailored visualization based on the Voronoi diagram is proposed to help users interpret the contribution of off-ball movements from a temporal perspective. We conduct two case studies based on the tracking data from NBA games and demonstrate the effectiveness and usability of OBTracker through expert feedback.
Collapse
|
6
|
MVST-SciVis: narrative visualization and analysis of compound events in scientific data. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
8
|
Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y. Visual Cascade Analytics of Large-Scale Spatiotemporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2486-2499. [PMID: 33822726 DOI: 10.1109/tvcg.2021.3071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.
Collapse
|
9
|
Graph Network Techniques to Model and Analyze Emergency Department Patient Flow. MATHEMATICS 2022. [DOI: 10.3390/math10091526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article moves beyond analysis methods related to a traditional relational database or network analysis and offers a novel graph network technique to yield insights from a hospital’s emergency department work model. The modeled data were saved in a Neo4j graphing database as a time-varying graph (TVG), and related metrics, including degree centrality and shortest paths, were calculated and used to obtain time-related insights from the overall system. This study demonstrated the value of using a TVG method to model patient flows during emergency department stays. It illustrated dynamic relationships among hospital and consulting units that could not be shown with traditional analyses. The TVG approach augments traditional network analysis with temporal-related outcomes including time-related patient flows, temporal congestion points details, and periodic resource constraints. The TVG approach is crucial in health analytics to understand both general factors and unique influences that define relationships between time-influenced events. The resulting insights are useful to administrators for making decisions related to resource allocation and offer promise for understanding impacts of physicians and nurses engaged in specific patient emergency department experiences. We also analyzed customer ratings and reviews to better understand overall patient satisfaction during their journey through the emergency department.
Collapse
|
10
|
Identification of Co-Clusters with Coherent Trends in Geo-Referenced Time Series. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have worked on co-clustering analysis of spatio-temporal data. However, most of them search for co-clusters with similar values and are unable to identify co-clusters with coherent trends, defined as exhibiting similar tendencies in the attributes. In this study, we present the Bregman co-clustering algorithm with minimum sum-squared residue (BCC_MSSR), which uses the residue to quantify coherent trends and enables the identification of co-clusters with coherent trends in geo-referenced time series. Dutch monthly temperatures over 20 years at 28 stations were used as the case study dataset. Station-clusters, month-clusters, and co-clusters in the BCC_MSSR results were showed and compared with co-clusters of similar values. A total of 112 co-clusters with different temperature variations were identified in the Results, and 16 representative co-clusters were illustrated, and seven types of coherent temperature trends were summarized: (1) increasing; (2) decreasing; (3) first increasing and then decreasing; (4) first decreasing and then increasing; (5) first increasing, then decreasing, and finally increasing; (6) first decreasing, then increasing, and finally decreasing; and (7) first decreasing, then increasing, decreasing, and finally increasing. Comparisons with co-clusters of similar values show that BCC_MSSR explored coherent spatio-temporal patterns in regions and certain time periods. However, the selection of the suitable co-clustering methods depends on the objective of specific tasks.
Collapse
|
11
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
12
|
Abstract
We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives.
Collapse
|
13
|
Shi L, Huang C, Liu M, Yan J, Jiang T, Tan Z, Hu Y, Chen W, Zhang X. UrbanMotion: Visual Analysis of Metropolitan-Scale Sparse Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3881-3899. [PMID: 32386157 DOI: 10.1109/tvcg.2020.2992200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualizing massive scale human movement in cities plays an important role in solving many of the problems that modern cities face (e.g., traffic optimization, business site configuration). In this article, we study a big mobile location dataset that covers millions of city residents, but is temporally sparse on the trajectory of individual user. Mapping sparse trajectories to illustrate population movement poses several challenges from both analysis and visualization perspectives. In the literature, there are a few techniques designed for sparse trajectory visualization; yet they do not consider trajectories collected from mobile apps that possess long-tailed sparsity with record intervals as long as hours. This article introduces UrbanMotion, a visual analytics system that extends the original wind map design by supporting map-matched local movements, multi-directional population flows, and population distributions. Effective methods are proposed to extract and aggregate population movements from dense parts of the trajectories leveraging their long-tailed sparsity. Both characteristic and anomalous patterns are discovered and visualized. We conducted three case studies, one comparative experiment, and collected expert feedback in the application domains of commuting analysis, event detection, and business site configuration. The study result demonstrates the significance and effectiveness of our system in helping to complete key analytics tasks for urban users.
Collapse
|
14
|
Abstract
Experts confirm that 85% of the world’s population is expected to live in cities by 2050. Therefore, cities should be prepared to satisfy the needs of their citizens and provide the best services. The idea of a city of the future is commonly represented by the smart city, which is a more efficient system that optimizes its resources and services, through the use of monitoring and communication technology. Thus, one of the steps towards sustainability for cities around the world is to make a transition into smart cities. Here, sensors play an important role in the system, as they gather relevant information from the city, citizens, and the corresponding communication networks that transfer the information in real-time. Although the use of these sensors is diverse, their application can be categorized in six different groups: energy, health, mobility, security, water, and waste management. Based on these groups, this review presents an analysis of different sensors that are typically used in efforts toward creating smart cities. Insights about different applications and communication systems are provided, as well as the main opportunities and challenges faced when making a transition to a smart city. Ultimately, this process is not only about smart urban infrastructure, but more importantly about how these new sensing capabilities and digitization developments improve quality of life. Smarter communities are those that socialize, adapt, and invest through transparent and inclusive community engagement in these technologies based on local and regional societal needs and values. Cyber security disruptions and privacy remain chief vulnerabilities.
Collapse
|
15
|
Nonato LG, do Carmo FP, Silva CT. GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3481-3492. [PMID: 32149640 DOI: 10.1109/tvcg.2020.2978847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as main application scenario the visual analysis of spatio-temporal data. More specifically, we propose the equivalent for graphs of the so-called Laplacian of Gaussian edge detection filter, which is widely used in image processing. The proposed filter is able to reveal interesting spatial patterns while still enabling the definition of entropy of time slices. The entropy reveals the degree of randomness of a time slice, helping users to identify expected and unexpected phenomena over time. The effectiveness of our approach appears in applications involving synthetic and real data sets, which show that the proposed methodology is able to uncover interesting spatial and temporal phenomena. The provided examples and case studies make clear the usefulness of our approach as a mechanism to support visual analytic tasks involving spatio-temporal data.
Collapse
|
16
|
Fujiwara T, Sakamoto N, Nonaka J, Yamamoto K, Ma KL. A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1601-1611. [PMID: 33026990 DOI: 10.1109/tvcg.2020.3028889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Data-driven problem solving in many real-world applications involves analysis of time-dependent multivariate data, for which dimensionality reduction (DR) methods are often used to uncover the intrinsic structure and features of the data. However, DR is usually applied to a subset of data that is either single-time-point multivariate or univariate time-series, resulting in the need to manually examine and correlate the DR results out of different data subsets. When the number of dimensions is large either in terms of the number of time points or attributes, this manual task becomes too tedious and infeasible. In this paper, we present MulTiDR, a new DR framework that enables processing of time-dependent multivariate data as a whole to provide a comprehensive overview of the data. With the framework, we employ DR in two steps. When treating the instances, time points, and attributes of the data as a 3D array, the first DR step reduces the three axes of the array to two, and the second DR step visualizes the data in a lower-dimensional space. In addition, by coupling with a contrastive learning method and interactive visualizations, our framework enhances analysts' ability to interpret DR results. We demonstrate the effectiveness of our framework with four case studies using real-world datasets.
Collapse
|
17
|
Liu L, Zhang H, Liu J, Liu S, Chen W, Man J. Visual exploration of urban functional zones based on augmented nonnegative tensor factorization. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Huang Z, Lu Y, Mack EA, Chen W, Maciejewski R. Exploring the Sensitivity of Choropleths under Attribute Uncertainty. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:2576-2590. [PMID: 30640617 DOI: 10.1109/tvcg.2019.2892483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values incorporate a range of uncertainty, a critical task is determining how much the uncertainty impacts both the map visualization and the statistical analysis. In this paper, we present a visual analytics system that enhances our understanding of the impact of attribute uncertainty on data visualization and statistical analyses of these data. Our system consists of a parallel coordinates-based uncertainty specification view, an impact river and impact matrix visualization for region-based and simulation-based analysis, and a dual-choropleth map and t-SNE plot for visualizing the changes in classification and spatial autocorrelation over the range of uncertainty in the attribute values. We demonstrate our system through three use cases illustrating the impact of attribute uncertainty in geographic analysis.
Collapse
|
19
|
Abstract
Stability in social, technical, and financial systems, as well as the capacity of organizations to work across borders, requires consistency in public policy across jurisdictions. The diffusion of laws and regulations across political boundaries can reduce the tension that arises between innovation and consistency. Policy diffusion has been a topic of focus across the social sciences for several decades, but due to limitations of data and computational capacity, researchers have not taken a comprehensive and data-intensive look at the aggregate, cross-policy patterns of diffusion. This work combines visual analytics and text and network analyses to help understand how policies, as represented in digitized text, spread across states. As a result, our approach can quickly guide analysts to progressively gain insights into policy adoption data. We evaluate the effectiveness of our system via case studies with a real-world policy dataset and qualitative interviews with domain experts.
Collapse
Affiliation(s)
- Yongsu Ahn
- University of Pittsburgh, Pittsburgh, PA
| | - Yu-Ru Lin
- University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Deng Z, Weng D, Chen J, Liu R, Wang Z, Bao J, Zheng Y, Wu Y. AirVis: Visual Analytics of Air Pollution Propagation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:800-810. [PMID: 31443012 DOI: 10.1109/tvcg.2019.2934670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Air pollution has become a serious public health problem for many cities around the world. To find the causes of air pollution, the propagation processes of air pollutants must be studied at a large spatial scale. However, the complex and dynamic wind fields lead to highly uncertain pollutant transportation. The state-of-the-art data mining approaches cannot fully support the extensive analysis of such uncertain spatiotemporal propagation processes across multiple districts without the integration of domain knowledge. The limitation of these automated approaches motivates us to design and develop AirVis, a novel visual analytics system that assists domain experts in efficiently capturing and interpreting the uncertain propagation patterns of air pollution based on graph visualizations. Designing such a system poses three challenges: a) the extraction of propagation patterns; b) the scalability of pattern presentations; and c) the analysis of propagation processes. To address these challenges, we develop a novel pattern mining framework to model pollutant transportation and extract frequent propagation patterns efficiently from large-scale atmospheric data. Furthermore, we organize the extracted patterns hierarchically based on the minimum description length (MDL) principle and empower expert users to explore and analyze these patterns effectively on the basis of pattern topologies. We demonstrated the effectiveness of our approach through two case studies conducted with a real-world dataset and positive feedback from domain experts.
Collapse
|
21
|
Chen C, Wang C, Bai X, Zhang P, Li C. GenerativeMap: Visualization and Exploration of Dynamic Density Maps via Generative Learning Model. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:216-226. [PMID: 31443026 DOI: 10.1109/tvcg.2019.2934806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The density map is widely used for data sampling, time-varying detection, ensemble representation, etc. The visualization of dynamic evolution is a challenging task when exploring spatiotemporal data. Many approaches have been provided to explore the variation of data patterns over time, which commonly need multiple parameters and preprocessing works. Image generation is a well-known topic in deep learning, and a variety of generating models have been promoted in recent years. In this paper, we introduce a general pipeline called GenerativeMap to extract dynamics of density maps by generating interpolation information. First, a trained generative model comprises an important part of our approach, which can generate nonlinear and natural results by implementing a few parameters. Second, a visual presentation is proposed to show the density change, which is combined with the level of detail and blue noise sampling for a better visual effect. Third, for dynamic visualization of large-scale density maps, we extend this approach to show the evolution in regions of interest, which costs less to overcome the drawback of the learning-based generative model. We demonstrate our method on different types of cases, and we evaluate and compare the approach from multiple aspects. The results help identify the effectiveness of our approach and confirm its applicability in different scenarios.
Collapse
|
22
|
Integrating Geovisual Analytics with Machine Learning for Human Mobility Pattern Discovery. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2019. [DOI: 10.3390/ijgi8100434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding human movement patterns is of fundamental importance in transportation planning and management. We propose to examine complex public transit travel patterns over a large-scale transit network, which is challenging since it involves thousands of transit passengers and massive data from heterogeneous sources. Additionally, efficient representation and visualization of discovered travel patterns is difficult given a large number of transit trips. To address these challenges, this study leverages advanced machine learning methods to identify time-varying mobility patterns based on smart card data and other urban data. The proposed approach delivers a comprehensive solution to pre-process, analyze, and visualize complex public transit travel patterns. This approach first fuses smart card data with other urban data to reconstruct original transit trips. We use two machine learning methods, including a clustering algorithm to extract transit corridors to represent primary mobility connections between different regions and a graph-embedding algorithm to discover hierarchical mobility community structures. We also devise compact and effective multi-scale visualization forms to represent the discovered travel behavior dynamics. An interactive web-based mapping prototype is developed to integrate advanced machine learning methods with specific visualizations to characterize transit travel behavior patterns and to enable visual exploration of transit mobility patterns at different scales and resolutions over space and time. The proposed approach is evaluated using multi-source big transit data (e.g., smart card data, transit network data, and bus trajectory data) collected in Shenzhen City, China. Evaluation of our prototype demonstrates that the proposed visual analytics approach offers a scalable and effective solution for discovering meaningful travel patterns across large metropolitan areas.
Collapse
|
23
|
Li J, Chen S, Zhang K, Andrienko G, Andrienko N. COPE: Interactive Exploration of Co-Occurrence Patterns in Spatial Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2554-2567. [PMID: 29994614 DOI: 10.1109/tvcg.2018.2851227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Spatial time series is a common type of data dealt with in many domains, such as economic statistics and environmental science. There have been many studies focusing on finding and analyzing various kinds of events in time series; the term 'event' refers to significant changes or occurrences of particular patterns formed by consecutive attribute values. We focus on a further step in event analysis: discover temporal relationship patterns between event locations, i.e., repeated cases when there is a specific temporal relationship (same time, before, or after) between events occurring at two locations. This can provide important clues for understanding the formation and spreading mechanisms of events and interdependencies among spatial locations. We propose a visual exploration framework COPE (Co-Occurrence Pattern Exploration), which allows users to extract events of interest from data and detect various co-occurrence patterns among them. Case studies and expert reviews were conducted to verify the effectiveness and scalability of COPE using two real-world datasets.
Collapse
|
24
|
Abstract
The increased accessibility of urban sensor data and the popularity of social network applications is enabling the discovery of crowd mobility and personal communication patterns. However, studying the egocentric relationships of an individual can be very challenging because available data may refer to direct contacts, such as phone calls between individuals, or indirect contacts, such as paired location presence. In this article, we develop methods to integrate three facets extracted from heterogeneous urban data (timelines, calls, and locations) through a progressive visual reasoning and inspection scheme. Our approach uses a detect-and-filter scheme such that, prior to visual refinement and analysis, a coarse detection is performed to extract the target individual and construct the timeline of the target. It then detects spatio-temporal co-occurrences or call-based contacts to develop the egocentric network of the individual. The filtering stage is enhanced with a line-based visual reasoning interface that facilitates a flexible and comprehensive investigation of egocentric relationships and connections in terms of time, space, and social networks. The integrated system, RelationLines, is demonstrated using a dataset that contains taxi GPS data, cell-base mobility data, mobile calling data, microblog data, and point-of-interest (POI) data from a city with millions of citizens. We examine the effectiveness and efficiency of our system with three case studies and user review.
Collapse
Affiliation(s)
- Wei Chen
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jing Xia
- Zhejiang University, State Key Lab of CAD8CG and Alibaba Group, China
| | - Xumeng Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Yi Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jun Chen
- Zhejiang University, State Key Lab of CAD8CG, Guangzhou, China
| | - Liang Chang
- Guilin University of Electronic Technology, China
| |
Collapse
|
25
|
Diverse Visualization Techniques and Methods of Moving-Object-Trajectory Data: A Review. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2019. [DOI: 10.3390/ijgi8020063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trajectory big data have significant applications in many areas, such as traffic management, urban planning and military reconnaissance. Traditional visualization methods, which are represented by contour maps, shading maps and hypsometric maps, are mainly based on the spatiotemporal information of trajectories, which can macroscopically study the spatiotemporal conditions of the entire trajectory set and microscopically analyze the individual movement of each trajectory; such methods are widely used in screen display and flat mapping. With the improvement of trajectory data quality, these data can generally describe information in the spatial and temporal dimensions and involve many other attributes (e.g., speed, orientation, and elevation) with large data amounts and high dimensions. Additionally, these data have relatively complicated internal relationships and regularities, whose analysis could cause many troubles; the traditional approaches can no longer fully meet the requirements of visualizing trajectory data and mining hidden information. Therefore, diverse visualization methods that present the value of massive trajectory information are currently a hot research topic. This paper summarizes the research status of trajectory data-visualization techniques in recent years and extracts common contemporary trajectory data-visualization methods to comprehensively cognize and understand the fundamental characteristics and diverse achievements of trajectory-data visualization.
Collapse
|
26
|
Sobral T, Galvão T, Borges J. Visualization of Urban Mobility Data from Intelligent Transportation Systems. SENSORS 2019; 19:s19020332. [PMID: 30650641 PMCID: PMC6359619 DOI: 10.3390/s19020332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Intelligent Transportation Systems are an important enabler for the smart cities paradigm. Currently, such systems generate massive amounts of granular data that can be analyzed to better understand people’s dynamics. To address the multivariate nature of spatiotemporal urban mobility data, researchers and practitioners have developed an extensive body of research and interactive visualization tools. Data visualization provides multiple perspectives on data and supports the analytical tasks of domain experts. This article surveys related studies to analyze which topics of urban mobility were addressed and their related phenomena, and to identify the adopted visualization techniques and sensors data types. We highlight research opportunities based on our findings.
Collapse
Affiliation(s)
- Thiago Sobral
- INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal.
| | - Teresa Galvão
- INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal.
| | - José Borges
- INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal.
| |
Collapse
|
27
|
|
28
|
Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Liu D, Xu P, Ren L. TPFlow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1-11. [PMID: 30136965 DOI: 10.1109/tvcg.2018.2865018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Consider a multi-dimensional spatio-temporal (ST) dataset where each entry is a numerical measure defined by the corresponding temporal, spatial and other domain-specific dimensions. A typical approach to explore such data utilizes interactive visualizations with multiple coordinated views. Each view displays the aggregated measures along one or two dimensions. By brushing on the views, analysts can obtain detailed information. However, this approach often cannot provide sufficient guidance for analysts to identify patterns hidden within subsets of data. Without a priori hypotheses, analysts need to manually select and iterate through different slices to search for patterns, which can be a tedious and lengthy process. In this work, we model multidimensional ST data as tensors and propose a novel piecewise rank-one tensor decomposition algorithm which supports automatically slicing the data into homogeneous partitions and extracting the latent patterns in each partition for comparison and visual summarization. The algorithm optimizes a quantitative measure about how faithfully the extracted patterns visually represent the original data. Based on the algorithm we further propose a visual analytics framework that supports a top-down, progressive partitioning workflow for level-of-detail multidimensional ST data exploration. We demonstrate the general applicability and effectiveness of our technique on three datasets from different application domains: regional sales trend analysis, customer traffic analysis in department stores, and taxi trip analysis with origin-destination (OD) data. We further interview domain experts to verify the usability of the prototype.
Collapse
|
30
|
von Landesberger T. Insights by Visual Comparison: The State and Challenges. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2018; 38:140-148. [PMID: 29877809 DOI: 10.1109/mcg.2018.032421661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Data comparison is one of the core tasks in exploratory analysis, which combines algorithmic analysis and interactive visualization in a visual data comparison process. Comparison of large and complex datasets requires several steps-i.e., a workflow. This article discusses the comparison process, its research challenges, and examples of solutions.
Collapse
|
31
|
Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2018. [DOI: 10.3390/ijgi7030102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
A Hybrid Approach Combining the Multi-Temporal Scale Spatio-Temporal Network with the Continuous Triangular Model for Exploring Dynamic Interactions in Movement Data: A Case Study of Football. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2018. [DOI: 10.3390/ijgi7010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benefiting from recent advantages in location-aware technologies, movement data are becoming ubiquitous. Hence, numerous research topics with respect to movement data have been undertaken. Yet, the research of dynamic interactions in movement data is still in its infancy. In this paper, we propose a hybrid approach combining the multi-temporal scale spatio-temporal network (MTSSTN) and the continuous triangular model (CTM) for exploring dynamic interactions in movement data. The approach mainly includes four steps: first, the relative trajectory calculus (RTC) is used to derive three types of interaction patterns; second, for each interaction pattern, a corresponding MTSSTN is generated; third, for each MTSSTN, the interaction intensity measures and three centrality measures (i.e., degree, betweenness and closeness) are calculated; finally, the results are visualized at multiple temporal scales using the CTM and analyzed based on the generated CTM diagrams. Based on the proposed approach, three distinctive aims can be achieved for each interaction pattern at multiple temporal scales: (1) exploring the interaction intensities between any two individuals; (2) exploring the interaction intensities among multiple individuals, and (3) exploring the importance of each individual and identifying the most important individuals. The movement data obtained from a real football match are used as a case study to validate the effectiveness of the proposed approach. The results demonstrate that the proposed approach is useful in exploring dynamic interactions in football movement data and discovering insightful information.
Collapse
|
33
|
Mapping Parallels between Outdoor Urban Environments and Indoor Manufacturing Environments. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2017. [DOI: 10.3390/ijgi6090281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Andrienko G, Andrienko N, Fuchs G, Wood J. Revealing Patterns and Trends of Mass Mobility Through Spatial and Temporal Abstraction of Origin-Destination Movement Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2120-2136. [PMID: 27740487 DOI: 10.1109/tvcg.2016.2616404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Origin-destination (OD) movement data describe moves or trips between spatial locations by specifying the origins, destinations, start, and end times, but not the routes travelled. For studying the spatio-temporal patterns and trends of mass mobility, individual OD moves of many people are aggregated into flows (collective moves) by time intervals. Time-variant flow data pose two difficult challenges for visualization and analysis. First, flows may connect arbitrary locations (not only neighbors), thus making a graph with numerous edge intersections, which is hard to visualize in a comprehensible way. Even a single spatial situation consisting of flows in one time step is hard to explore. The second challenge is the need to analyze long time series consisting of numerous spatial situations. We present an approach facilitating exploration of long-term flow data by means of spatial and temporal abstraction. It involves a special way of data aggregation, which allows representing spatial situations by diagram maps instead of flow maps, thus reducing the intersections and occlusions pertaining to flow maps. The aggregated data are used for clustering of time intervals by similarity of the spatial situations. Temporal and spatial displays of the clustering results facilitate the discovery of periodic patterns and longer-term trends in the mass mobility behavior.
Collapse
|
35
|
Li J, Xiao Z, Kong J. A viewpoint based approach to the visual exploration of trajectory. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2017. [DOI: 10.1016/j.jvlc.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Zhang J, Fan J, Luo Z. Generating Multi-Destination Maps. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1964-1976. [PMID: 27514041 DOI: 10.1109/tvcg.2016.2597827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multi-destination maps are a kind of navigation maps aimed to guide visitors to multiple destinations within a region, which can be of great help to urban visitors. However, they have not been developed in the current online map service. To address this issue, we introduce a novel layout model designed especially for generating multi-destination maps, which considers the global and local layout of a multi-destination map. We model the layout problem as a graph drawing that satisfies a set of hard and soft constraints. In the global layout phase, we balance the scale factor between ROIs. In the local layout phase, we make all edges have good visibility and optimize the map layout to preserve the relative length and angle of roads. We also propose a perturbation-based optimization method to find an optimal layout in the complex solution space. The multi-destination maps generated by our system are potential feasible on the modern mobile devices and our result can show an overview and a detail view of the whole map at the same time. In addition, we perform a user study to evaluate the effectiveness of our method, and the results prove that the multi-destination maps achieve our goals well.
Collapse
|
37
|
Karduni A, Cho I, Wessel G, Ribarsky W, Sauda E, Dou W. Urban Space Explorer: A Visual Analytics System for Urban Planning. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2017; 37:50-60. [PMID: 28945579 DOI: 10.1109/mcg.2017.3621223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.
Collapse
|
38
|
Miranda F, Doraiswamy H, Lage M, Zhao K, Goncalves B, Wilson L, Hsieh M, Silva CT. Urban Pulse: Capturing the Rhythm of Cities. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:791-800. [PMID: 27875193 DOI: 10.1109/tvcg.2016.2598585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cities are inherently dynamic. Interesting patterns of behavior typically manifest at several key areas of a city over multiple temporal resolutions. Studying these patterns can greatly help a variety of experts ranging from city planners and architects to human behavioral experts. Recent technological innovations have enabled the collection of enormous amounts of data that can help in these studies. However, techniques using these data sets typically focus on understanding the data in the context of the city, thus failing to capture the dynamic aspects of the city. The goal of this work is to instead understand the city in the context of multiple urban data sets. To do so, we define the concept of an "urban pulse" which captures the spatio-temporal activity in a city across multiple temporal resolutions. The prominent pulses in a city are obtained using the topology of the data sets, and are characterized as a set of beats. The beats are then used to analyze and compare different pulses. We also design a visual exploration framework that allows users to explore the pulses within and across multiple cities under different conditions. Finally, we present three case studies carried out by experts from two different domains that demonstrate the utility of our framework.
Collapse
|
39
|
Wu F, Zhu M, Wang Q, Zhao X, Chen W, Maciejewski R. Spatial–temporal visualization of city-wide crowd movement. J Vis (Tokyo) 2016. [DOI: 10.1007/s12650-016-0368-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
GIS and Transport Modeling—Strengthening the Spatial Perspective. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2016. [DOI: 10.3390/ijgi5060084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|