1
|
Zhang Y, Xu L, Tao S, Guan Q, Li Q, Zeng H. CSLens: Towards Better Deploying Charging Stations via Visual Analytics - a Coupled Networks Perspective. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:251-261. [PMID: 39255147 DOI: 10.1109/tvcg.2024.3456392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, the global adoption of electric vehicles (EVs) has surged, prompting a corresponding rise in the installation of charging stations. This proliferation has underscored the importance of expediting the deployment of charging infrastructure. Both academia and industry have thus devoted to addressing the charging station location problem (CSLP) to streamline this process. However, prevailing algorithms addressing CSLP are hampered by restrictive assumptions and computational overhead, leading to a dearth of comprehensive evaluations in the spatiotemporal dimensions. Consequently, their practical viability is restricted. Moreover, the placement of charging stations exerts a significant impact on both the road network and the power grid, which necessitates the evaluation of the potential post-deployment impacts on these interconnected networks holistically. In this study, we propose CSLens, a visual analytics system designed to inform charging station deployment decisions through the lens of coupled transportation and power networks. CSLens offers multiple visualizations and interactive features, empowering users to delve into the existing charging station layout, explore alternative deployment solutions, and assess the ensuring impact. To validate the efficacy of CSLens, we conducted two case studies and engaged in interviews with domain experts. Through these efforts, we substantiated the usability and practical utility of CSLens in enhancing the decision-making process surrounding charging station deployment. Our findings underscore CSLens's potential to serve as a valuable asset in navigating the complexities of charging infrastructure planning.
Collapse
|
2
|
Xia Q, Zhang H, Qu D, Bai J, Lv C. BRPVis: Visual Analytics for Bus Route Planning Based on Perception of Passenger Travel Demand. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2024; 44:118-131. [PMID: 39231050 DOI: 10.1109/mcg.2024.3454645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Bus route planning is a complex application problem within the transportation domain, aiming to identify the best route among numerous candidate solutions. Despite existing research significantly reducing the exploration space of solutions, planners still face challenges in further exploring optimal route planning solutions. Specifically, the diversity of route attributes increases the complexity of determining their impact, such as the variety and quantity of reachable points of interest. Therefore, we present BRPVis, an interactive visual analytics system designed to assist bus route planners in exploring optimal solutions through multilevel visualization and rich interaction design. Furthermore, we propose a human-machine collaborative multicriteria decision-making method, which quantitatively analyzes the weights of route attributes while incorporating interactive feedback mechanisms to support personalized route exploration. Based on exploration using real-world traffic datasets, three case studies conducted with domain experts demonstrate that BRPVis effectively provides decision support for bus route planning tasks.
Collapse
|
3
|
Zhang Y, Gu S, Li Q, Zeng H. EVCSeer: An Exploratory Study on Electric Vehicle Charging Stations Utilization via Visual Analytics. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2024; 44:54-68. [PMID: 38700972 DOI: 10.1109/mcg.2024.3396451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Promoting the development of electric vehicles requires the widespread deployment of charging infrastructure, which poses numerous technical and financial constraints. Despite extensive research focusing on optimizing charging station locations, few studies have accounted for charging station utilization and the factors that influence it. This study aims to evaluate charging station operations and explore charging station utilization to inform planning and facilitate better utilization of funds for expanding charging infrastructure. We present EVCSeer, a visual analytics system that utilizes representative predictive models and well-designed visualizations to analyze factors affecting charging station utilization, compare deployment strategies, and optimize utilization. The system also enables "what-if" analysis of charging station deployments. Two case studies, expert interviews, and a qualitative user study support the validity and usefulness of EVCSeer.
Collapse
|
4
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
5
|
Fouché G, Argelaguet F, Faure E, Kervrann C. Immersive and interactive visualization of 3D spatio-temporal data using a space time hypercube: Application to cell division and morphogenesis analysis. FRONTIERS IN BIOINFORMATICS 2023; 3:998991. [PMID: 36969798 PMCID: PMC10031126 DOI: 10.3389/fbinf.2023.998991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The analysis of multidimensional time-varying datasets faces challenges, notably regarding the representation of the data and the visualization of temporal variations. We propose an extension of the well-known Space-Time Cube (STC) visualization technique in order to visualize time-varying 3D spatial data, taking advantage of the interaction capabilities of Virtual Reality (VR). First, we propose the Space-Time Hypercube (STH) as an abstraction for 3D temporal data, extended from the STC concept. Second, through the example of embryo development imaging dataset, we detail the construction and visualization of a STC based on a user-driven projection of the spatial and temporal information. This projection yields a 3D STC visualization, which can also encode additional numerical and categorical data. Additionally, we propose a set of tools allowing the user to filter and manipulate the 3D STC which benefits the visualization, exploration and interaction possibilities offered by VR. Finally, we evaluated the proposed visualization method in the context of 3D temporal cell imaging data analysis, through a user study (n = 5) reporting the feedback from five biologists. These domain experts also accompanied the application design as consultants, providing insights on how the STC visualization could be used for the exploration of complex 3D temporal morphogenesis data.
Collapse
Affiliation(s)
- Gwendal Fouché
- Inria de l’Université de Rennes, IRISA, CNRS, Rennes, France
| | | | - Emmanuel Faure
- LIRMM, Université Montpellier, CNRS, Montpellier, France
| | - Charles Kervrann
- Inria de l’Université de Rennes, Rennes, France
- UMR144 CNRS Institut Curie, PSL Research University, Sorbonne Universités, Paris, France
| |
Collapse
|
6
|
Shin D, Jo J, Kim B, Song H, Cho SH, Seo J. RCMVis: A Visual Analytics System for Route Choice Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1799-1817. [PMID: 34851827 DOI: 10.1109/tvcg.2021.3131824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a k-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.
Collapse
|
7
|
Ying L, Shu X, Deng D, Yang Y, Tang T, Yu L, Wu Y. MetaGlyph: Automatic Generation of Metaphoric Glyph-based Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:331-341. [PMID: 36179002 DOI: 10.1109/tvcg.2022.3209447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glyph-based visualization achieves an impressive graphic design when associated with comprehensive visual metaphors, which help audiences effectively grasp the conveyed information through revealing data semantics. However, creating such metaphoric glyph-based visualization (MGV) is not an easy task, as it requires not only a deep understanding of data but also professional design skills. This paper proposes MetaGlyph, an automatic system for generating MGVs from a spreadsheet. To develop MetaGlyph, we first conduct a qualitative analysis to understand the design of current MGVs from the perspectives of metaphor embodiment and glyph design. Based on the results, we introduce a novel framework for generating MGVs by metaphoric image selection and an MGV construction. Specifically, MetaGlyph automatically selects metaphors with corresponding images from online resources based on the input data semantics. We then integrate a Monte Carlo tree search algorithm that explores the design of an MGV by associating visual elements with data dimensions given the data importance, semantic relevance, and glyph non-overlap. The system also provides editing feedback that allows users to customize the MGVs according to their design preferences. We demonstrate the use of MetaGlyph through a set of examples, one usage scenario, and validate its effectiveness through a series of expert interviews.
Collapse
|
8
|
Wu A, Deng D, Cheng F, Wu Y, Liu S, Qu H. In Defence of Visual Analytics Systems: Replies to Critics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1026-1036. [PMID: 36179000 DOI: 10.1109/tvcg.2022.3209360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The last decade has witnessed many visual analytics (VA) systems that make successful applications to wide-ranging domains like urban analytics and explainable AI. However, their research rigor and contributions have been extensively challenged within the visualization community. We come in defence of VA systems by contributing two interview studies for gathering critics and responses to those criticisms. First, we interview 24 researchers to collect criticisms the review comments on their VA work. Through an iterative coding and refinement process, the interview feedback is summarized into a list of 36 common criticisms. Second, we interview 17 researchers to validate our list and collect their responses, thereby discussing implications for defending and improving the scientific values and rigor of VA systems. We highlight that the presented knowledge is deep, extensive, but also imperfect, provocative, and controversial, and thus recommend reading with an inclusive and critical eye. We hope our work can provide thoughts and foundations for conducting VA research and spark discussions to promote the research field forward more rigorously and vibrantly.
Collapse
|
9
|
Chen R, Shu X, Chen J, Weng D, Tang J, Fu S, Wu Y. Nebula: A Coordinating Grammar of Graphics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4127-4140. [PMID: 33909565 DOI: 10.1109/tvcg.2021.3076222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In multiple coordinated views (MCVs), visualizations across views update their content in response to users' interactions in other views. Interactive systems provide direct manipulation to create coordination between views, but are restricted to limited types of predefined templates. By contrast, textual specification languages enable flexible coordination but expose technical burden. To bridge the gap, we contribute Nebula, a grammar based on natural language for coordinating visualizations in MCVs. The grammar design is informed by a novel framework based on a systematic review of 176 coordinations from existing theories and applications, which describes coordination by demonstration, i.e., how coordination is performed by users. With the framework, Nebula specification formalizes coordination as a composition of user- and coordination-triggered interactions in origin and destination views, respectively, along with potential data transformation between the interactions. We evaluate Nebula by demonstrating its expressiveness with a gallery of diverse examples and analyzing its usability on cognitive dimensions.
Collapse
|
10
|
Ye Y, Chen Y, Han W. Influence maximization in social networks: Theories, methods and challenges. ARRAY 2022. [DOI: 10.1016/j.array.2022.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
You are experienced: interactive tour planning with crowdsourcing tour data from web. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
13
|
Gu J, Song C, Ren Z, Lu L, Jiang W, Liu M. Pedestrian Flow Prediction and Route Recommendation with Business Events. SENSORS (BASEL, SWITZERLAND) 2022; 22:7478. [PMID: 36236575 PMCID: PMC9572239 DOI: 10.3390/s22197478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Due to the potential economic benefits, pedestrian flow is considered an essential indication of public spaces. Pedestrian flow prediction is designed to assist operators in making decisions (such as shopping center owners). Operators hold certain events, such as sales promotions, to attract surrounding pedestrians; we refer to this type of event as a business event. Business events attract pedestrian flows, which means business opportunities for the merchants. Moreover, their placement will affect the distributions of the pedestrian flows. However, deciding which route is chosen for a specified event is difficult. To the best of our knowledge, we are the first to consider business events when predicting pedestrian flow. In this paper, we investigate two problems: one is pedestrian flow prediction with business events, and the other is route recommendation for business events. First, we propose an Attraction-Based Matrix Factorization model (ABMF) to efficiently predict the pedestrian flow with business events, which introduces the attraction index of different categories to pedestrians in matrix factorization. Second, we leverage the Skip-gram mode to learn the latent representations and improve the pair-wise ranking loss to a flow-aware-based method (SG-FWARP), which aims to learn events' latent representations for route recommendation. Compared with other state-of-the-art methods, the experimental results show ABMF can predict pedestrian flow matrix with a similarity of over 0.9 compared with the ground truth, and SG-FWARP can recommend routes for business events with high accuracy.
Collapse
Affiliation(s)
- Jiqing Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Qingshuihe Campus, Chengdu 611731, China
| | - Chao Song
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Qingshuihe Campus, Chengdu 611731, China
| | - Zheng Ren
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Qingshuihe Campus, Chengdu 611731, China
| | - Li Lu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Qingshuihe Campus, Chengdu 611731, China
| | - Wenjun Jiang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Ming Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Qingshuihe Campus, Chengdu 611731, China
| |
Collapse
|
14
|
Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y. Visual Cascade Analytics of Large-Scale Spatiotemporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2486-2499. [PMID: 33822726 DOI: 10.1109/tvcg.2021.3071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.
Collapse
|
15
|
Wang L, Yu Z, Guo B, Yang D, Ma L, Liu Z, Xiong F. Data-driven Targeted Advertising Recommendation System for Outdoor Billboard. ACM T INTEL SYST TEC 2022. [DOI: 10.1145/3495159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this article, we propose and study a novel data-driven framework for Targeted Outdoor Advertising Recommendation (TOAR) with a special consideration of user profiles and advertisement topics. Given an advertisement query and a set of outdoor billboards with different spatial locations and rental prices, our goal is to find a subset of billboards, such that the total targeted influence is maximum under a limited budget constraint. To achieve this goal, we are facing two challenges: (1) it is difficult to estimate targeted advertising influence in physical world; (2) due to NP hardness, many common search techniques fail to provide a satisfied solution with an acceptable time, especially for large-scale problem settings. Taking into account the exposure strength, advertisement matching degree, and advertising repetition effect, we first build a targeted influence model that can characterize that the advertising influence spreads along with users mobility. Subsequently, based on a divide-and-conquer strategy, we develop two effective approaches, i.e., a master–slave-based sequential optimization method, TOAR-MSS, and a cooperative co-evolution-based optimization method, TOAR-CC, to solve our studied problem. Extensive experiments on two real-world datasets clearly validate the effectiveness and efficiency of our proposed approaches.
Collapse
Affiliation(s)
- Liang Wang
- Northwestern Polytechnical University, Xi’an, Shaan Xi, China
| | - Zhiwen Yu
- Northwestern Polytechnical University, Xi’an, Shaan Xi, China
| | - Bin Guo
- Northwestern Polytechnical University, Xi’an, Shaan Xi, China
| | | | - Lianbo Ma
- Northeastern University, Shenyang, China
| | | | - Fei Xiong
- Beijing Jiaotong University, Beijing, China
| |
Collapse
|
16
|
Unpacking the '15-Minute City' via 6G, IoT, and Digital Twins: Towards a New Narrative for Increasing Urban Efficiency, Resilience, and Sustainability. SENSORS 2022; 22:s22041369. [PMID: 35214271 PMCID: PMC8963079 DOI: 10.3390/s22041369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022]
Abstract
The ‘15-minute city’ concept is emerging as a potent urban regeneration model in post-pandemic cities, offering new vantage points on liveability and urban health. While the concept is primarily geared towards rethinking urban morphologies, it can be furthered via the adoption of Smart Cities network technologies to provide tailored pathways to respond to contextualised challenges through the advent of data mining and processing to better inform urban decision-making processes. We argue that the ‘15-minute city’ concept can value-add from Smart City network technologies in particular through Digital Twins, Internet of Things (IoT), and 6G. The data gathered by these technologies, and processed via Machine Learning techniques, can unveil new patterns to understand the characteristics of urban fabrics. Collectively, those dimensions, unpacked to support the ‘15-minute city’ concept, can provide new opportunities to redefine agendas to better respond to economic and societal needs as well as align more closely with environmental commitments, including the United Nations’ Sustainable Development Goal 11 and the New Urban Agenda. This perspective paper presents new sets of opportunities for cities arguing that these new connectivities should be explored now so that appropriate protocols can be devised and so that urban agendas can be recalibrated to prepare for upcoming technology advances, opening new pathways for urban regeneration and resilience crafting.
Collapse
|
17
|
Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y. Compass: Towards Better Causal Analysis of Urban Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1051-1061. [PMID: 34596550 DOI: 10.1109/tvcg.2021.3114875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
Collapse
|
18
|
Ying L, Tangl T, Luo Y, Shen L, Xie X, Yu L, Wu Y. GlyphCreator: Towards Example-based Automatic Generation of Circular Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:400-410. [PMID: 34596552 DOI: 10.1109/tvcg.2021.3114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.
Collapse
|
19
|
Tang J, Zhou Y, Tang T, Weng D, Xie B, Yu L, Zhang H, Wu Y. A Visualization Approach for Monitoring Order Processing in E-Commerce Warehouse. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:857-867. [PMID: 34596553 DOI: 10.1109/tvcg.2021.3114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The efficiency of warehouses is vital to e-commerce. Fast order processing at the warehouses ensures timely deliveries and improves customer satisfaction. However, monitoring, analyzing, and manipulating order processing in the warehouses in real time are challenging for traditional methods due to the sheer volume of incoming orders, the fuzzy definition of delayed order patterns, and the complex decision-making of order handling priorities. In this paper, we adopt a data-driven approach and propose OrderMonitor, a visual analytics system that assists warehouse managers in analyzing and improving order processing efficiency in real time based on streaming warehouse event data. Specifically, the order processing pipeline is visualized with a novel pipeline design based on the sedimentation metaphor to facilitate real-time order monitoring and suggest potentially abnormal orders. We also design a novel visualization that depicts order timelines based on the Gantt charts and Marey's graphs. Such a visualization helps the managers gain insights into the performance of order processing and find major blockers for delayed orders. Furthermore, an evaluating view is provided to assist users in inspecting order details and assigning priorities to improve the processing performance. The effectiveness of OrderMonitor is evaluated with two case studies on a real-world warehouse dataset.
Collapse
|
20
|
He Y, Li Z, Fu L, Wang A, Zhang P, Zhou S, Zhang J, Yu T. TARA-Net: A Fusion Network for Detecting Takeaway Rider Accidents. ACM T INTEL SYST TEC 2021. [DOI: 10.1145/3457218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the emerging business of food delivery, rider traffic accidents raise financial cost and social traffic burden. Although there has been much effort on traffic accident forecasting using temporal-spatial prediction models, none of the existing work studies the problem of detecting the takeaway rider accidents based on food delivery trajectory data. In this article, we aim to detect whether a takeaway rider meets an accident on a certain time period based on trajectories of food delivery and riders’ contextual information. The food delivery data has a heterogeneous information structure and carries contextual information such as weather and delivery history, and trajectory data are collected as a spatial-temporal sequence. In this article, we propose a
TakeAway
Rider
Accident
detection fusion network
TARA-Net
to jointly model these heterogeneous and spatial-temporal sequence data. We utilize the residual network to extract basic contextual information features and take advantage of a transformer encoder to capture trajectory features. These embedding features are concatenated into a pyramidal feed-forward neural network. We jointly train the above three components to combine the benefits of spatial-temporal trajectory data and sparse basic contextual data for early detecting traffic accidents. Furthermore, although traffic accidents rarely happen in food delivery, we propose a sampling mechanism to alleviate the imbalance of samples when training the model. We evaluate the model on a transportation mode classification dataset Geolife and a real-world
Ele.me
dataset with over 3 million riders. The experimental results show that the proposed model is superior to the state-of-the-art.
Collapse
Affiliation(s)
- Yifan He
- Fudan University, Shanghai, China
| | - Zhao Li
- Alibaba Group, Hangzhou, China
| | - Lei Fu
- Alibaba Group, Hangzhou, China
| | | | | | | | - Ji Zhang
- The University of Southern Queensland, Queesland, Australia
| | - Ting Yu
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
21
|
Shi L, Huang C, Liu M, Yan J, Jiang T, Tan Z, Hu Y, Chen W, Zhang X. UrbanMotion: Visual Analysis of Metropolitan-Scale Sparse Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3881-3899. [PMID: 32386157 DOI: 10.1109/tvcg.2020.2992200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualizing massive scale human movement in cities plays an important role in solving many of the problems that modern cities face (e.g., traffic optimization, business site configuration). In this article, we study a big mobile location dataset that covers millions of city residents, but is temporally sparse on the trajectory of individual user. Mapping sparse trajectories to illustrate population movement poses several challenges from both analysis and visualization perspectives. In the literature, there are a few techniques designed for sparse trajectory visualization; yet they do not consider trajectories collected from mobile apps that possess long-tailed sparsity with record intervals as long as hours. This article introduces UrbanMotion, a visual analytics system that extends the original wind map design by supporting map-matched local movements, multi-directional population flows, and population distributions. Effective methods are proposed to extract and aggregate population movements from dense parts of the trajectories leveraging their long-tailed sparsity. Both characteristic and anomalous patterns are discovered and visualized. We conducted three case studies, one comparative experiment, and collected expert feedback in the application domains of commuting analysis, event detection, and business site configuration. The study result demonstrates the significance and effectiveness of our system in helping to complete key analytics tasks for urban users.
Collapse
|
22
|
|
23
|
Visualisation of Control Software for Cyber-Physical Systems. INFORMATION 2021. [DOI: 10.3390/info12050178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cyber-physical systems are typically composed of a physical system (plant) controlled by a software (controller). Such a controller, given a plant state s and a plant action u, returns 1 iff taking action u in state s leads to the physical system goal or at least one step closer to it. Since a controller K is typically stored in compressed form, it is difficult for a human designer to actually understand how “good” K is. Namely, natural questions such as “does K cover a wide enough portion of the system state space?”, “does K cover the most important portion of the system state space?” or “which actions are enabled by K in a given portion of the system space?” are hard to answer by directly looking at K. This paper provides a methodology to automatically generate a picture of K as a 2D diagram, starting from a canonical representation for K and relying on available open source graphing tools (e.g., Gnuplot). Such picture allows a software designer to answer to the questions listed above, thus achieving a better qualitative understanding of the controller at hand.
Collapse
|
24
|
A Higher-Order Graph Convolutional Network for Location Recommendation of an Air-Quality-Monitoring Station. REMOTE SENSING 2021. [DOI: 10.3390/rs13081600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The location recommendation of an air-quality-monitoring station is a prerequisite for inferring the air-quality distribution in urban areas. How to use a limited number of monitoring equipment to accurately infer air quality depends on the location of the monitoring equipment. In this paper, our main objective was how to recommend optimal monitoring-station locations based on existing ones to maximize the accuracy of a air-quality inference model for inferring the air-quality distribution of an entire urban area. This task is challenging for the following main reasons: (1) air-quality distribution has spatiotemporal interactions and is affected by many complex external influential factors, such as weather and points of interest (POIs), and (2) how to effectively correlate the air-quality inference model with the monitoring station location recommendation model so that the recommended station can maximize the accuracy of the air-quality inference model. To solve the aforementioned challenges, we formulate the monitoring station location as an urban spatiotemporal graph (USTG) node recommendation problem in which each node represents a region with time-varying air-quality values. We design an effective air-quality inference model-based proposed high-order graph convolution (HGCNInf) that could capture the spatiotemporal interaction of air-quality distribution and could extract external influential factor features. Furthermore, HGCNInf can learn the correlation degree between the nodes in USTG that reflects the spatiotemporal changes in air quality. Based on the correlation degree, we design a greedy algorithm for minimizing information entropy (GMIE) that aims to mark the recommendation priority of unlabeled nodes according to the ability to improve the inference accuracy of HGCNInf through the node incremental learning method. Finally, we recommend the node with the highest priority as the new monitoring station location, which could bring about the greatest accuracy improvement to HGCNInf.
Collapse
|
25
|
|
26
|
Pi M, Yeon H, Son H, Jang Y. Visual Cause Analytics for Traffic Congestion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2186-2201. [PMID: 31514142 DOI: 10.1109/tvcg.2019.2940580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Urban traffic congestion has become an important issue not only affecting our daily lives, but also limiting economic development. The primary cause of urban traffic congestion is that the number of vehicles is higher than the permissible limit of the road. Previous studies have focused on dispersing traffic volume by detecting urban traffic congestion zones and predicting future trends. However, to solve the fundamental problem, it is necessary to discover the cause of traffic congestion. Nevertheless, it is difficult to find a research which presents an approach to identify the causes of traffic congestion. In this paper, we propose a technique to analyze the cause of traffic congestion based on the traffic flow theory. We extract vehicle flows from traffic data, such as GPS trajectory and Vehicle Detector data. We detect vehicle flow changes utilizing the entropy from the information theory. Then, we build cumulative vehicle count curves (N-curve) that can quantify the flow of the vehicles in the traffic congestion area. The N-curves are classified into four different traffic congestion patterns by a convolutional neural network. Analyzing the causes and influence of traffic congestion is difficult and requires considerable experience and knowledge. Therefore, we present a visual analytics system that can efficiently perform a series of processes to analyze the cause and influence of traffic congestion. Through case studies, we have evaluated that our system can classify the causes of traffic congestion and can be used efficiently in road planning.
Collapse
|
27
|
Feng Z, Li H, Zeng W, Yang SH, Qu H. Topology Density Map for Urban Data Visualization and Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:828-838. [PMID: 33048749 DOI: 10.1109/tvcg.2020.3030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Density map is an effective visualization technique for depicting the scalar field distribution in 2D space. Conventional methods for constructing density maps are mainly based on Euclidean distance, limiting their applicability in urban analysis that shall consider road network and urban traffic. In this work, we propose a new method named Topology Density Map, targeting for accurate and intuitive density maps in the context of urban environment. Based on the various constraints of road connections and traffic conditions, the method first constructs a directed acyclic graph (DAG) that propagates nonlinear scalar fields along 1D road networks. Next, the method extends the scalar fields to a 2D space by identifying key intersecting points in the DAG and calculating the scalar fields for every point, yielding a weighted Voronoi diagram like effect of space division. Two case studies demonstrate that the Topology Density Map supplies accurate information to users and provides an intuitive visualization for decision making. An interview with domain experts demonstrates the feasibility, usability, and effectiveness of our method.
Collapse
|
28
|
Xie X, Du F, Wu Y. A Visual Analytics Approach for Exploratory Causal Analysis: Exploration, Validation, and Applications. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1448-1458. [PMID: 33026999 DOI: 10.1109/tvcg.2020.3028957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using causal relations to guide decision making has become an essential analytical task across various domains, from marketing and medicine to education and social science. While powerful statistical models have been developed for inferring causal relations from data, domain practitioners still lack effective visual interface for interpreting the causal relations and applying them in their decision-making process. Through interview studies with domain experts, we characterize their current decision-making workflows, challenges, and needs. Through an iterative design process, we developed a visualization tool that allows analysts to explore, validate, and apply causal relations in real-world decision-making scenarios. The tool provides an uncertainty-aware causal graph visualization for presenting a large set of causal relations inferred from high-dimensional data. On top of the causal graph, it supports a set of intuitive user controls for performing what-if analyses and making action plans. We report on two case studies in marketing and student advising to demonstrate that users can effectively explore causal relations and design action plans for reaching their goals.
Collapse
|
29
|
Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y. Towards Better Bus Networks: A Visual Analytics Approach. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:817-827. [PMID: 33048743 DOI: 10.1109/tvcg.2020.3030458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.
Collapse
|
30
|
Liu L, Zhang H, Liu J, Liu S, Chen W, Man J. Visual exploration of urban functional zones based on augmented nonnegative tensor factorization. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Zhang Y, Li B, Krishnan R. Learning Individual Behavior Using Sensor Data: The Case of Global Positioning System Traces and Taxi Drivers. INFORMATION SYSTEMS RESEARCH 2020. [DOI: 10.1287/isre.2020.0946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, using a Bayesian learning model with a rich data set consisting of 2 million fine-grained GPS observations, we study the role of information observable by or made available to taxi drivers in enabling them to learn the distribution of demand for their services over space and time. We find significant differences between new and experienced drivers in both learning behavior and driving decisions. Drivers benefit significantly from their ability to learn from not only information directly observable in the local market but also aggregate information on demand flows across markets. Interestingly, our policy simulations indicate that information that is noisy at the individual level becomes valuable when aggregated across relevant spatial and temporal dimensions. Moreover, we find that the value of information does not increase monotonically with the scale and frequency of information sharing. Our results also provide important evidence that efficient information sharing can lead to a welfare increase because of potential market expansion. Efficient information sharing can bring additional income-generating opportunities that could be unfulfilled. Overall, this study not only explains driver decision-making behavior but also provides taxi companies with an implementable information-sharing strategy to improve overall market efficiency.
Collapse
Affiliation(s)
- Yingjie Zhang
- Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080
| | - Beibei Li
- Heinz College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ramayya Krishnan
- Heinz College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
32
|
Unfolding Spatial-Temporal Patterns of Taxi Trip based on an Improved Network Kernel Density Estimation. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9110683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Taxi mobility data plays an important role in understanding urban mobility in the context of urban traffic. Specifically, the taxi is an important part of urban transportation, and taxi trips reflect human behaviors and mobility patterns, allowing us to identify the spatial variety of such patterns. Although taxi trips are generated in the form of network flows, previous works have rarely considered network flow patterns in the analysis of taxi mobility data; Instead, most works focused on point patterns or trip patterns, which may provide an incomplete snapshot. In this work, we propose a novel approach to explore the spatial-temporal patterns of taxi travel by considering point, trip and network flow patterns in a simultaneous fashion. Within this approach, an improved network kernel density estimation (imNKDE) method is first developed to estimate the density of taxi trip pick-up and drop-off points (ODs). Next, the correlation between taxi service activities (i.e., ODs) and land-use is examined. Then, the trip patterns of taxi trips and its corresponding routes are analyzed to reveal the correlation between trips and road structure. Finally, network flow analysis for taxi trip among areas of varying land-use types at different times are performed to discover spatial and temporal taxi trip ODs from a new perspective. A case study in the city of Shenzhen, China, is thoroughly presented and discussed for illustrative purposes.
Collapse
|
33
|
Li K, Li YN, Yin H, Hu Y, Ye P, Wang C. Visual analysis of retailing store location selection. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00681-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
AbstractThis paper investigates the use of recurrent neural network to predict urban long-term traffic flows. A representation of the long-term flows with related weather and contextual information is first introduced. A recurrent neural network approach, named RNN-LF, is then proposed to predict the long-term of flows from multiple data sources. Moreover, a parallel implementation on GPU of the proposed solution is developed (GRNN-LF), which allows to boost the performance of RNN-LF. Several experiments have been carried out on real traffic flow including a small city (Odense, Denmark) and a very big city (Beijing). The results reveal that the sequential version (RNN-LF) is capable of dealing effectively with traffic of small cities. They also confirm the scalability of GRNN-LF compared to the most competitive GPU-based software tools when dealing with big traffic flow such as Beijing urban data.
Collapse
|
35
|
Xu Z, Kang Y, Cao Y. Emission stations location selection based on conditional measurement GAN data. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Site Selection of Digital Signage in Beijing: A Combination of Machine Learning and an Empirical Approach. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9040217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the extensive use of digital signage, precise site selection is an urgent issue for digital signage enterprises and management agencies. This research aims to provide an accurate digital signage site-selection model that integrates the spatial characteristics of geographical location and multisource factor data and combines empirical location models with machine learning methods to recommend locations for digital signage. The outdoor commercial digital signage within the Sixth Ring Road area in Beijing was selected as an example and was combined with population census, average house prices, social network check-in data, the centrality of traffic networks, and point of interest (POI) facilities data as research data. The data were divided into 100–1000 m grids for digital signage site-selection modelling. The empirical approach of the improved Huff model was used to calculate the spatial accessibility of digital signage, and machine learning approaches such as back propagation neural network (BP neural networks) were used to calculate the potential location of digital signage. The site of digital signage to be deployed was obtained by overlay analysis. The result shows that the proposed method has a higher true positive rate and a lower false positive rate than the other three site selection models, which indicates that this method has higher accuracy for site selection. The site results show that areas suitable for digital signage are mainly distributed in Sanlitun, Wangfujing, Financial Street, Beijing West Railway Station, and along the main road network within the Sixth Ring Road. The research provides a reference for integrating geographical features and content data into the site-selection algorithm. It can effectively improve the accuracy and scientific nature of digital signage layouts and the efficiency of digital signage to a certain extent.
Collapse
|
37
|
Huang Z, Zhao Y, Chen W, Gao S, Yu K, Xu W, Tang M, Zhu M, Xu M. A Natural-language-based Visual Query Approach of Uncertain Human Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1256-1266. [PMID: 31443013 DOI: 10.1109/tvcg.2019.2934671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POls and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.
Collapse
|
38
|
Deng Z, Weng D, Chen J, Liu R, Wang Z, Bao J, Zheng Y, Wu Y. AirVis: Visual Analytics of Air Pollution Propagation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:800-810. [PMID: 31443012 DOI: 10.1109/tvcg.2019.2934670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Air pollution has become a serious public health problem for many cities around the world. To find the causes of air pollution, the propagation processes of air pollutants must be studied at a large spatial scale. However, the complex and dynamic wind fields lead to highly uncertain pollutant transportation. The state-of-the-art data mining approaches cannot fully support the extensive analysis of such uncertain spatiotemporal propagation processes across multiple districts without the integration of domain knowledge. The limitation of these automated approaches motivates us to design and develop AirVis, a novel visual analytics system that assists domain experts in efficiently capturing and interpreting the uncertain propagation patterns of air pollution based on graph visualizations. Designing such a system poses three challenges: a) the extraction of propagation patterns; b) the scalability of pattern presentations; and c) the analysis of propagation processes. To address these challenges, we develop a novel pattern mining framework to model pollutant transportation and extract frequent propagation patterns efficiently from large-scale atmospheric data. Furthermore, we organize the extracted patterns hierarchically based on the minimum description length (MDL) principle and empower expert users to explore and analyze these patterns effectively on the basis of pattern topologies. We demonstrated the effectiveness of our approach through two case studies conducted with a real-world dataset and positive feedback from domain experts.
Collapse
|
39
|
Wang J, Zhao K, Deng D, Cao A, Xie X, Zhou Z, Zhang H, Wu Y. Tac-Simur: Tactic-based Simulative Visual Analytics of Table Tennis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:407-417. [PMID: 31442999 DOI: 10.1109/tvcg.2019.2934630] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simulative analysis in competitive sports can provide prospective insights, which can help improve the performance of players in future matches. However, adequately simulating the complex competition process and effectively explaining the simulation result to domain experts are typically challenging. This work presents a design study to address these challenges in table tennis. We propose a well-established hybrid second-order Markov chain model to characterize and simulate the competition process in table tennis. Compared with existing methods, our approach is the first to support the effective simulation of tactics, which represent high-level competition strategies in table tennis. Furthermore, we introduce a visual analytics system called Tac-Simur based on the proposed model for simulative visual analytics. Tac-Simur enables users to easily navigate different players and their tactics based on their respective performance in matches to identify the player and the tactics of interest for further analysis. Then, users can utilize the system to interactively explore diverse simulation tasks and visually explain the simulation results. The effectiveness and usefulness of this work are demonstrated by two case studies, in which domain experts utilize Tac-Simur to find interesting and valuable insights. The domain experts also provide positive feedback on the usability of Tac-Simur. Our work can be extended to other similar sports such as tennis and badminton.
Collapse
|
40
|
Jia S, Lin P, Li Z, Zhang J, Liu S. Visualizing surrogate decision trees of convolutional neural networks. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
|
42
|
|
43
|
Abstract
The increased accessibility of urban sensor data and the popularity of social network applications is enabling the discovery of crowd mobility and personal communication patterns. However, studying the egocentric relationships of an individual can be very challenging because available data may refer to direct contacts, such as phone calls between individuals, or indirect contacts, such as paired location presence. In this article, we develop methods to integrate three facets extracted from heterogeneous urban data (timelines, calls, and locations) through a progressive visual reasoning and inspection scheme. Our approach uses a detect-and-filter scheme such that, prior to visual refinement and analysis, a coarse detection is performed to extract the target individual and construct the timeline of the target. It then detects spatio-temporal co-occurrences or call-based contacts to develop the egocentric network of the individual. The filtering stage is enhanced with a line-based visual reasoning interface that facilitates a flexible and comprehensive investigation of egocentric relationships and connections in terms of time, space, and social networks. The integrated system, RelationLines, is demonstrated using a dataset that contains taxi GPS data, cell-base mobility data, mobile calling data, microblog data, and point-of-interest (POI) data from a city with millions of citizens. We examine the effectiveness and efficiency of our system with three case studies and user review.
Collapse
Affiliation(s)
- Wei Chen
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jing Xia
- Zhejiang University, State Key Lab of CAD8CG and Alibaba Group, China
| | - Xumeng Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Yi Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jun Chen
- Zhejiang University, State Key Lab of CAD8CG, Guangzhou, China
| | - Liang Chang
- Guilin University of Electronic Technology, China
| |
Collapse
|
44
|
Xu M, Wang H, Chu S, Gan Y, Jiang X, Li Y, Zhou B. Traffic Simulation and Visual Verification in Smog. ACM T INTEL SYST TEC 2019. [DOI: 10.1145/3200491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Smog causes low visibility on the road and it can impact the safety of traffic. Modeling traffic in smog will have a significant impact on realistic traffic simulations. Most existing traffic models assume that drivers have optimal vision in the simulations, making these simulations are not suitable for modeling smog weather conditions. In this article, we introduce the Smog Full Velocity Difference Model (SMOG-FVDM) for a realistic simulation of traffic in smog weather conditions. In this model, we present a stadia model for drivers in smog conditions. We introduce it into a car-following traffic model using both psychological force and body force concepts, and then we introduce the SMOG-FVDM. Considering that there are lots of parameters in the SMOG-FVDM, we design a visual verification system based on SMOG-FVDM to arrive at an adequate solution which can show visual simulation results under different road scenarios and different degrees of smog by reconciling the parameters. Experimental results show that our model can give a realistic and efficient traffic simulation of smog weather conditions.
Collapse
Affiliation(s)
- Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Hua Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shili Chu
- Artillery & Air Defense Forces Academy of Army, Zhengzhou, China
| | - Yong Gan
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaoheng Jiang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yafei Li
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Bing Zhou
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Zhou Z, Yu J, Guo Z, Liu Y. Visual exploration of urban functions via spatio-temporal taxi OD data. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Zhou Z, Shi C, Hu M, Liu Y. Visual ranking of academic influence via paper citation. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Weng D, Chen R, Deng Z, Wu F, Chen J, Wu Y. SRVis: Towards Better Spatial Integration in Ranking Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:459-469. [PMID: 30188825 DOI: 10.1109/tvcg.2018.2865126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interactive ranking techniques have substantially promoted analysts' ability in making judicious and informed decisions effectively based on multiple criteria. However, the existing techniques cannot satisfactorily support the analysis tasks involved in ranking large-scale spatial alternatives, such as selecting optimal locations for chain stores, where the complex spatial contexts involved are essential to the decision-making process. Limitations observed in the prior attempts of integrating rankings with spatial contexts motivate us to develop a context-integrated visual ranking technique. Based on a set of generic design requirements we summarized by collaborating with domain experts, we propose SRVis, a novel spatial ranking visualization technique that supports efficient spatial multi-criteria decision-making processes by addressing three major challenges in the aforementioned context integration, namely, a) the presentation of spatial rankings and contexts, b) the scalability of rankings' visual representations, and c) the analysis of context-integrated spatial rankings. Specifically, we encode massive rankings and their cause with scalable matrix-based visualizations and stacked bar charts based on a novel two-phase optimization framework that minimizes the information loss, and the flexible spatial filtering and intuitive comparative analysis are adopted to enable the in-depth evaluation of the rankings and assist users in selecting the best spatial alternative. The effectiveness of the proposed technique has been evaluated and demonstrated with an empirical study of optimization methods, two case studies, and expert interviews.
Collapse
|
49
|
Liu D, Xu P, Ren L. TPFlow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1-11. [PMID: 30136965 DOI: 10.1109/tvcg.2018.2865018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Consider a multi-dimensional spatio-temporal (ST) dataset where each entry is a numerical measure defined by the corresponding temporal, spatial and other domain-specific dimensions. A typical approach to explore such data utilizes interactive visualizations with multiple coordinated views. Each view displays the aggregated measures along one or two dimensions. By brushing on the views, analysts can obtain detailed information. However, this approach often cannot provide sufficient guidance for analysts to identify patterns hidden within subsets of data. Without a priori hypotheses, analysts need to manually select and iterate through different slices to search for patterns, which can be a tedious and lengthy process. In this work, we model multidimensional ST data as tensors and propose a novel piecewise rank-one tensor decomposition algorithm which supports automatically slicing the data into homogeneous partitions and extracting the latent patterns in each partition for comparison and visual summarization. The algorithm optimizes a quantitative measure about how faithfully the extracted patterns visually represent the original data. Based on the algorithm we further propose a visual analytics framework that supports a top-down, progressive partitioning workflow for level-of-detail multidimensional ST data exploration. We demonstrate the general applicability and effectiveness of our technique on three datasets from different application domains: regional sales trend analysis, customer traffic analysis in department stores, and taxi trip analysis with origin-destination (OD) data. We further interview domain experts to verify the usability of the prototype.
Collapse
|
50
|
Zhou Z, Meng L, Tang C, Zhao Y, Guo Z, Hu M, Chen W. Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:43-53. [PMID: 30130199 DOI: 10.1109/tvcg.2018.2864503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.
Collapse
|