1
|
Brockbank E, Verma A, Lloyd H, Huey H, Padilla L, Fan JE. Evaluating convergence between two data visualization literacy assessments. Cogn Res Princ Implic 2025; 10:15. [PMID: 40188224 PMCID: PMC11972256 DOI: 10.1186/s41235-025-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/26/2025] [Indexed: 04/07/2025] Open
Abstract
Data visualizations play a crucial role in communicating patterns in quantitative data, making data visualization literacy a key target of STEM education. However, it is currently unclear to what degree different assessments of data visualization literacy measure the same underlying constructs. Here, we administered two widely used graph comprehension assessments (Galesic and Garcia-Retamero in Med Dec Mak 31:444-457, 2011; Lee et al. in IEEE Trans Vis Comput Graph 235:51-560, 2016) to both a university-based convenience sample and a demographically representative sample of adult participants in the USA (N=1,113). Our analysis of individual variability in test performance suggests that overall scores are correlated between assessments and associated with the amount of prior coursework in mathematics. However, further exploration of individual error patterns suggests that these assessments probe somewhat distinct components of data visualization literacy, and we do not find evidence that these components correspond to the categories that guided the design of either test (e.g., questions that require retrieving values rather than making comparisons). Together, these findings suggest opportunities for development of more comprehensive assessments of data visualization literacy that are organized by components that better account for detailed behavioral patterns.
Collapse
Affiliation(s)
- Erik Brockbank
- Department of Psychology, Stanford University, Stanford, USA.
- Department of Psychology, University of California San Diego, La Jolla, USA.
| | - Arnav Verma
- Department of Psychology, Stanford University, Stanford, USA
| | - Hannah Lloyd
- Department of Psychology, University of California San Diego, La Jolla, USA
| | - Holly Huey
- Department of Psychology, University of California San Diego, La Jolla, USA
| | - Lace Padilla
- Department of Computer Science, Northeastern University, Boston, USA
| | - Judith E Fan
- Department of Psychology, Stanford University, Stanford, USA
- Department of Psychology, University of California San Diego, La Jolla, USA
| |
Collapse
|
2
|
Kale A, Liu D, Ayala MG, Schwab H, McNutt A. What Can Interactive Visualization Do for Participatory Budgeting in Chicago? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:415-425. [PMID: 39250386 DOI: 10.1109/tvcg.2024.3456343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Participatory budgeting (PB) is a democratic approach to allocating municipal spending that has been adopted in many places in recent years, including in Chicago. Current PB voting resembles a ballot where residents are asked which municipal projects, such as school improvements and road repairs, to fund with a limited budget. In this work, we ask how interactive visualization can benefit PB by conducting a design probe-based interview study (N=13) with policy workers and academics with expertise in PB, urban planning, and civic HCI. Our probe explores how graphical elicitation of voter preferences and a dashboard of voting statistics can be incorporated into a realistic PB tool. Through qualitative analysis, we find that visualization creates opportunities for city government to set expectations about budget constraints while also granting their constituents greater freedom to articulate a wider range of preferences. However, using visualization to provide transparency about PB requires efforts to mitigate potential access barriers and mistrust. We call for more visualization professionals to help build civic capacity by working in and studying political systems.
Collapse
|
3
|
Zhu Q, Lu T, Guo S, Ma X, Yang Y. CompositingVis: Exploring Interactions for Creating Composite Visualizations in Immersive Environments. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:591-601. [PMID: 39250414 DOI: 10.1109/tvcg.2024.3456210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Composite visualization represents a widely embraced design that combines multiple visual representations to create an integrated view. However, the traditional approach of creating composite visualizations in immersive environments typically occurs asynchronously outside of the immersive space and is carried out by experienced experts. In this work, we aim to empower users to participate in the creation of composite visualization within immersive environments through embodied interactions. This could provide a flexible and fluid experience with immersive visualization and has the potential to facilitate understanding of the relationship between visualization views. We begin with developing a design space of embodied interactions to create various types of composite visualizations with the consideration of data relationships. Drawing inspiration from people's natural experience of manipulating physical objects, we design interactions based on the combination of 3D manipulations in immersive environments. Building upon the design space, we present a series of case studies showcasing the interaction to create different kinds of composite visualizations in virtual reality. Subsequently, we conduct a user study to evaluate the usability of the derived interaction techniques and user experience of creating composite visualizations through embodied interactions. We find that empowering users to participate in composite visualizations through embodied interactions enables them to flexibly leverage different visualization views for understanding and communicating the relationships between different views, which underscores the potential of several future application scenarios.
Collapse
|
4
|
Lan X, Liu Y. "I Came Across a Junk": Understanding Design Flaws of Data Visualization from the Public's Perspective. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:393-403. [PMID: 39255162 DOI: 10.1109/tvcg.2024.3456341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The visualization community has a rich history of reflecting upon visualization design flaws. Although research in this area has remained lively, we believe it is essential to continuously revisit this classic and critical topic in visualization research by incorporating more empirical evidence from diverse sources, characterizing new design flaws, building more systematic theoretical frameworks, and understanding the underlying reasons for these flaws. To address the above gaps, this work investigated visualization design flaws through the lens of the public, constructed a framework to summarize and categorize the identified flaws, and explored why these flaws occur. Specifically, we analyzed 2227 flawed data visualizations collected from an online gallery and derived a design task-associated taxonomy containing 76 specific design flaws. These flaws were further classified into three high-level categories (i.e., misinformation, uninformativeness, unsociability) and ten subcategories (e.g., inaccuracy, unfairness, ambiguity). Next, we organized five focus groups to explore why these design flaws occur and identified seven causes of the flaws. Finally, we proposed a research agenda for combating visualization design flaws and summarize nine research opportunities.
Collapse
|
5
|
Chen M, Liu Y, Wall E. Unmasking Dunning-Kruger Effect in Visual Reasoning & Judgment. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:743-753. [PMID: 39288064 DOI: 10.1109/tvcg.2024.3456326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The Dunning-Kruger Effect (DKE) is a metacognitive phenomenon where low-skilled individuals tend to overestimate their competence while high-skilled individuals tend to underestimate their competence. This effect has been observed in a number of domains including humor, grammar, and logic. In this paper, we explore if and how DKE manifests in visual reasoning and judgment tasks. Across two online user studies involving (1) a sliding puzzle game and (2) a scatterplot-based categorization task, we demonstrate that individuals are susceptible to DKE in visual reasoning and judgment tasks: those who performed best underestimated their performance, while bottom performers overestimated their performance. In addition, we contribute novel analyses that correlate susceptibility of DKE with personality traits and user interactions. Our findings pave the way for novel modes of bias detection via interaction patterns and establish promising directions towards interventions tailored to an individual's personality traits. All materials and analyses are in supplemental materials: https://github.com/CAV-Lab/DKE_supplemental.git.
Collapse
|
6
|
Cui Y, Ge LW, Ding Y, Harrison L, Yang F, Kay M. Promises and Pitfalls: Using Large Language Models to Generate Visualization Items. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1094-1104. [PMID: 39255101 DOI: 10.1109/tvcg.2024.3456309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Visualization items-factual questions about visualizations that ask viewers to accomplish visualization tasks-are regularly used in the field of information visualization as educational and evaluative materials. For example, researchers of visualization literacy require large, diverse banks of items to conduct studies where the same skill is measured repeatedly on the same participants. Yet, generating a large number of high-quality, diverse items requires significant time and expertise. To address the critical need for a large number of diverse visualization items in education and research, this paper investigates the potential for large language models (LLMS) to automate the generation of multiple-choice visualization items. Through an iterative design process, we develop the VILA (Visualization Items Generated by Large LAnguage Models) pipeline, for efficiently generating visualization items that measure people's ability to accomplish visualization tasks. We use the VILA pipeline to generate 1,404 candidate items across 12 chart types and 13 visualization tasks. In collaboration with 11 visualization experts, we develop an evaluation rulebook which we then use to rate the quality of all candidate items. The result is the VILA bank of ~1, 100 items. From this evaluation, we also identify and classify current limitations of the VILA pipeline, and discuss the role of human oversight in ensuring quality. In addition, we demonstrate an application of our work by creating a visualization literacy test, VILA-VLAT, which measures people's ability to complete a diverse set of tasks on various types of visualizations; comparing it to the existing VLAT, VILA-VLAT shows moderate to high convergent validity (R = 0.70). Lastly, we discuss the application areas of the VILA pipeline and the VILA bank and provide practical recommendations for their use. All supplemental materials are available at https://osf.io/ysrhq/.
Collapse
|
7
|
Zeng X, Lin H, Ye Y, Zeng W. Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:525-535. [PMID: 39255172 DOI: 10.1109/tvcg.2024.3456159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Emerging multimodal large language models (MLLMs) exhibit great potential for chart question answering (CQA). Recent efforts primarily focus on scaling up training datasets (i.e., charts, data tables, and question-answer (QA) pairs) through data collection and synthesis. However, our empirical study on existing MLLMs and CQA datasets reveals notable gaps. First, current data collection and synthesis focus on data volume and lack consideration of fine-grained visual encodings and QA tasks, resulting in unbalanced data distribution divergent from practical CQA scenarios. Second, existing work follows the training recipe of the base MLLMs initially designed for natural images, under-exploring the adaptation to unique chart characteristics, such as rich text elements. To fill the gap, we propose a visualization-referenced instruction tuning approach to guide the training dataset enhancement and model development. Specifically, we propose a novel data engine to effectively filter diverse and high-quality data from existing datasets and subsequently refine and augment the data using LLM-based generation techniques to better align with practical QA tasks and visual encodings. Then, to facilitate the adaptation to chart characteristics, we utilize the enriched data to train an MLLM by unfreezing the vision encoder and incorporating a mixture-of-resolution adaptation strategy for enhanced fine-grained recognition. Experimental results validate the effectiveness of our approach. Even with fewer training examples, our model consistently outperforms state-of-the-art CQA models on established benchmarks. We also contribute a dataset split as a benchmark for future research. Source codes and datasets of this paper are available at https://github.com/zengxingchen/ChartQA-MLLM.
Collapse
|
8
|
Firat EE, Srinivas C, Lang C, Srinivas B, Laramee RS, Joshi AP, Santos BS, Magana AJ, Bidarra R. Evaluating the Impact of a Constructivist Approach to Treemap Literacy. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2025; 45:139-147. [PMID: 40227912 DOI: 10.1109/mcg.2024.3475188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Constructivist learning is based on the principle that learners construct knowledge based on their prior knowledge and experiences. We explored the impact of a constructivist approach to introduce students to the Treemaps visualization technique. We developed software that helps students understand Treemaps using a synchronized, multiview, interactive node-link representation of the same data. While students in both groups-the ones who used the node-link diagram with the Treemaps and the ones who used only the interactive Treemaps-demonstrated significant improvement in learning, students who only interacted with the Treemaps representation performed better on a variety of tasks related to reading and interpreting Treemaps.
Collapse
|
9
|
L'Yi S, van den Brandt A, Adams E, Nguyen HN, Gehlenborg N. Learnable and Expressive Visualization Authoring Through Blended Interfaces. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:459-469. [PMID: 39255109 PMCID: PMC11875996 DOI: 10.1109/tvcg.2024.3456598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A wide range of visualization authoring interfaces enable the creation of highly customized visualizations. However, prioritizing expressiveness often impedes the learnability of the authoring interface. The diversity of users, such as varying computational skills and prior experiences in user interfaces, makes it even more challenging for a single authoring interface to satisfy the needs of a broad audience. In this paper, we introduce a framework to balance learnability and expressivity in a visualization authoring system. Adopting insights from learnability studies, such as multimodal interaction and visualization literacy, we explore the design space of blending multiple visualization authoring interfaces for supporting authoring tasks in a complementary and flexible manner. To evaluate the effectiveness of blending interfaces, we implemented a proof-of-concept system, Blace, that combines four common visualization authoring interfaces-template-based, shelf configuration, natural language, and code editor-that are tightly linked to one another to help users easily relate unfamiliar interfaces to more familiar ones. Using the system, we conducted a user study with 12 domain experts who regularly visualize genomics data as part of their analysis workflow. Participants with varied visualization and programming backgrounds were able to successfully reproduce unfamiliar visualization examples without a guided tutorial in the study. Feedback from a post-study qualitative questionnaire further suggests that blending interfaces enabled participants to learn the system easily and assisted them in confidently editing unfamiliar visualization grammar in the code editor, enabling expressive customization. Reflecting on our study results and the design of our system, we discuss the different interaction patterns that we identified and design implications for blending visualization authoring interfaces.
Collapse
|
10
|
Kauer T, Akbaba D, Dork M, Bach B. Discursive Patinas: Anchoring Discussions in Data Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1246-1256. [PMID: 39269807 DOI: 10.1109/tvcg.2024.3456334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This paper presents discursive patinas, a technique to visualize discussions onto data visualizations, inspired by how people leave traces in the physical world. While data visualizations are widely discussed in online communities and social media, comments tend to be displayed separately from the visualization and we lack ways to relate these discussions back to the content of the visualization, e.g., to situate comments, explain visual patterns, or question assumptions. In our visualization annotation interface, users can designate areas within the visualization. Discursive patinas are made of overlaid visual marks (anchors), attached to textual comments with category labels, likes, and replies. By coloring and styling the anchors, a meta visualization emerges, showing what and where people comment and annotate the visualization. These patinas show regions of heavy discussions, recent commenting activity, and the distribution of questions, suggestions, or personal stories. We ran workshops with 90 students, domain experts, and visualization researchers to study how people use anchors to discuss visualizations and how patinas influence people's understanding of the discussion. Our results show that discursive patinas improve the ability to navigate discussions and guide people to comments that help understand, contextualize, or scrutinize the visualization. We discuss the potential of anchors and patinas to support discursive engagements, including critical readings of visualizations, design feedback, and feminist approaches to data visualization.
Collapse
|
11
|
Hedayati M, Kay M. What University Students Learn In Visualization Classes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1072-1082. [PMID: 39259632 DOI: 10.1109/tvcg.2024.3456291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As a step towards improving visualization literacy, this work investigates how students approach reading visualizations differently after taking a university-level visualization course. We asked students to verbally walk through their process of making sense of unfamiliar visualizations, and conducted a qualitative analysis of these walkthroughs. Our qualitative analysis found that after taking a visualization course, students engaged with visualizations in more sophisticated ways: they were more likely to exhibit design empathy by thinking critically about the tradeoffs behind why a chart was designed in a particular way, and were better able to deconstruct a chart to make sense of it. We also gave students a quantitative assessment of visualization literacy and found no evidence of scores improving after the class, likely because the test we used focused on a different set of skills than those emphasized in visualization classes. While current measurement instruments for visualization literacy are useful, we propose developing standardized assessments for additional aspects of visualization literacy, such as deconstruction and design empathy. We also suggest that these additional aspects could be incorporated more explicitly in visualization courses. All supplemental materials are available at https://osf.io/w5pum/.
Collapse
|
12
|
Bendeck A, Stasko J. An Empirical Evaluation of the GPT-4 Multimodal Language Model on Visualization Literacy Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1105-1115. [PMID: 39255141 DOI: 10.1109/tvcg.2024.3456155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Large Language Models (LLMs) like GPT-4 which support multimodal input (i.e., prompts containing images in addition to text) have immense potential to advance visualization research. However, many questions exist about the visual capabilities of such models, including how well they can read and interpret visually represented data. In our work, we address this question by evaluating the GPT-4 multimodal LLM using a suite of task sets meant to assess the model's visualization literacy. The task sets are based on existing work in the visualization community addressing both automated chart question answering and human visualization literacy across multiple settings. Our assessment finds that GPT-4 can perform tasks such as recognizing trends and extreme values, and also demonstrates some understanding of visualization design best-practices. By contrast, GPT-4 struggles with simple value retrieval when not provided with the original dataset, lacks the ability to reliably distinguish between colors in charts, and occasionally suffers from hallucination and inconsistency. We conclude by reflecting on the model's strengths and weaknesses as well as the potential utility of models like GPT-4 for future visualization research. We also release all code, stimuli, and results for the task sets at the following link: https://doi.org/10.17605/OSF.IO/F39J6.
Collapse
|
13
|
Cabouat AF, He T, Isenberg P, Isenberg T. PREVis: Perceived Readability Evaluation for Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1083-1093. [PMID: 39283793 DOI: 10.1109/tvcg.2024.3456318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We developed and validated an instrument to measure the perceived readability in data visualization: PREVis. Researchers and practitioners can easily use this instrument as part of their evaluations to compare the perceived readability of different visual data representations. Our instrument can complement results from controlled experiments on user task performance or provide additional data during in-depth qualitative work such as design iterations when developing a new technique. Although readability is recognized as an essential quality of data visualizations, so far there has not been a unified definition of the construct in the context of visual representations. As a result, researchers often lack guidance for determining how to ask people to rate their perceived readability of a visualization. To address this issue, we engaged in a rigorous process to develop the first validated instrument targeted at the subjective readability of visual data representations. Our final instrument consists of 11 items across 4 dimensions: understandability, layout clarity, readability of data values, and readability of data patterns. We provide the questionnaire as a document with implementation guidelines on osf.io/9cg8j. Beyond this instrument, we contribute a discussion of how researchers have previously assessed visualization readability, and an analysis of the factors underlying perceived readability in visual data representations.
Collapse
|
14
|
Kim H, Kim J, Han Y, Hong H, Kwon OS, Park YW, Elmqvist N, Ko S, Kwon BC. Towards Visualization Thumbnail Designs That Entice Reading Data-Driven Articles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4825-4840. [PMID: 37216254 DOI: 10.1109/tvcg.2023.3278304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As online news increasingly include data journalism, there is a corresponding increase in the incorporation of visualization in article thumbnail images. However, little research exists on the design rationale for visualization thumbnails, such as resizing, cropping, simplifying, and embellishing charts that appear within the body of the associated article. Therefore, in this paper we aim to understand these design choices and determine what makes a visualization thumbnail inviting and interpretable. To this end, we first survey visualization thumbnails collected online and discuss visualization thumbnail practices with data journalists and news graphics designers. Based on the survey and discussion results, we then define a design space for visualization thumbnails and conduct a user study with four types of visualization thumbnails derived from the design space. The study results indicate that different chart components play different roles in attracting reader attention and enhancing reader understandability of the visualization thumbnails. We also find various thumbnail design strategies for effectively combining the charts' components, such as a data summary with highlights and data labels, and a visual legend with text labels and Human Recognizable Objects (HROs), into thumbnails. Ultimately, we distill our findings into design implications that allow effective visualization thumbnail designs for data-rich news articles. Our work can thus be seen as a first step toward providing structured guidance on how to design compelling thumbnails for data stories.
Collapse
|
15
|
Bearfield CX, van Weelden L, Waytz A, Franconeri S. Same Data, Diverging Perspectives: The Power of Visualizations to Elicit Competing Interpretations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2995-3007. [PMID: 38619945 DOI: 10.1109/tvcg.2024.3388515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
People routinely rely on data to make decisions, but the process can be riddled with biases. We show that patterns in data might be noticed first or more strongly, depending on how the data is visually represented or what the viewer finds salient. We also demonstrate that viewer interpretation of data is similar to that of 'ambiguous figures' such that two people looking at the same data can come to different decisions. In our studies, participants read visualizations depicting competitions between two entities, where one has a historical lead (A) but the other has been gaining momentum (B) and predicted a winner, across two chart types and three annotation approaches. They either saw the historical lead as salient and predicted that A would win, or saw the increasing momentum as salient and predicted B to win. These results suggest that decisions can be influenced by both how data are presented and what patterns people find visually salient.
Collapse
|
16
|
Davis R, Pu X, Ding Y, Hall BD, Bonilla K, Feng M, Kay M, Harrison L. The Risks of Ranking: Revisiting Graphical Perception to Model Individual Differences in Visualization Performance. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1756-1771. [PMID: 37015487 DOI: 10.1109/tvcg.2022.3226463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Graphical perception studies typically measure visualization encoding effectiveness using the error of an "average observer", leading to canonical rankings of encodings for numerical attributes: e.g., position area angle volume. Yet different people may vary in their ability to read different visualization types, leading to variance in this ranking across individuals not captured by population-level metrics using "average observer" models. One way we can bridge this gap is by recasting classic visual perception tasks as tools for assessing individual performance, in addition to overall visualization performance. In this article we replicate and extend Cleveland and McGill's graphical comparison experiment using Bayesian multilevel regression, using these models to explore individual differences in visualization skill from multiple perspectives. The results from experiments and modeling indicate that some people show patterns of accuracy that credibly deviate from the canonical rankings of visualization effectiveness. We discuss implications of these findings, such as a need for new ways to communicate visualization effectiveness to designers, how patterns in individuals' responses may show systematic biases and strategies in visualization judgment, and how recasting classic visual perception tasks as tools for assessing individual performance may offer new ways to quantify aspects of visualization literacy. Experiment data, source code, and analysis scripts are available at the following repository: https://osf.io/8ub7t/?view_only=9be4798797404a4397be3c6fc2a68cc0.
Collapse
|
17
|
Ruzich E, Ritchie J, Ginchereau Sowell F, Mansur A, Griffiths P, Birkett H, Harman D, Spink J, James D, Reaney M. A powerful partnership: researchers and patients working together to develop a patient-facing summary of clinical trial outcome data. J Am Med Inform Assoc 2024; 31:363-374. [PMID: 37341698 PMCID: PMC10797263 DOI: 10.1093/jamia/ocad099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE Availability of easy-to-understand patient-reported outcome (PRO) trial data may help individuals make more informed healthcare decisions. Easily interpretable, patient-centric PRO data summaries and visualizations are therefore needed. This three-stage study explored graphical format preferences, understanding, and interpretability of clinical trial PRO data presented to people with prostate cancer (PC). MATERIALS AND METHODS A 7-day online survey exploring people with PC's preferences for different PRO data presentations (stage 1; n = 30) informed development of a draft plain-language resource sheet containing PRO data. After refining for clarity during cognitive debriefing interviews (stage 2; n = 18), the final resource sheet was circulated to people with PC for broader feedback (stage 3; n = 45). RESULTS Although participants expressed preferences for certain graphical formats (pie charts and bar charts), preference did not always associate with interpretability and overall message clarity. Iterative development (stages 1 and 2) led to a final resource sheet, which 91.1% of participants in stage 3 considered useful and informative, and 88.9% expressed interest in receiving similar resources in the future. DISCUSSION Findings demonstrate PRO data are relevant to people with PC and highlights that targeted resource sheets can support patient-clinician discussions. Appropriate graphical formatting and use of plain-language text is essential for conveying interpretable PRO data. Data visualization preferences are context dependent. CONCLUSION Resource sheets summarizing clinical trial PRO data can be helpful for decision-making in PC. Researchers and patients can work together to develop clear, relevant, sensitive, and understandable resource sheets, which equally consider patient priorities as well as those of scientists.
Collapse
Affiliation(s)
- Emily Ruzich
- Patient Centered Solutions, IQVIA, Boston, Massachusetts, USA
| | - Jason Ritchie
- Patient Centered Solutions, IQVIA, New York, New York, USA
| | | | | | | | | | - Diane Harman
- Patient Centered Solutions, IQVIA, New York, New York, USA
| | | | | | | |
Collapse
|
18
|
He HA, Walny J, Thoma S, Carpendale S, Willett W. Enthusiastic and Grounded, Avoidant and Cautious: Understanding Public Receptivity to Data and Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1435-1445. [PMID: 37871069 DOI: 10.1109/tvcg.2023.3326917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Despite an abundance of open data initiatives aimed to inform and empower "general" audiences, we still know little about the ways people outside of traditional data analysis communities experience and engage with public data and visualizations. To investigate this gap, we present results from an in-depth qualitative interview study with 19 participants from diverse ethnic, occupational, and demographic backgrounds. Our findings characterize a set of lived experiences with open data and visualizations in the domain of energy consumption, production, and transmission. This work exposes information receptivity - an individual's transient state of willingness or openness to receive information -as a blind spot for the data visualization community, complementary to but distinct from previous notions of data visualization literacy and engagement. We observed four clusters of receptivity responses to data- and visualization-based rhetoric: Information-Avoidant, Data-Cautious, Data-Enthusiastic, and Domain-Grounded. Based on our findings, we highlight research opportunities for the visualization community. This exploratory work identifies the existence of diverse receptivity responses, highlighting the need to consider audiences with varying levels of openness to new information. Our findings also suggest new approaches for improving the accessibility and inclusivity of open data and visualization initiatives targeted at broad audiences. A free copy of this paper and all supplemental materials are available at https://OSF.IO/MPQ32.
Collapse
|
19
|
Yang L, Xiong C, Wong JK, Wu A, Qu H. Explaining With Examples: Lessons Learned From Crowdsourced Introductory Description of Information Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1638-1650. [PMID: 34780329 DOI: 10.1109/tvcg.2021.3128157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Data visualizations have been increasingly used in oral presentations to communicate data patterns to the general public. Clear verbal introductions of visualizations to explain how to interpret the visually encoded information are essential to convey the takeaways and avoid misunderstandings. We contribute a series of studies to investigate how to effectively introduce visualizations to the audience with varying degrees of visualization literacy. We begin with understanding how people are introducing visualizations. We crowdsource 110 introductions of visualizations and categorize them based on their content and structures. From these crowdsourced introductions, we identify different introduction strategies and generate a set of introductions for evaluation. We conduct experiments to systematically compare the effectiveness of different introduction strategies across four visualizations with 1,080 participants. We find that introductions explaining visual encodings with concrete examples are the most effective. Our study provides both qualitative and quantitative insights into how to construct effective verbal introductions of visualizations in presentations, inspiring further research in data storytelling.
Collapse
|
20
|
Bae SS, Vanukuru R, Yang R, Gyory P, Zhou R, Do EYL, Szafir DA. Cultivating Visualization Literacy for Children Through Curiosity and Play. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:257-267. [PMID: 36155440 DOI: 10.1109/tvcg.2022.3209442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fostering data visualization literacy (DVL) as part of childhood education could lead to a more data literate society. However, most work in DVL for children relies on a more formal educational context (i.e., a teacher-led approach) that limits children's engagement with data to classroom-based environments and, consequently, children's ability to ask questions about and explore data on topics they find personally meaningful. We explore how a curiosity-driven, child-led approach can provide more agency to children when they are authoring data visualizations. This paper explores how informal learning with crafting physicalizations through play and curiosity may foster increased literacy and engagement with data. Employing a constructionist approach, we designed a do-it-yourself toolkit made out of everyday materials (e.g., paper, cardboard, mirrors) that enables children to create, customize, and personalize three different interactive visualizations (bar, line, pie). We used the toolkit as a design probe in a series of in-person workshops with 5 children (6 to 11-year-olds) and interviews with 5 educators. Our observations reveal that the toolkit helped children creatively engage and interact with visualizations. Children with prior knowledge of data visualization reported the toolkit serving as more of an authoring tool that they envision using in their daily lives, while children with little to no experience found the toolkit as an engaging introduction to data visualization. Our study demonstrates the potential of using the constructionist approach to cultivate children's DVL through curiosity and play.
Collapse
|
21
|
Gaba A, Setlur V, Srinivasan A, Hoffswell J, Xiong C. Comparison Conundrum and the Chamber of Visualizations: An Exploration of How Language Influences Visual Design. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1211-1221. [PMID: 36155465 DOI: 10.1109/tvcg.2022.3209456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The language for expressing comparisons is often complex and nuanced, making supporting natural language-based visual comparison a non-trivial task. To better understand how people reason about comparisons in natural language, we explore a design space of utterances for comparing data entities. We identified different parameters of comparison utterances that indicate what is being compared (i.e., data variables and attributes) as well as how these parameters are specified (i.e., explicitly or implicitly). We conducted a user study with sixteen data visualization experts and non-experts to investigate how they designed visualizations for comparisons in our design space. Based on the rich set of visualization techniques observed, we extracted key design features from the visualizations and synthesized them into a subset of sixteen representative visualization designs. We then conducted a follow-up study to validate user preferences for the sixteen representative visualizations corresponding to utterances in our design space. Findings from these studies suggest guidelines and future directions for designing natural language interfaces and recommendation tools to better support natural language comparisons in visual analytics.
Collapse
|
22
|
Han D, Parsad G, Kim H, Shim J, Kwon OS, Son KA, Lee J, Cho I, Ko S. HisVA: A Visual Analytics System for Studying History. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4344-4359. [PMID: 34086573 DOI: 10.1109/tvcg.2021.3086414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studying history involves many difficult tasks. Examples include searching for proper data in a large event space, understanding stories of historical events by time and space, and finding relationships among events that may not be apparent. Instructors who extensively use well-organized and well-argued materials (e.g., textbooks and online resources) can lead students to a narrow perspective in understanding history and prevent spontaneous investigation of historical events, with the students asking their own questions. In this article, we proposed HisVA, a visual analytics system that allows the efficient exploration of historical events from Wikipedia using three views: event, map, and resource. HisVA provides an effective event exploration space, where users can investigate relationships among historical events by reviewing and linking them in terms of space and time. To evaluate our system, we present two usage scenarios, a user study with a qualitative analysis of user exploration strategies, and in-class deployment results.
Collapse
|
23
|
Firat EE, Joshi A, Laramee RS, Sousa Santos B, Alford G. VisLitE: Visualization Literacy and Evaluation. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2022; 42:99-107. [PMID: 35671276 DOI: 10.1109/mcg.2022.3161767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the widespread advent of visualization techniques to convey complex data, visualization literacy (VL) is growing in importance. Two noteworthy facets of literacy are user understanding and the discovery of visual patterns with the help of graphical representations. The research literature on VL provides useful guidance and opportunities for further studies in this field. This introduction summarizes and presents research on VL that examines how well users understand basic and advanced data representations. To the best of our knowledge, this is the first tutorial article on interactive VL. We describe evaluation categories of existing relevant research into unique subject groups that facilitate and inform comparisons of literacy literature and provide a starting point for interested readers. In addition, the introduction also provides an overview of the various evaluation techniques used in this field of research and their challenging nature. Our introduction provides researchers with unexplored directions that may lead to future work. This starting point serves as a valuable resource for beginners interested in the topic of VL.
Collapse
|
24
|
Xiong C, Setlur V, Bach B, Koh E, Lin K, Franconeri S. Visual Arrangements of Bar Charts Influence Comparisons in Viewer Takeaways. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:955-965. [PMID: 34587056 DOI: 10.1109/tvcg.2021.3114823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Well-designed data visualizations can lead to more powerful and intuitive processing by a viewer. To help a viewer intuitively compare values to quickly generate key takeaways, visualization designers can manipulate how data values are arranged in a chart to afford particular comparisons. Using simple bar charts as a case study, we empirically tested the comparison affordances of four common arrangements: vertically juxtaposed, horizontally juxtaposed, overlaid, and stacked. We asked participants to type out what patterns they perceived in a chart and we coded their takeaways into types of comparisons. In a second study, we asked data visualization design experts to predict which arrangement they would use to afford each type of comparison and found both alignments and mismatches with our findings. These results provide concrete guidelines for how both human designers and automatic chart recommendation systems can make visualizations that help viewers extract the "right" takeaway.
Collapse
|
25
|
Franconeri SL, Padilla LM, Shah P, Zacks JM, Hullman J. The Science of Visual Data Communication: What Works. Psychol Sci Public Interest 2021; 22:110-161. [PMID: 34907835 DOI: 10.1177/15291006211051956] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effectively designed data visualizations allow viewers to use their powerful visual systems to understand patterns in data across science, education, health, and public policy. But ineffectively designed visualizations can cause confusion, misunderstanding, or even distrust-especially among viewers with low graphical literacy. We review research-backed guidelines for creating effective and intuitive visualizations oriented toward communicating data to students, coworkers, and the general public. We describe how the visual system can quickly extract broad statistics from a display, whereas poorly designed displays can lead to misperceptions and illusions. Extracting global statistics is fast, but comparing between subsets of values is slow. Effective graphics avoid taxing working memory, guide attention, and respect familiar conventions. Data visualizations can play a critical role in teaching and communication, provided that designers tailor those visualizations to their audience.
Collapse
Affiliation(s)
| | - Lace M Padilla
- Department of Cognitive and Information Sciences, University of California, Merced
| | - Priti Shah
- Department of Psychology, University of Michigan
| | - Jeffrey M Zacks
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | | |
Collapse
|
26
|
Impacts of Visualizations on Decoy Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312674. [PMID: 34886398 PMCID: PMC8657019 DOI: 10.3390/ijerph182312674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022]
Abstract
The decoy effect is a well-known, intriguing decision-making bias that is often exploited by marketing practitioners to steer consumers towards a desired purchase outcome. It demonstrates that an inclusion of an alternative in the choice set can alter one’s preference among the other choices. Although this decoy effect has been universally observed in the real world and also studied by many economists and psychologists, little is known about how to mitigate the decoy effect and help consumers make informed decisions. In this study, we conducted two experiments: a quantitative experiment with crowdsourcing and a qualitative interview study—first, the crowdsourcing experiment to see if visual interfaces can help alleviate this cognitive bias. Four types of visualizations, one-sided bar chart, two-sided bar charts, scatterplots, and parallel-coordinate plots, were evaluated with four different types of scenarios. The results demonstrated that the two types of bar charts were effective in decreasing the decoy effect. Second, we conducted a semi-structured interview to gain a deeper understanding of the decision-making strategies while making a choice. We believe that the results have an implication on showing how visualizations can have an impact on the decision-making process in our everyday life.
Collapse
|
27
|
Amabili L, Gupta K, Raidou RG. A Taxonomy-Driven Model for Designing Educational Games in Visualization. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:71-79. [PMID: 34596536 DOI: 10.1109/mcg.2021.3115446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualization literacy of the broader audiences is becoming an important topic, as we are increasingly surrounded by misleading, erroneous, or confusing visualizations. How can we educate the general masses about data visualization? We propose a twofold model for designing educational games in visualization based on the concept of constructivism and learning-by-playing. We base our approach on the idea of deconstruction and construction, borrowed from the domain of mathematics. We describe the conceptual development and design of our model through two games. First, we present a deconstruction-based game that requires the inspection, identification, and categorization of visualization characteristics (data, users, tasks, visual variables, visualization vocabulary), starting from a finalized visualization. Second, we propose a construction-based game where it is possible to compose visualizations bottom-up from individual visual characteristics. The two games use the same deck of cards with a simple design based on visualization taxonomies, popular in visualization teaching.
Collapse
|
28
|
Wang J, Cai X, Su J, Liao Y, Wu Y. What makes a scatterplot hard to comprehend: data size and pattern salience matter. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00778-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Rees D, Laramee RS, Brookes P, D'Cruze T, Smith GA, Miah A. AgentVis: Visual Analysis of Agent Behavior With Hierarchical Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3626-3643. [PMID: 32305921 DOI: 10.1109/tvcg.2020.2985923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glyphs representing complex behavior provide a useful and common means of visualizing multivariate data. However, due to their complex shape, overlapping, and occlusion of glyphs is a common and prominent limitation. This limits the number of discreet data tuples that can be displayed in a given image. Using a real-world application, glyphs are used to depict agent behavior in a call center. However, many call centers feature thousands of agents. A standard approach representing thousands of agents with glyphs does not scale. To accommodate the visualization incorporating thousands of glyphs we develop clustering of overlapping glyphs into a single parent glyph. This hierarchical glyph represents the mean value of all child agent glyphs, removing overlap and reduTcing visual clutter. Multi-variate clustering techniques are explored and developed in collaboration with domain experts in the call center industry. We implement dynamic control of glyph clusters according to zoom level and customized distance metrics, to utilize image space with reduced overplotting and cluttering. We demonstrate our technique with examples and a usage scenario using real-world call-center data to visualize thousands of call center agents, revealing insight into their behavior and reporting feedback from expert call-center analysts.
Collapse
|
30
|
Shu X, Wu A, Tang J, Bach B, Wu Y, Qu H. What Makes a Data-GIF Understandable? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1492-1502. [PMID: 33048713 DOI: 10.1109/tvcg.2020.3030396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
GIFs are enjoying increasing popularity on social media as a format for data-driven storytelling with visualization; simple visual messages are embedded in short animations that usually last less than 15 seconds and are played in automatic repetition. In this paper, we ask the question, "What makes a data-GIF understandable?" While other storytelling formats such as data videos, infographics, or data comics are relatively well studied, we have little knowledge about the design factors and principles for "data-GIFs". To close this gap, we provide results from semi-structured interviews and an online study with a total of 118 participants investigating the impact of design decisions on the understandability of data-GIFs. The study and our consequent analysis are informed by a systematic review and structured design space of 108 data-GIFs that we found online. Our results show the impact of design dimensions from our design space such as animation encoding, context preservation, or repetition on viewers understanding of the GIF's core message. The paper concludes with a list of suggestions for creating more effective Data-GIFs.
Collapse
|
31
|
Zhang D, Sarvghad A, Miklau G. Investigating Visual Analysis of Differentially Private Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1786-1796. [PMID: 33074813 DOI: 10.1109/tvcg.2020.3030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Differential Privacy is an emerging privacy model with increasing popularity in many domains. It functions by adding carefully calibrated noise to data that blurs information about individuals while preserving overall statistics about the population. Theoretically, it is possible to produce robust privacy-preserving visualizations by plotting differentially private data. However, noise-induced data perturbations can alter visual patterns and impact the utility of a private visualization. We still know little about the challenges and opportunities for visual data exploration and analysis using private visualizations. As a first step towards filling this gap, we conducted a crowdsourced experiment, measuring participants' performance under three levels of privacy (high, low, non-private) for combinations of eight analysis tasks and four visualization types (bar chart, pie chart, line chart, scatter plot). Our findings show that for participants' accuracy for summary tasks (e.g., find clusters in data) was higher that value tasks (e.g., retrieve a certain value). We also found that under DP, pie chart and line chart offer similar or better accuracy than bar chart. In this work, we contribute the results of our empirical study, investigating the task-based effectiveness of basic private visualizations, a dichotomous model for defining and measuring user success in performing visual analysis tasks under DP, and a set of distribution metrics for tuning the injection to improve the utility of private visualizations.
Collapse
|
32
|
Adar E, Lee E. Communicative Visualizations as a Learning Problem. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:946-956. [PMID: 33048702 DOI: 10.1109/tvcg.2020.3030375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Significant research has provided robust task and evaluation languages for the analysis of exploratory visualizations. Unfortunately, these taxonomies fail when applied to communicative visualizations. Instead, designers often resort to evaluating communicative visualizations from the cognitive efficiency perspective: "can the recipient accurately decode my message/insight?" However, designers are unlikely to be satisfied if the message went 'in one ear and out the other.' The consequence of this inconsistency is that it is difficult to design or select between competing options in a principled way. The problem we address is the fundamental mismatch between how designers want to describe their intent, and the language they have. We argue that visualization designers can address this limitation through a learning lens: that the recipient is a student and the designer a teacher. By using learning objectives, designers can better define, assess, and compare communicative visualizations. We illustrate how the learning-based approach provides a framework for understanding a wide array of communicative goals. To understand how the framework can be applied (and its limitations), we surveyed and interviewed members of the Data Visualization Society using their own visualizations as a probe. Through this study we identified the broad range of objectives in communicative visualizations and the prevalence of certain objective types.
Collapse
|
33
|
Vázquez-Ingelmo A, García-Holgado A, García-Peñalvo FJ, Therón R. A Meta-Model Integration for Supporting Knowledge Discovery in Specific Domains: A Case Study in Healthcare. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4072. [PMID: 32707808 PMCID: PMC7436025 DOI: 10.3390/s20154072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022]
Abstract
Knowledge management is one of the key priorities of many organizations. They face different challenges in the implementation of knowledge management processes, including the transformation of tacit knowledge-experience, skills, insights, intuition, judgment and know-how-into explicit knowledge. Furthermore, the increasing number of information sources and services in some domains, such as healthcare, increase the amount of information available. Therefore, there is a need to transform that information in knowledge. In this context, learning ecosystems emerge as solutions to support knowledge management in a different context. On the other hand, the dashboards enable the generation of knowledge through the exploitation of the data provided from different sources. The model-driven development of these solutions is possible through two meta-models developed in previous works. Even though those meta-models solve several problems, the learning ecosystem meta-model has a lack of decision-making support. In this context, this work provides two main contributions to face this issue. First, the definition of a holistic meta-model to support decision-making processes in ecosystems focused on knowledge management, also called learning ecosystems. The second contribution of this work is an instantiation of the presented holistic meta-model in the healthcare domain.
Collapse
Affiliation(s)
- Andrea Vázquez-Ingelmo
- GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain; (A.G.-H.); (F.J.G.-P.)
| | - Alicia García-Holgado
- GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain; (A.G.-H.); (F.J.G.-P.)
| | - Francisco José García-Peñalvo
- GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain; (A.G.-H.); (F.J.G.-P.)
| | - Roberto Therón
- VisUSAL, GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
34
|
Abstract
Digitalization in schools requires a rethinking of teaching materials and methods in all subjects. This upheaval also concerns traditional print media, like school atlases used in geography classes. In this work, we examine the cartographic technological feasibility of extending a printed school atlas with digital content by augmented reality (AR). While previous research rather focused on topographic three-dimensional (3D) maps, our prototypical application for Android tablets complements map sheets of the Swiss World Atlas with thematically related data. We follow a natural marker approach using the AR engine Vuforia and the game engine Unity. We compare two workflows to insert geo-data, being correctly aligned with the map images, into the game engine. Next, the imported data are transformed into partly animated 3D visualizations, such as a dot distribution map, curved lines, pie chart billboards, stacked cuboids, extruded bars, and polygons. Additionally, we implemented legends, elements for temporal and thematic navigation, a screen capture function, and a touch-based feature query for the user interface. We evaluated our prototype in a usability experiment, which showed that secondary school students are as effective, interested, and sustainable with printed as with augmented maps when solving geographic tasks.
Collapse
|
35
|
Representing Data Visualization Goals and Tasks through Meta-Modeling to Tailor Information Dashboards. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information dashboards are everywhere. They support knowledge discovery in a huge variety of contexts and domains. Although powerful, these tools can be complex, not only for the end-users but also for developers and designers. Information dashboards encode complex datasets into different visual marks to ease knowledge discovery. Choosing a wrong design could compromise the entire dashboard’s effectiveness, selecting the appropriate encoding or configuration for each potential context, user, or data domain is a crucial task. For these reasons, there is a necessity to automatize the recommendation of visualizations and dashboard configurations to deliver tools adapted to their context. Recommendations can be based on different aspects, such as user characteristics, the data domain, or the goals and tasks that will be achieved or carried out through the visualizations. This work presents a dashboard meta-model that abstracts all these factors and the integration of a visualization task taxonomy to account for the different actions that can be performed with information dashboards. This meta-model has been used to design a domain specific language to specify dashboards requirements in a structured way. The ultimate goal is to obtain a dashboard generation pipeline to deliver dashboards adapted to any context, such as the educational context, in which a lot of data are generated, and there are several actors involved (students, teachers, managers, etc.) that would want to reach different insights regarding their learning performance or learning methodologies.
Collapse
|
36
|
Saket B, Endert A, Demiralp C. Task-Based Effectiveness of Basic Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2505-2512. [PMID: 29994001 DOI: 10.1109/tvcg.2018.2829750] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualizations of tabular data are widely used; understanding their effectiveness in different task and data contexts is fundamental to scaling their impact. However, little is known about how basic tabular data visualizations perform across varying data analysis tasks. In this paper, we report results from a crowdsourced experiment to evaluate the effectiveness of five small scale (5-34 data points) two-dimensional visualization types-Table, Line Chart, Bar Chart, Scatterplot, and Pie Chart-across ten common data analysis tasks using two datasets. We find the effectiveness of these visualization types significantly varies across task, suggesting that visualization design would benefit from considering context-dependent effectiveness. Based on our findings, we derive recommendations on which visualizations to choose based on different tasks. We finally train a decision tree on the data we collected to drive a recommender, showcasing how to effectively engineer experimental user data into practical visualization systems.
Collapse
|
37
|
Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proc Natl Acad Sci U S A 2019; 116:1857-1864. [PMID: 30718386 DOI: 10.1073/pnas.1807180116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the information age, the ability to read and construct data visualizations becomes as important as the ability to read and write text. However, while standard definitions and theoretical frameworks to teach and assess textual, mathematical, and visual literacy exist, current data visualization literacy (DVL) definitions and frameworks are not comprehensive enough to guide the design of DVL teaching and assessment. This paper introduces a data visualization literacy framework (DVL-FW) that was specifically developed to define, teach, and assess DVL. The holistic DVL-FW promotes both the reading and construction of data visualizations, a pairing analogous to that of both reading and writing in textual literacy and understanding and applying in mathematical literacy. Specifically, the DVL-FW defines a hierarchical typology of core concepts and details the process steps that are required to extract insights from data. Advancing the state of the art, the DVL-FW interlinks theoretical and procedural knowledge and showcases how both can be combined to design curricula and assessment measures for DVL. Earlier versions of the DVL-FW have been used to teach DVL to more than 8,500 residential and online students, and results from this effort have helped revise and validate the DVL-FW presented here.
Collapse
|
38
|
Goc ML, Perin C, Follmer S, Fekete JD, Dragicevic P. Dynamic Composite Data Physicalization Using Wheeled Micro-Robots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:737-747. [PMID: 30136993 DOI: 10.1109/tvcg.2018.2865159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work.
Collapse
|
39
|
Chevalier F, Henry Riche N, Alper B, Plaisant C, Boy J, Elmqvist N. Observations and Reflections on Visualization Literacy in Elementary School. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2018; 38:21-29. [PMID: 29877801 DOI: 10.1109/mcg.2018.032421650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article, we share our reflections on visualization literacy and how it might be better developed in early education. We base this on lessons we learned while studying how teachers instruct, and how students acquire basic visualization principles and skills in elementary school. We use these findings to propose directions for future research on visualization literacy.
Collapse
|
40
|
Kim NW, Bach B, Im H, Schriber S, Gross M, Pfister H. Visualizing Nonlinear Narratives with Story Curves. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:595-604. [PMID: 28866524 DOI: 10.1109/tvcg.2017.2744118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we present story curves, a visualization technique for exploring and communicating nonlinear narratives in movies. A nonlinear narrative is a storytelling device that portrays events of a story out of chronological order, e.g., in reverse order or going back and forth between past and future events. Many acclaimed movies employ unique narrative patterns which in turn have inspired other movies and contributed to the broader analysis of narrative patterns in movies. However, understanding and communicating nonlinear narratives is a difficult task due to complex temporal disruptions in the order of events as well as no explicit records specifying the actual temporal order of the underlying story. Story curves visualize the nonlinear narrative of a movie by showing the order in which events are told in the movie and comparing them to their actual chronological order, resulting in possibly meandering visual patterns in the curve. We also present Story Explorer, an interactive tool that visualizes a story curve together with complementary information such as characters and settings. Story Explorer further provides a script curation interface that allows users to specify the chronological order of events in movies. We used Story Explorer to analyze 10 popular nonlinear movies and describe the spectrum of narrative patterns that we discovered, including some novel patterns not previously described in the literature. Feedback from experts highlights potential use cases in screenplay writing and analysis, education and film production. A controlled user study shows that users with no expertise are able to understand visual patterns of nonlinear narratives using story curves.
Collapse
|
41
|
Abstract
Health literacy is concerned with the degree to which individuals can access and understand information to make health decisions. The multifaceted nature of health data presents challenges for individuals seeking to improve their understanding of health. To aid health literacy efforts, we have developed HealthConfection, a visualization tool that uses elaborate and non-typical interactive visualizations to represent health data. In this paper, we report on two studies we conducted with HealthConfection. In the first study, we investigate whether individuals can learn to use non-typical visualizations, and the impact that short, minimalist video tutorials will have on participants’ understanding of the visualizations. The findings from this study suggest that individuals can learn to use non-typical visualizations and that participants who used the tutorials achieved higher scores than those without tutorials. This work indicates that non-typical visualizations are a viable option for conveying complex datasets. Based on this foundation, we conducted a second study to investigate if non-typical visualizations can improve health literacy for the general public. Results show that participants who used HealthConfection achieved higher scores than those who did not interact with the tool. Our work suggests that non-typical visualizations can be used to improve health literacy.
Collapse
|