1
|
Li G, Liu Y, Shan G, Cheng S, Cao W, Wang J, Wang KC. ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:624-634. [PMID: 39250408 DOI: 10.1109/tvcg.2024.3456338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters. Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based approaches, we demonstrate the efficacy of our solution.
Collapse
|
2
|
Athawale TM, Wang Z, Pugmire D, Moreland K, Gong Q, Klasky S, Johnson CR, Rosen P. Uncertainty Visualization of Critical Points of 2D Scalar Fields for Parametric and Nonparametric Probabilistic Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:108-118. [PMID: 39255107 DOI: 10.1109/tvcg.2024.3456393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
This paper presents a novel end-to-end framework for closed-form computation and visualization of critical point uncertainty in 2D uncertain scalar fields. Critical points are fundamental topological descriptors used in the visualization and analysis of scalar fields. The uncertainty inherent in data (e.g., observational and experimental data, approximations in simulations, and compression), however, creates uncertainty regarding critical point positions. Uncertainty in critical point positions, therefore, cannot be ignored, given their impact on downstream data analysis tasks. In this work, we study uncertainty in critical points as a function of uncertainty in data modeled with probability distributions. Although Monte Carlo (MC) sampling techniques have been used in prior studies to quantify critical point uncertainty, they are often expensive and are infrequently used in production-quality visualization software. We, therefore, propose a new end-to-end framework to address these challenges that comprises a threefold contribution. First, we derive the critical point uncertainty in closed form, which is more accurate and efficient than the conventional MC sampling methods. Specifically, we provide the closed-form and semianalytical (a mix of closed-form and MC methods) solutions for parametric (e.g., uniform, Epanechnikov) and nonparametric models (e.g., histograms) with finite support. Second, we accelerate critical point probability computations using a parallel implementation with the VTK-m library, which is platform portable. Finally, we demonstrate the integration of our implementation with the ParaView software system to demonstrate near-real-time results for real datasets.
Collapse
|
3
|
Zhang M, Li Q, Chen L, Yuan X, Yong J. EnConVis: A Unified Framework for Ensemble Contour Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2067-2079. [PMID: 34982686 DOI: 10.1109/tvcg.2021.3140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ensemble simulation is a crucial method to handle potential uncertainty in modern simulation and has been widely applied in many disciplines. Many ensemble contour visualization methods have been introduced to facilitate ensemble data analysis. On the basis of deep exploration and summarization of existing techniques and domain requirements, we propose a unified framework of ensemble contour visualization, EnConVis (Ensemble Contour Visualization), which systematically combines state-of-the-art methods. We model ensemble contour visualization as a four-step pipeline consisting of four essential procedures: member filtering, point-wise modeling, uncertainty band extraction, and visual mapping. For each of the four essential procedures, we compare different methods they use, analyze their pros and cons, highlight research gaps, and attempt to fill them. Specifically, we add Kernel Density Estimation in the point-wise modeling procedure and multi-layer extraction in the uncertainty band extraction procedure. This step shows the ensemble data's details accurately and provides abstract levels. We also analyze existing methods from a global perspective. We investigate their mechanisms and compare their effects, on the basis of which, we offer selection guidelines for them. From the overall perspective of this framework, we find choices and combinations that have not been tried before, which can be well compensated by our method. Synthetic data and real-world data are leveraged to verify the efficacy of our method. Domain experts' feedback suggests that our approach helps them better understand ensemble data analysis.
Collapse
|
4
|
Athawale TM, Johnson CR, Sane S, Pugmire D. Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:613-623. [PMID: 36155460 DOI: 10.1109/tvcg.2022.3209424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.
Collapse
|
5
|
Neuroth T, Rieth M, Aditya K, Lee M, Chen JH, Ma KL. Level Set Restricted Voronoi Tessellation for Large scale Spatial Statistical Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:548-558. [PMID: 36166541 DOI: 10.1109/tvcg.2022.3209473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spatial statistical analysis of multivariate volumetric data can be challenging due to scale, complexity, and occlusion. Advances in topological segmentation, feature extraction, and statistical summarization have helped overcome the challenges. This work introduces a new spatial statistical decomposition method based on level sets, connected components, and a novel variation of the restricted centroidal Voronoi tessellation that is better suited for spatial statistical decomposition and parallel efficiency. The resulting data structures organize features into a coherent nested hierarchy to support flexible and efficient out-of-core region-of-interest extraction. Next, we provide an efficient parallel implementation. Finally, an interactive visualization system based on this approach is designed and then applied to turbulent combustion data. The combined approach enables an interactive spatial statistical analysis workflow for large-scale data with a top-down approach through multiple-levels-of-detail that links phase space statistics with spatial features.
Collapse
|
6
|
Kumpf A, Stumpfegger J, Hartl PF, Westermann R. Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3530-3545. [PMID: 33625986 DOI: 10.1109/tvcg.2021.3061925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.
Collapse
|
7
|
Kamal A, Dhakal P, Javaid AY, Devabhaktuni VK, Kaur D, Zaientz J, Marinier R. Recent advances and challenges in uncertainty visualization: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Rapp T, Peters C, Dachsbacher C. Visual Analysis of Large Multivariate Scattered Data using Clustering and Probabilistic Summaries. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1580-1590. [PMID: 33048705 DOI: 10.1109/tvcg.2020.3030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rapidly growing data sizes of scientific simulations pose significant challenges for interactive visualization and analysis techniques. In this work, we propose a compact probabilistic representation to interactively visualize large scattered datasets. In contrast to previous approaches that represent blocks of volumetric data using probability distributions, we model clusters of arbitrarily structured multivariate data. In detail, we discuss how to efficiently represent and store a high-dimensional distribution for each cluster. We observe that it suffices to consider low-dimensional marginal distributions for two or three data dimensions at a time to employ common visual analysis techniques. Based on this observation, we represent high-dimensional distributions by combinations of low-dimensional Gaussian mixture models. We discuss the application of common interactive visual analysis techniques to this representation. In particular, we investigate several frequency-based views, such as density plots in 1D and 2D, density-based parallel coordinates, and a time histogram. We visualize the uncertainty introduced by the representation, discuss a level-of-detail mechanism, and explicitly visualize outliers. Furthermore, we propose a spatial visualization by splatting anisotropic 3D Gaussians for which we derive a closed-form solution. Lastly, we describe the application of brushing and linking to this clustered representation. Our evaluation on several large, real-world datasets demonstrates the scaling of our approach.
Collapse
|
9
|
Capacity Planning of Distributed Wind Power Based on a Variable-Structure Copula Involving Energy Storage Systems. ENERGIES 2020. [DOI: 10.3390/en13143602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Distributed wind power (DWP) needs to be consumed locally under a 110 kV network without reverse power flow in China. To maximize the use of DWP, this paper proposes a novel method for capacity planning of DWP with participation of the energy storage system (ESS) in multiple scenarios by means of a variable-structure copula and optimization theory. First, wind power and local load are predicted at the planning stage by an autoregressive moving average (ARMA) model, then, variable-structure copula models are established based on different time segment strategies to depict the correlation of DWP and load, and the joint typical scenarios of DWP and load are generated by clustering, and a capacity planning model of DWP is proposed considering investment and operation cost, and environmental benefit and line loss cost under typical scenario conditions. Moreover, a collaborative capacity planning model for DWP and ESS is prospectively proposed. Based on the modified IEEE-33 bus system, the results of the case study show that the DWP capacity result is more reasonable after considering the correlation of wind and load by using a variable-structure copula. With consideration of the collaborative planning of DWP and load, the consumption of DWP is further improved, the annual cost of the system is more economical, and the quality of voltage is effectively improved. The study results validate the proposed method and provide effective reference for the planning strategy of DWP.
Collapse
|
10
|
He W, Guo H, Shen HW, Peterka T. eFESTA: Ensemble Feature Exploration with Surface Density Estimates. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1716-1731. [PMID: 30418881 DOI: 10.1109/tvcg.2018.2879866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose surface density estimate (SDE) to model the spatial distribution of surface features-isosurfaces, ridge surfaces, and streamsurfaces-in 3D ensemble simulation data. The inputs of SDE computation are surface features represented as polygon meshes, and no field datasets are required (e.g., scalar fields or vector fields). The SDE is defined as the kernel density estimate of the infinite set of points on the input surfaces and is approximated by accumulating the surface densities of triangular patches. We also propose an algorithm to guide the selection of a proper kernel bandwidth for SDE computation. An ensemble Feature Exploration method based on Surface densiTy EstimAtes (eFESTA) is then proposed to extract and visualize the major trends of ensemble surface features. For an ensemble of surface features, each surface is first transformed into a density field based on its contribution to the SDE, and the resulting density fields are organized into a hierarchical representation based on the pairwise distances between them. The hierarchical representation is then used to guide visual exploration of the density fields as well as the underlying surface features. We demonstrate the application of our method using isosurface in ensemble scalar fields, Lagrangian coherent structures in uncertain unsteady flows, and streamsurfaces in ensemble fluid flows.
Collapse
|
11
|
Bayesian classifier with multivariate distribution based on D-vine copula model for awake/drowsiness interpretation during power nap. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
13
|
Athawale TM, Johnson KA, Butson CR, Johnson CR. A statistical framework for quantification and visualisation of positional uncertainty in deep brain stimulation electrodes. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2018; 7:438-449. [PMID: 31186994 DOI: 10.1080/21681163.2018.1523750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deep brain stimulation (DBS) is an established therapy for treating patients with movement disorders such as Parkinson's disease. Patient-specific computational modelling and visualisation have been shown to play a key role in surgical and therapeutic decisions for DBS. The computational models use brain imaging, such as magnetic resonance (MR) and computed tomography (CT), to determine the DBS electrode positions within the patient's head. The finite resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS stimulation settings for optimal patient response are sensitive to the relative positioning of DBS electrodes to a specific neural substrate (white/grey matter). In our contribution, we study positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step approach, we first derive a closed-form mathematical model characterising the geometry of the DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the contact-centre positions at subvoxel levels. The statistical framework leverages the analytical model derived in step one and a Bayesian probabilistic model for uncertainty quantification. Finally, the uncertainty in contact-centre positions is interactively visualised through volume rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through experiments on synthetic and real datasets. We show that the spatial variations in true electrode positions are significant for finite resolution imaging, and interactive visualisation can be instrumental in exploring probabilistic positional variations in the DBS lead.
Collapse
Affiliation(s)
- Tushar M Athawale
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | - Kara A Johnson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | | | - Chris R Johnson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| |
Collapse
|
14
|
Athawale T, Johnson CR. Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:10.1109/TVCG.2018.2864505. [PMID: 30130200 PMCID: PMC6382610 DOI: 10.1109/tvcg.2018.2864505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a framework for the analysis of uncertainty in isocontour extraction. The marching squares (MS) algorithm for isocontour reconstruction generates a linear topology that is consistent with hyperbolic curves of a piecewise bilinear interpolation. The saddle points of the bilinear interpolant cause topological ambiguity in isocontour extraction. The midpoint decider and the asymptotic decider are well-known mathematical techniques for resolving topological ambiguities. The latter technique investigates the data values at the cell saddle points for ambiguity resolution. The uncertainty in data, however, leads to uncertainty in underlying bilinear interpolation functions for the MS algorithm, and hence, their saddle points. In our work, we study the behavior of the asymptotic decider when data at grid vertices is uncertain. First, we derive closed-form distributions characterizing variations in the saddle point values for uncertain bilinear interpolants. The derivation assumes uniform and nonparametric noise models, and it exploits the concept of ratio distribution for analytic formulations. Next, the probabilistic asymptotic decider is devised for ambiguity resolution in uncertain data using distributions of the saddle point values derived in the first step. Finally, the confidence in probabilistic topological decisions is visualized using a colormapping technique. We demonstrate the higher accuracy and stability of the probabilistic asymptotic decider in uncertain data with regard to existing decision frameworks, such as deciders in the mean field and the probabilistic midpoint decider, through the isocontour visualization of synthetic and real datasets.
Collapse
Affiliation(s)
- Tushar Athawale
- Scientific Computing & Imaging (SCI) Institute at the University of Utah.
| | - Chris R. Johnson
- Scientific Computing & Imaging (SCI) Institute at the University of Utah.
| |
Collapse
|
15
|
Hazarika S, Dutta S, Shen HW, Chen JP. CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1214-1224. [PMID: 30130206 DOI: 10.1109/tvcg.2018.2864801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
CoDDA (Copula-based Distribution Driven Analysis) is a flexible framework for large-scale multivariate datasets. A common strategy to deal with large-scale scientific simulation data is to partition the simulation domain and create statistical data summaries. Instead of storing the high-resolution raw data from the simulation, storing the compact statistical data summaries results in reduced storage overhead and alleviated I/O bottleneck. Such summaries, often represented in the form of statistical probability distributions, can serve various post-hoc analysis and visualization tasks. However, for multivariate simulation data using standard multivariate distributions for creating data summaries is not feasible. They are either storage inefficient or are computationally expensive to be estimated in simulation time (in situ) for large number of variables. In this work, using copula functions, we propose a flexible multivariate distribution-based data modeling and analysis framework that offers significant data reduction and can be used in an in situ environment. The framework also facilitates in storing the associated spatial information along with the multivariate distributions in an efficient representation. Using the proposed multivariate data summaries, we perform various multivariate post-hoc analyses like query-driven visualization and sampling-based visualization. We evaluate our proposed method on multiple real-world multivariate scientific datasets. To demonstrate the efficacy of our framework in an in situ environment, we apply it on a large-scale flow simulation.
Collapse
|
16
|
Information Guided Exploration of Scalar Values and Isocontours in Ensemble Datasets. ENTROPY 2018; 20:e20070540. [PMID: 33265629 PMCID: PMC7513067 DOI: 10.3390/e20070540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/23/2022]
Abstract
Uncertainty of scalar values in an ensemble dataset is often represented by the collection of their corresponding isocontours. Various techniques such as contour-boxplot, contour variability plot, glyphs and probabilistic marching-cubes have been proposed to analyze and visualize ensemble isocontours. All these techniques assume that a scalar value of interest is already known to the user. Not much work has been done in guiding users to select the scalar values for such uncertainty analysis. Moreover, analyzing and visualizing a large collection of ensemble isocontours for a selected scalar value has its own challenges. Interpreting the visualizations of such large collections of isocontours is also a difficult task. In this work, we propose a new information-theoretic approach towards addressing these issues. Using specific information measures that estimate the predictability and surprise of specific scalar values, we evaluate the overall uncertainty associated with all the scalar values in an ensemble system. This helps the scientist to understand the effects of uncertainty on different data features. To understand in finer details the contribution of individual members towards the uncertainty of the ensemble isocontours of a selected scalar value, we propose a conditional entropy based algorithm to quantify the individual contributions. This can help simplify analysis and visualization for systems with more members by identifying the members contributing the most towards overall uncertainty. We demonstrate the efficacy of our method by applying it on real-world datasets from material sciences, weather forecasting and ocean simulation experiments.
Collapse
|