1
|
Yi F, Su L, He H, Xiao T. Mining human periodic behaviors via tensor factorization and entropy. PeerJ Comput Sci 2024; 10:e1851. [PMID: 38435564 PMCID: PMC10909198 DOI: 10.7717/peerj-cs.1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024]
Abstract
Understanding human periodic behaviors is crucial in many applications. Existing research has shown the existence of periodicity in human behaviors, but has achieved limited success in leveraging location periodicity and obtaining satisfactory accuracy for oscillations in human periodic behaviors. In this article, we propose the Mobility Intention and Relative Entropy (MIRE) model to address these challenges. We employ tensor decomposition to extract mobility intentions from spatiotemporal datasets, thereby revealing hidden structures in users' historical records. Subsequently, we utilize subsequences associated with the same mobility intention to mine human periodic behaviors. Furthermore, we introduce a novel periodicity detection algorithm based on relative entropy. Our experimental results, conducted on real-world datasets, demonstrate the effectiveness of the MIRE model in accurately uncovering human periodic behaviors. Comparative analysis further reveals that the MIRE model significantly outperforms baseline periodicity detection algorithms.
Collapse
Affiliation(s)
- Feng Yi
- School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, Guangdong Province, China
| | - Lei Su
- School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, Guangdong Province, China
| | - Huaiwen He
- School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, Guangdong Province, China
| | - Tao Xiao
- School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, Guangdong Province, China
| |
Collapse
|
2
|
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem Rev 2023; 123:8736-8780. [PMID: 37384816 PMCID: PMC10999174 DOI: 10.1021/acs.chemrev.3c00189] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.
Collapse
Affiliation(s)
- Bozheng Dou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Zailiang Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Ekaterina Merkurjev
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Long Chen
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Wu J, Liu D, Guo Z, Wu Y. RASIPAM: Interactive Pattern Mining of Multivariate Event Sequences in Racket Sports. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:940-950. [PMID: 36179006 DOI: 10.1109/tvcg.2022.3209452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experts in racket sports like tennis and badminton use tactical analysis to gain insight into competitors' playing styles. Many data-driven methods apply pattern mining to racket sports data - which is often recorded as multivariate event sequences - to uncover sports tactics. However, tactics obtained in this way are often inconsistent with those deduced by experts through their domain knowledge, which can be confusing to those experts. This work introduces RASIPAM, a RAcket-Sports Interactive PAttern Mining system, which allows experts to incorporate their knowledge into data mining algorithms to discover meaningful tactics interactively. RASIPAM consists of a constraint-based pattern mining algorithm that responds to the analysis demands of experts: Experts provide suggestions for finding tactics in intuitive written language, and these suggestions are translated into constraints to run the algorithm. RASIPAM further introduces a tailored visual interface that allows experts to compare the new tactics with the original ones and decide whether to apply a given adjustment. This interactive workflow iteratively progresses until experts are satisfied with all tactics. We conduct a quantitative experiment to show that our algorithm supports real-time interaction. Two case studies in tennis and in badminton respectively, each involving two domain experts, are conducted to show the effectiveness and usefulness of the system.
Collapse
|
4
|
You are experienced: interactive tour planning with crowdsourcing tour data from web. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
6
|
Progressive visual analysis of traffic data based on hierarchical topic refinement and detail analysis. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Hogräfer M, Angelini M, Santucci G, Schulz HJ. Steering-by-Example for Progressive Visual Analytics. ACM T INTEL SYST TEC 2022. [DOI: 10.1145/3531229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Progressive visual analytics allows users to interact with early, partial results of long-running computations on large datasets. In this context, computational steering is often brought up as a means to prioritize the progressive computation. This is meant to focus computational resources on data subspaces of interest, so as to ensure their computation is completed before all others. Yet, current approaches to select a region of the view space and then to prioritize its corresponding data subspace either require a 1-to-1 mapping between view and data space, or they need to establish and maintain computationally costly index structures to trace complex mappings between view and data space. We present steering-by-example, a novel interactive steering approach for progressive visual analytics, which allows prioritizing data subspaces for the progression by generating a relaxed query from a set of selected data items. Our approach works independently of the particular visualization technique and without additional index structures. First benchmark results show that steering-by-example considerably improves Precision and Recall for prioritizing unprocessed data for a selected view region, clearly outperforming random uniform sampling.
Collapse
|
8
|
Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y. Visual Cascade Analytics of Large-Scale Spatiotemporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2486-2499. [PMID: 33822726 DOI: 10.1109/tvcg.2021.3071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.
Collapse
|
9
|
Upadhyay P, Pandey MK, Kohli N. Mining periodic patterns from spatio-temporal trajectories using FGO-based artificial neural network optimization model. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06596-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y. Compass: Towards Better Causal Analysis of Urban Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1051-1061. [PMID: 34596550 DOI: 10.1109/tvcg.2021.3114875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
Collapse
|
11
|
Tang J, Zhou Y, Tang T, Weng D, Xie B, Yu L, Zhang H, Wu Y. A Visualization Approach for Monitoring Order Processing in E-Commerce Warehouse. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:857-867. [PMID: 34596553 DOI: 10.1109/tvcg.2021.3114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The efficiency of warehouses is vital to e-commerce. Fast order processing at the warehouses ensures timely deliveries and improves customer satisfaction. However, monitoring, analyzing, and manipulating order processing in the warehouses in real time are challenging for traditional methods due to the sheer volume of incoming orders, the fuzzy definition of delayed order patterns, and the complex decision-making of order handling priorities. In this paper, we adopt a data-driven approach and propose OrderMonitor, a visual analytics system that assists warehouse managers in analyzing and improving order processing efficiency in real time based on streaming warehouse event data. Specifically, the order processing pipeline is visualized with a novel pipeline design based on the sedimentation metaphor to facilitate real-time order monitoring and suggest potentially abnormal orders. We also design a novel visualization that depicts order timelines based on the Gantt charts and Marey's graphs. Such a visualization helps the managers gain insights into the performance of order processing and find major blockers for delayed orders. Furthermore, an evaluating view is provided to assist users in inspecting order details and assigning priorities to improve the processing performance. The effectiveness of OrderMonitor is evaluated with two case studies on a real-world warehouse dataset.
Collapse
|
12
|
MulUBA: multi-level visual analytics of user behaviors for improving online shopping advertising. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Nonato LG, do Carmo FP, Silva CT. GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3481-3492. [PMID: 32149640 DOI: 10.1109/tvcg.2020.2978847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as main application scenario the visual analysis of spatio-temporal data. More specifically, we propose the equivalent for graphs of the so-called Laplacian of Gaussian edge detection filter, which is widely used in image processing. The proposed filter is able to reveal interesting spatial patterns while still enabling the definition of entropy of time slices. The entropy reveals the degree of randomness of a time slice, helping users to identify expected and unexpected phenomena over time. The effectiveness of our approach appears in applications involving synthetic and real data sets, which show that the proposed methodology is able to uncover interesting spatial and temporal phenomena. The provided examples and case studies make clear the usefulness of our approach as a mechanism to support visual analytic tasks involving spatio-temporal data.
Collapse
|
14
|
Battle L, Scheidegger C. A Structured Review of Data Management Technology for Interactive Visualization and Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1128-1138. [PMID: 33031039 DOI: 10.1109/tvcg.2020.3028891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last two decades, interactive visualization and analysis have become a central tool in data-driven decision making. Concurrently to the contributions in data visualization, research in data management has produced technology that directly benefits interactive analysis. Here, we contribute a systematic review of 30 years of work in this adjacent field, and highlight techniques and principles we believe to be underappreciated in visualization work. We structure our review along two axes. First, we use task taxonomies from the visualization literature to structure the space of interactions in usual systems. Second, we created a categorization of data management work that strikes a balance between specificity and generality. Concretely, we contribute a characterization of 131 research papers along these two axes. We find that five notions in data management venues fit interactive visualization systems well: materialized views, approximate query processing, user modeling and query prediction, muiti-query optimization, lineage techniques, and indexing techniques. In addition, we find a preponderance of work in materialized views and approximate query processing, most targeting a limited subset of the interaction tasks in the taxonomy we used. This suggests natural avenues of future research both in visualization and data management. Our categorization both changes how we visualization researchers design and build our systems, and highlights where future work is necessary.
Collapse
|
15
|
Fujiwara T, Sakamoto N, Nonaka J, Yamamoto K, Ma KL. A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1601-1611. [PMID: 33026990 DOI: 10.1109/tvcg.2020.3028889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Data-driven problem solving in many real-world applications involves analysis of time-dependent multivariate data, for which dimensionality reduction (DR) methods are often used to uncover the intrinsic structure and features of the data. However, DR is usually applied to a subset of data that is either single-time-point multivariate or univariate time-series, resulting in the need to manually examine and correlate the DR results out of different data subsets. When the number of dimensions is large either in terms of the number of time points or attributes, this manual task becomes too tedious and infeasible. In this paper, we present MulTiDR, a new DR framework that enables processing of time-dependent multivariate data as a whole to provide a comprehensive overview of the data. With the framework, we employ DR in two steps. When treating the instances, time points, and attributes of the data as a 3D array, the first DR step reduces the three axes of the array to two, and the second DR step visualizes the data in a lower-dimensional space. In addition, by coupling with a contrastive learning method and interactive visualizations, our framework enhances analysts' ability to interpret DR results. We demonstrate the effectiveness of our framework with four case studies using real-world datasets.
Collapse
|
16
|
Liu L, Zhang H, Liu J, Liu S, Chen W, Man J. Visual exploration of urban functional zones based on augmented nonnegative tensor factorization. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Rahman P, Nandi A, Hebert C. Amplifying Domain Expertise in Clinical Data Pipelines. JMIR Med Inform 2020; 8:e19612. [PMID: 33151150 PMCID: PMC7677017 DOI: 10.2196/19612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022] Open
Abstract
Digitization of health records has allowed the health care domain to adopt data-driven algorithms for decision support. There are multiple people involved in this process: a data engineer who processes and restructures the data, a data scientist who develops statistical models, and a domain expert who informs the design of the data pipeline and consumes its results for decision support. Although there are multiple data interaction tools for data scientists, few exist to allow domain experts to interact with data meaningfully. Designing systems for domain experts requires careful thought because they have different needs and characteristics from other end users. There should be an increased emphasis on the system to optimize the experts' interaction by directing them to high-impact data tasks and reducing the total task completion time. We refer to this optimization as amplifying domain expertise. Although there is active research in making machine learning models more explainable and usable, it focuses on the final outputs of the model. However, in the clinical domain, expert involvement is needed at every pipeline step: curation, cleaning, and analysis. To this end, we review literature from the database, human-computer information, and visualization communities to demonstrate the challenges and solutions at each of the data pipeline stages. Next, we present a taxonomy of expertise amplification, which can be applied when building systems for domain experts. This includes summarization, guidance, interaction, and acceleration. Finally, we demonstrate the use of our taxonomy with a case study.
Collapse
Affiliation(s)
| | - Arnab Nandi
- The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
18
|
A Feasibility Study of Map-Based Dashboard for Spatiotemporal Knowledge Acquisition and Analysis. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9110636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Map-based dashboards are among the most popular tools that support the viewing and understanding of a large amount of geo-data with complex relations. In spite of many existing design examples, little is known about their impacts on users and whether they match the information demand and expectations of target users. The authors first designed a novel map-based dashboard to support their target users’ spatiotemporal knowledge acquisition and analysis, and then conducted an experiment to assess the feasibility of the proposed dashboard. The experiment consists of eye-tracking, benchmark tasks, and interviews. A total of 40 participants were recruited for the experiment. The results have verified the effectiveness and efficiency of the proposed map-based dashboard in supporting the given tasks. At the same time, the experiment has revealed a number of aspects for improvement related to the layout design, the labeling of multiple panels and the integration of visual analytical elements in map-based dashboards, as well as future user studies.
Collapse
|
19
|
Qu D, Lin X, Ren K, Liu Q, Zhang H. AirExplorer: visual exploration of air quality data based on time-series querying. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00683-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Dai H, Tao Y, Lin H. Visual analytics of urban transportation from a bike-sharing and taxi perspective. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00673-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Zhuo L, Li K, Li H, Peng J, Li K. An online and generalized non-negativity constrained model for large-scale sparse tensor estimation on multi-GPU. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
MAP-Vis: A Distributed Spatio-Temporal Big Data Visualization Framework Based on a Multi-Dimensional Aggregation Pyramid Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the exploration and visualization of big spatio-temporal data, massive volume poses a number of challenges to the achievement of interactive visualization, including large memory consumption, high rendering delay, and poor visual effects. Research has shown that the development of distributed computing frameworks provides a feasible solution for big spatio-temporal data management and visualization. Accordingly, to address these challenges, this paper adopts a proprietary pre-processing visualization scheme and designs and implements a highly scalable distributed visual analysis framework, especially targeted at massive point-type datasets. Firstly, we propose a generic multi-dimensional aggregation pyramid (MAP) model based on two well-known graphics concepts, namely the Spatio-temporal Cube and 2D Tile Pyramid. The proposed MAP model can support the simultaneous hierarchical aggregation of time, space, and attributes, and also later transformation of the derived aggregates into discrete key-value pairs for scalable storage and efficient retrieval. Using the generated MAP datasets, we develop an open-source distributed visualization framework (MAP-Vis). In MAP-Vis, a high-performance Spark cluster is used as a parallel preprocessing platform, while distributed HBase is used as the massive storage for the generated MAP data. The client of MAP-Vis provides a variety of correlated visualization views, including heat map, time series, and attribute histogram. Four open datasets, with record numbers ranging from the millions to the tens of billions, are chosen for system demonstration and performance evaluation. The experimental results demonstrate that MAP-Vis can achieve millisecond-level query response and support efficient interactive visualization under different queries on the space, time, and attribute dimensions.
Collapse
|
23
|
Shi X, Lv F, Seng D, Xing B, Chen B. Visual exploration of mobility dynamics based on multi-source mobility datasets and POI information. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
OccVis: a visual analytics system for occultation data. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-018-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Weng D, Chen R, Deng Z, Wu F, Chen J, Wu Y. SRVis: Towards Better Spatial Integration in Ranking Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:459-469. [PMID: 30188825 DOI: 10.1109/tvcg.2018.2865126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interactive ranking techniques have substantially promoted analysts' ability in making judicious and informed decisions effectively based on multiple criteria. However, the existing techniques cannot satisfactorily support the analysis tasks involved in ranking large-scale spatial alternatives, such as selecting optimal locations for chain stores, where the complex spatial contexts involved are essential to the decision-making process. Limitations observed in the prior attempts of integrating rankings with spatial contexts motivate us to develop a context-integrated visual ranking technique. Based on a set of generic design requirements we summarized by collaborating with domain experts, we propose SRVis, a novel spatial ranking visualization technique that supports efficient spatial multi-criteria decision-making processes by addressing three major challenges in the aforementioned context integration, namely, a) the presentation of spatial rankings and contexts, b) the scalability of rankings' visual representations, and c) the analysis of context-integrated spatial rankings. Specifically, we encode massive rankings and their cause with scalable matrix-based visualizations and stacked bar charts based on a novel two-phase optimization framework that minimizes the information loss, and the flexible spatial filtering and intuitive comparative analysis are adopted to enable the in-depth evaluation of the rankings and assist users in selecting the best spatial alternative. The effectiveness of the proposed technique has been evaluated and demonstrated with an empirical study of optimization methods, two case studies, and expert interviews.
Collapse
|
26
|
Wu Y, Xie X, Wang J, Deng D, Liang H, Zhang H, Cheng S, Chen W. ForVizor: Visualizing Spatio-Temporal Team Formations in Soccer. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:65-75. [PMID: 30136977 DOI: 10.1109/tvcg.2018.2865041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Regarded as a high-level tactic in soccer, a team formation assigns players different tasks and indicates their active regions on the pitch, thereby influencing the team performance significantly. Analysis of formations in soccer has become particularly indispensable for soccer analysts. However, formations of a team are intrinsically time-varying and contain inherent spatial information. The spatio-temporal nature of formations and other characteristics of soccer data, such as multivariate features, make analysis of formations in soccer a challenging problem. In this study, we closely worked with domain experts to characterize domain problems of formation analysis in soccer and formulated several design goals. We design a novel spatio-temporal visual representation of changes in team formation, allowing analysts to visually analyze the evolution of formations and track the spatial flow of players within formations over time. Based on the new design, we further design and develop ForVizor, a visual analytics system, which empowers users to track the spatio-temporal changes in formation and understand how and why such changes occur. With ForVizor, domain experts conduct formation analysis of two games. Analysis results with insights and useful feedback are summarized in two case studies.
Collapse
|