1
|
Liu Z, Chen C, Hooker J. Manipulable Semantic Components: A Computational Representation of Data Visualization Scenes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:732-742. [PMID: 39255155 DOI: 10.1109/tvcg.2024.3456296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Various data visualization applications such as reverse engineering and interactive authoring require a vocabulary that describes the structure of visualization scenes and the procedure to manipulate them. A few scene abstractions have been proposed, but they are restricted to specific applications for a limited set of visualization types. A unified and expressive model of data visualization scenes for different applications has been missing. To fill this gap, we present Manipulable Semantic Components (MSC), a computational representation of data visualization scenes, to support applications in scene understanding and augmentation. MSC consists of two parts: a unified object model describing the structure of a visualization scene in terms of semantic components, and a set of operations to generate and modify the scene components. We demonstrate the benefits of MSC in three applications: visualization authoring, visualization deconstruction and reuse, and animation specification.
Collapse
|
2
|
Mildau K, Ehlers H, Meisenburg M, Del Pup E, Koetsier RA, Torres Ortega LR, de Jonge NF, Singh KS, Ferreira D, Othibeng K, Tugizimana F, Huber F, van der Hooft JJJ. Effective data visualization strategies in untargeted metabolomics. Nat Prod Rep 2024. [PMID: 39620439 PMCID: PMC11610048 DOI: 10.1039/d4np00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 12/11/2024]
Abstract
Covering: 2014 to 2023 for metabolomics, 2002 to 2023 for information visualizationLC-MS/MS-based untargeted metabolomics is a rapidly developing research field spawning increasing numbers of computational metabolomics tools assisting researchers with their complex data processing, analysis, and interpretation tasks. In this article, we review the entire untargeted metabolomics workflow from the perspective of information visualization, visual analytics and visual data integration. Data visualization is a crucial step at every stage of the metabolomics workflow, where it provides core components of data inspection, evaluation, and sharing capabilities. However, due to the large number of available data analysis tools and corresponding visualization components, it is hard for both users and developers to get an overview of what is already available and which tools are suitable for their analysis. In addition, there is little cross-pollination between the fields of data visualization and metabolomics, leaving visual tools to be designed in a secondary and mostly ad hoc fashion. With this review, we aim to bridge the gap between the fields of untargeted metabolomics and data visualization. First, we introduce data visualization to the untargeted metabolomics field as a topic worthy of its own dedicated research, and provide a primer on cutting-edge visualization research into data visualization for both researchers as well as developers active in metabolomics. We extend this primer with a discussion of best practices for data visualization as they have emerged from data visualization studies. Second, we provide a practical roadmap to the visual tool landscape and its use within the untargeted metabolomics field. Here, for several computational analysis stages within the untargeted metabolomics workflow, we provide an overview of commonly used visual strategies with practical examples. In this context, we will also outline promising areas for further research and development. We end the review with a set of recommendations for developers and users on how to make the best use of visualizations for more effective and transparent communication of results.
Collapse
Affiliation(s)
- Kevin Mildau
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Henry Ehlers
- Visualization Group, Institute of Visual Computing and Human-Centered Technology, TU Wien, Vienna, Austria.
| | - Mara Meisenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Elena Del Pup
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Robert A Koetsier
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | | | - Niek F de Jonge
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Maastricht University Faculty of Science and Engineering, Plant Functional Genomics Maastricht, Limburg, The Netherlands
- Faculty of Environment, Science and Economy, University of Exeter, Penryl Cornwall, UK
| | | | - Kgalaletso Othibeng
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Florian Huber
- Centre for Digitalisation and Digitality, Düsseldorf University of Applied Sciences, Düsseldorf, Germany
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Chen Q, Cao S, Wang J, Cao N. How Does Automation Shape the Process of Narrative Visualization: A Survey of Tools. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4429-4448. [PMID: 37030780 DOI: 10.1109/tvcg.2023.3261320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, narrative visualization has gained much attention. Researchers have proposed different design spaces for various narrative visualization genres and scenarios to facilitate the creation process. As users' needs grow and automation technologies advance, increasingly more tools have been designed and developed. In this study, we summarized six genres of narrative visualization (annotated charts, infographics, timelines & storylines, data comics, scrollytelling & slideshow, and data videos) based on previous research and four types of tools (design spaces, authoring tools, ML/AI-supported tools and ML/AI-generator tools) based on the intelligence and automation level of the tools. We surveyed 105 papers and tools to study how automation can progressively engage in visualization design and narrative processes to help users easily create narrative visualizations. This research aims to provide an overview of current research and development in the automation involvement of narrative visualization tools. We discuss key research problems in each category and suggest new opportunities to encourage further research in the related domain.
Collapse
|
4
|
Shi Y, Liu P, Chen S, Sun M, Cao N. Supporting Expressive and Faithful Pictorial Visualization Design with Visual Style Transfer. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:236-246. [PMID: 36155439 DOI: 10.1109/tvcg.2022.3209486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pictorial visualizations portray data with figurative messages and approximate the audience to the visualization. Previous research on pictorial visualizations has developed authoring tools or generation systems, but their methods are restricted to specific visualization types and templates. Instead, we propose to augment pictorial visualization authoring with visual style transfer, enabling a more extensible approach to visualization design. To explore this, our work presents Vistylist, a design support tool that disentangles the visual style of a source pictorial visualization from its content and transfers the visual style to one or more intended pictorial visualizations. We evaluated Vistylist through a survey of example pictorial visualizations, a controlled user study, and a series of expert interviews. The results of our evaluation indicated that Vistylist is useful for creating expressive and faithful pictorial visualizations.
Collapse
|
5
|
Wu A, Wang Y, Zhou M, He X, Zhang H, Qu H, Zhang D. MultiVision: Designing Analytical Dashboards with Deep Learning Based Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:162-172. [PMID: 34587058 DOI: 10.1109/tvcg.2021.3114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We contribute a deep-learning-based method that assists in designing analytical dashboards for analyzing a data table. Given a data table, data workers usually need to experience a tedious and time-consuming process to select meaningful combinations of data columns for creating charts. This process is further complicated by the needs of creating dashboards composed of multiple views that unveil different perspectives of data. Existing automated approaches for recommending multiple-view visualizations mainly build on manually crafted design rules, producing sub-optimal or irrelevant suggestions. To address this gap, we present a deep learning approach for selecting data columns and recommending multiple charts. More importantly, we integrate the deep learning models into a mixed-initiative system. Our model could make recommendations given optional user-input selections of data columns. The model, in turn, learns from provenance data of authoring logs in an offline manner. We compare our deep learning model with existing methods for visualization recommendation and conduct a user study to evaluate the usefulness of the system.
Collapse
|
6
|
Ying L, Tangl T, Luo Y, Shen L, Xie X, Yu L, Wu Y. GlyphCreator: Towards Example-based Automatic Generation of Circular Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:400-410. [PMID: 34596552 DOI: 10.1109/tvcg.2021.3114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.
Collapse
|
7
|
Li H, Wang Y, Zhang S, Song Y, Qu H. KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:195-205. [PMID: 34587080 DOI: 10.1109/tvcg.2021.3114863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However, existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended, limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules. We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert interviews. The results demonstrate the effectiveness of our approach.
Collapse
|
8
|
Cui W, Wang J, Huang H, Wang Y, Lin CY, Zhang H, Zhang D. A Mixed-Initiative Approach to Reusing Infographic Charts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:173-183. [PMID: 34699361 DOI: 10.1109/tvcg.2021.3114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Infographic bar charts have been widely adopted for communicating numerical information because of their attractiveness and memorability. However, these infographics are often created manually with general tools, such as PowerPoint and Adobe Illustrator, and merely composed of primitive visual elements, such as text blocks and shapes. With the absence of chart models, updating or reusing these infographics requires tedious and error-prone manual edits. In this paper, we propose a mixed-initiative approach to mitigate this pain point. On one hand, machines are adopted to perform precise and trivial operations, such as mapping numerical values to shape attributes and aligning shapes. On the other hand, we rely on humans to perform subjective and creative tasks, such as changing embellishments or approving the edits made by machines. We encapsulate our technique in a PowerPoint add-in prototype and demonstrate the effectiveness by applying our technique on a diverse set of infographic bar chart examples.
Collapse
|
9
|
Qian C, Sun S, Cui W, Lou JG, Zhang H, Zhang D. Retrieve-Then-Adapt: Example-based Automatic Generation for Proportion-related Infographics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:443-452. [PMID: 33079666 DOI: 10.1109/tvcg.2020.3030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infographic is a data visualization technique which combines graphic and textual descriptions in an aesthetic and effective manner. Creating infographics is a difficult and time-consuming process which often requires significant attempts and adjustments even for experienced designers, not to mention novice users with limited design expertise. Recently, a few approaches have been proposed to automate the creation process by applying predefined blueprints to user information. However, predefined blueprints are often hard to create, hence limited in volume and diversity. In contrast, good infogrpahics have been created by professionals and accumulated on the Internet rapidly. These online examples often represent a wide variety of design styles, and serve as exemplars or inspiration to people who like to create their own infographics. Based on these observations, we propose to generate infographics by automatically imitating examples. We present a two-stage approach, namely retrieve-then-adapt. In the retrieval stage, we index online examples by their visual elements. For a given user information, we transform it to a concrete query by sampling from a learned distribution about visual elements, and then find appropriate examples in our example library based on the similarity between example indexes and the query. For a retrieved example, we generate an initial drafts by replacing its content with user information. However, in many cases, user information cannot be perfectly fitted to retrieved examples. Therefore, we further introduce an adaption stage. Specifically, we propose a MCMC-like approach and leverage recursive neural networks to help adjust the initial draft and improve its visual appearance iteratively, until a satisfactory result is obtained. We implement our approach on widely-used proportion-related infographics, and demonstrate its effectiveness by sample results and expert reviews.
Collapse
|
10
|
Chen X, Zeng W, Lin Y, Ai-Maneea HM, Roberts J, Chang R. Composition and Configuration Patterns in Multiple-View Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1514-1524. [PMID: 33048683 DOI: 10.1109/tvcg.2020.3030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple-view visualization (MV) is a layout design technique often employed to help users see a large number of data attributes and values in a single cohesive representation. Because of its generalizability, the MV design has been widely adopted by the visualization community to help users examine and interact with large, complex, and high-dimensional data. However, although ubiquitous, there has been little work to categorize and analyze MVs in order to better understand its design space. As a result, there has been little to no guideline in how to use the MV design effectively. In this paper, we present an in-depth study of how MVs are designed in practice. We focus on two fundamental measures of multiple-view patterns: composition, which quantifies what view types and how many are there; and configuration, which characterizes spatial arrangement of view layouts in the display space. We build a new dataset containing 360 images of MVs collected from IEEE VIS, EuroVis, and PacificVis publications 2011 to 2019, and make fine-grained annotations of view types and layouts for these visualization images. From this data we conduct composition and configuration analyses using quantitative metrics of term frequency and layout topology. We identify common practices around MVs, including relationship of view types, popular view layouts, and correlation between view types and layouts. We combine the findings into a MV recommendation system, providing interactive tools to explore the design space, and support example-based design.
Collapse
|
11
|
Joshi M, Gupta L. Preparing Infographics for Post-publication Promotion of Research on Social Media. J Korean Med Sci 2021; 36:e41. [PMID: 33527783 PMCID: PMC7850859 DOI: 10.3346/jkms.2021.36.e41] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infographics are pictorial representations of information intended to disseminate information quickly and clearly. Their use has increased in the past decade due to wider and easy access to technology. Infographics are being increasingly used for public advisories, disseminating protocols for healthcare professionals, and post-publication promotion of research. Due to their potential to rapidly reach a vast audience, these have gained larger importance during the coronavirus disease 2019 pandemic. Two key aspects determine the quality of infographics, content and visual appeal. In this brief, the authors attempt to delineate the key aspects of designing an infographic, and the freeware that they may have at their disposal for creating informative, appealing, and useful infographics.
Collapse
Affiliation(s)
- Mrudula Joshi
- Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Latika Gupta
- Department Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
12
|
Fu J, Zhu B, Cui W, Ge S, Wang Y, Zhang H, Huang H, Tang Y, Zhang D, Ma X. Chartem: Reviving Chart Images with Data Embedding. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:337-346. [PMID: 33315567 DOI: 10.1109/tvcg.2020.3030351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed to automatically extract information from chart images with computer vision and machine learning techniques. Although they have achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.
Collapse
|