1
|
Li X, Guo L. Motion Object Detection Model for Electronic Referee Scoring in Table Tennis Events. PLoS One 2025; 20:e0319558. [PMID: 40106401 PMCID: PMC11922261 DOI: 10.1371/journal.pone.0319558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
As a sport widely played around the world, the fairness and enjoyment of table tennis competitions have received increasing attention. Traditional table tennis referees rely on manual judgment, which has problems such as strong subjectivity and high misjudgment rate. Therefore, this study combines the background subtraction method and the Kalman filtering algorithm. It processes missing images in videos to propose a motion object detection and motion estimation model for table tennis events. The test results showed that the average loss value of the model was only 0.33, the average detection accuracy in the 20-category data set was 0.94, and the average detection time was 103.9 ms. In the simulation test, the model achieved the best trajectory prediction accuracy in both complete video images and partially missing information video images. The maximum difference in horizontal and vertical directions was 10.7 and 4.3 pixels, respectively, and the maximum error in three-dimensional coordinates was (3.3, 2.8, 2.1). The table tennis target detection and motion estimation model has high detection accuracy and stability, providing new ideas and methods for the development of electronic referee systems in table tennis competitions.
Collapse
Affiliation(s)
- Xiaoke Li
- Faculty of Physical Education, Pingdingshan University, Pingdingshan, China
| | - Lili Guo
- Faculty of Physical Education, Pingdingshan University, Pingdingshan, China
| |
Collapse
|
2
|
Zhou Z, Ye L, Cai L, Wang L, Wang Y, Wang Y, Chen W, Wang Y. ConceptThread: Visualizing Threaded Concepts in MOOC Videos. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1354-1370. [PMID: 38300781 DOI: 10.1109/tvcg.2024.3361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Massive Open Online Courses (MOOCs) platforms are becoming increasingly popular in recent years. Online learners need to watch the whole course video on MOOC platforms to learn the underlying new knowledge, which is often tedious and time-consuming due to the lack of a quick overview of the covered knowledge and their structures. In this article, we propose ConceptThread, a visual analytics approach to effectively show the concepts and the relations among them to facilitate effective online learning. Specifically, given that the majority of MOOC videos contain slides, we first leverage video processing and speech analysis techniques, including shot recognition, speech recognition and topic modeling, to extract core knowledge concepts and construct the hierarchical and temporal relations among them. Then, by using a metaphor of thread, we present a novel visualization to intuitively display the concepts based on video sequential flow, and enable learners to perform interactive visual exploration of concepts. We conducted a quantitative study, two case studies, and a user study to extensively evaluate ConceptThread. The results demonstrate the effectiveness and usability of ConceptThread in providing online learners with a quick understanding of the knowledge content of MOOC videos.
Collapse
|
3
|
Yao L, Bucchieri F, McArthur V, Bezerianos A, Isenberg P. User Experience of Visualizations in Motion: A Case Study and Design Considerations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:174-184. [PMID: 39269804 DOI: 10.1109/tvcg.2024.3456319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We present a systematic review, an empirical study, and a first set of considerations for designing visualizations in motion, derived from a concrete scenario in which these visualizations were used to support a primary task. In practice, when viewers are confronted with embedded visualizations, they often have to focus on a primary task and can only quickly glance at a visualization showing rich, often dynamically updated, information. As such, the visualizations must be designed so as not to distract from the primary task, while at the same time being readable and useful for aiding the primary task. For example, in games, players who are engaged in a battle have to look at their enemies but also read the remaining health of their own game character from the health bar over their character's head. Many trade-ofts are possible in the design of embedded visualizations in such dynamic scenarios, which we explore in-depth in this paper with a focus on user experience. We use video games as an example of an application context with a rich existing set of visualizations in motion. We begin our work with a systematic review of in-game visualizations in motion. Next, we conduct an empirical user study to investigate how different embedded visualizations in motion designs impact user experience. We conclude with a set of considerations and trade-offs for designing visualizations in motion more broadly as derived from what we learned about video games. All supplemental materials of this paper are available at osf.io/3v8wm/.
Collapse
|
4
|
Liu Z, Xie X, He M, Zhao W, Wu Y, Cheng L, Zhang H, Wu Y. Smartboard: Visual Exploration of Team Tactics with LLM Agent. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:23-33. [PMID: 39255129 DOI: 10.1109/tvcg.2024.3456200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Tactics play an important role in team sports by guiding how players interact on the field. Both sports fans and experts have a demand for analyzing sports tactics. Existing approaches allow users to visually perceive the multivariate tactical effects. However, these approaches require users to experience a complex reasoning process to connect the multiple interactions within each tactic to the final tactical effect. In this work, we collaborate with basketball experts and propose a progressive approach to help users gain a deeper understanding of how each tactic works and customize tactics on demand. Users can progressively sketch on a tactic board, and a coach agent will simulate the possible actions in each step and present the simulation to users with facet visualizations. We develop an extensible framework that integrates large language models (LLMs) and visualizations to help users communicate with the coach agent with multimodal inputs. Based on the framework, we design and develop Smartboard, an agent-based interactive visualization system for fine-grained tactical analysis, especially for play design. Smartboard provides users with a structured process of setup, simulation, and evolution, allowing for iterative exploration of tactics based on specific personalized scenarios. We conduct case studies based on real-world basketball datasets to demonstrate the effectiveness and usefulness of our system.
Collapse
|
5
|
Lee C, Lin T, Pfister H, Zhu-Tian C. Sportify: Question Answering with Embedded Visualizations and Personified Narratives for Sports Video. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:12-22. [PMID: 39255116 DOI: 10.1109/tvcg.2024.3456332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
As basketball's popularity surges, fans often find themselves confused and overwhelmed by the rapid game pace and complexity. Basketball tactics, involving a complex series of actions, require substantial knowledge to be fully understood. This complexity leads to a need for additional information and explanation, which can distract fans from the game. To tackle these challenges, we present Sportify, a Visual Question Answering system that integrates narratives and embedded visualization for demystifying basketball tactical questions, aiding fans in understanding various game aspects. We propose three novel action visualizations (i.e., Pass, Cut, and Screen) to demonstrate critical action sequences. To explain the reasoning and logic behind players' actions, we leverage a large-language model (LLM) to generate narratives. We adopt a storytelling approach for complex scenarios from both first and third-person perspectives, integrating action visualizations. We evaluated Sportify with basketball fans to investigate its impact on understanding of tactics, and how different personal perspectives of narratives impact the understanding of complex tactic with action visualizations. Our evaluation with basketball fans demonstrates Sportify's capability to deepen tactical insights and amplify the viewing experience. Furthermore, third-person narration assists people in getting in-depth game explanations while first-person narration enhances fans' game engagement.
Collapse
|
6
|
Wang J, Ma J, Zhou Z, Xie X, Zhang H, Wu Y, Qu H. TacPrint: Visualizing the Biomechanical Fingerprint in Table Tennis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2955-2967. [PMID: 38619948 DOI: 10.1109/tvcg.2024.3388555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Table tennis is a sport that demands high levels of technical proficiency and body coordination from players. Biomechanical fingerprints can provide valuable insights into players' habitual movement patterns and characteristics, allowing them to identify and improve technical weaknesses. Despite the potential, few studies have developed effective methods for generating such fingerprints. To address this gap, we propose TacPrint, a framework for generating a biomechanical fingerprint for each player. TacPrint leverages machine learning techniques to extract comprehensive features from biomechanics data collected by inertial measurement units (IMU) and employs the attention mechanism to enhance model interpretability. After generating fingerprints, TacPrint provides a visualization system to facilitate the exploration and investigation of these fingerprints. In order to validate the effectiveness of the framework, we designed an experiment to evaluate the model's performance and conducted a case study with the system. The results of our experiment demonstrated the high accuracy and effectiveness of the model. Additionally, we discussed the potential of TacPrint to be extended to other sports.
Collapse
|
7
|
Yao L, Vuillemot R, Bezerianos A, Isenberg P. Designing for Visualization in Motion: Embedding Visualizations in Swimming Videos. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1821-1836. [PMID: 38090861 DOI: 10.1109/tvcg.2023.3341990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
We report on challenges and considerations for supporting design processes for visualizations in motion embedded in sports videos. We derive our insights from analyzing swimming race visualizations and motion-related data, building a technology probe, as well as a study with designers. Understanding how to design situated visualizations in motion is important for a variety of contexts. Competitive sports coverage, in particular, increasingly includes information on athlete or team statistics and records. Although moving visual representations attached to athletes or other targets are starting to appear, systematic investigations on how to best support their design process in the context of sports videos are still missing. Our work makes several contributions in identifying opportunities for visualizations to be added to swimming competition coverage but, most importantly, in identifying requirements and challenges for designing situated visualizations in motion. Our investigations include the analysis of a survey with swimming enthusiasts on their motion-related information needs, an ideation workshop to collect designs and elicit design challenges, the design of a technology probe that allows to create embedded visualizations in motion based on real data (Fig. 1), and an evaluation with visualization designers that aimed to understand the benefits of designing directly on videos.
Collapse
|
8
|
Xiong K, Fu S, Ding G, Luo Z, Yu R, Chen W, Bao H, Wu Y. Visualizing the Scripts of Data Wrangling With Somnus. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2950-2964. [PMID: 35077364 DOI: 10.1109/tvcg.2022.3144975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data workers use various scripting languages for data transformation, such as SAS, R, and Python. However, understanding intricate code pieces requires advanced programming skills, which hinders data workers from grasping the idea of data transformation at ease. Program visualization is beneficial for debugging and education and has the potential to illustrate transformations intuitively and interactively. In this article, we explore visualization design for demonstrating the semantics of code pieces in the context of data transformation. First, to depict individual data transformations, we structure a design space by two primary dimensions, i.e., key parameters to encode and possible visual channels to be mapped. Then, we derive a collection of 23 glyphs that visualize the semantics of transformations. Next, we design a pipeline, named Somnus, that provides an overview of the creation and evolution of data tables using a provenance graph. At the same time, it allows detailed investigation of individual transformations. User feedback on Somnus is positive. Our study participants achieved better accuracy with less time using Somnus, and preferred it over carefully-crafted textual description. Further, we provide two example applications to demonstrate the utility and versatility of Somnus.
Collapse
|
9
|
Lan J, Zhou Z, Wang J, Zhang H, Xie X, Wu Y. SimuExplorer: Visual Exploration of Game Simulation in Table Tennis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1719-1732. [PMID: 34818191 DOI: 10.1109/tvcg.2021.3130422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We propose SimuExplorer, a visualization system to help analysts explore how player behaviors impact scoring rates in table tennis. Such analysis is indispensable for analysts and coaches, who aim to formulate training plans that can help players improve. However, it is challenging to identify the impacts of individual behaviors, as well as to understand how these impacts are generated and accumulated gradually over the course of a game. To address these challenges, we worked closely with experts who work for a top national table tennis team to design SimuExplorer. The SimuExplorer system integrates a Markov chain model to simulate individual and cumulative impacts of particular behaviors. It then provides flow and matrix views to help users visualize and interpret these impacts. We demonstrate the usefulness of the system with case studies and expert interviews. The experts think highly of the system and have obtained insights into players' behaviors using it.
Collapse
|
10
|
Chen Z, Yang Q, Xie X, Beyer J, Xia H, Wu Y, Pfister H. Sporthesia: Augmenting Sports Videos Using Natural Language. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:918-928. [PMID: 36197856 DOI: 10.1109/tvcg.2022.3209497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.
Collapse
|
11
|
Wang J, Ma J, Hu K, Zhou Z, Zhang H, Xie X, Wu Y. Tac-Trainer: A Visual Analytics System for IoT-based Racket Sports Training. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:951-961. [PMID: 36179004 DOI: 10.1109/tvcg.2022.3209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional racket sports training highly relies on coaches' knowledge and experience, leading to biases in the guidance. To solve this problem, smart wearable devices based on Internet of Things technology (IoT) have been extensively investigated to support data-driven training. Considerable studies introduced methods to extract valuable information from the sensor data collected by IoT devices. However, the information cannot provide actionable insights for coaches due to the large data volume and high data dimensions. We proposed an IoT + VA framework, Tac-Trainer, to integrate the sensor data, the information, and coaches' knowledge to facilitate racket sports training. Tac-Trainer consists of four components: device configuration, data interpretation, training optimization, and result visualization. These components collect trainees' kinematic data through IoT devices, transform the data into attributes and indicators, generate training suggestions, and provide an interactive visualization interface for exploration, respectively. We further discuss new research opportunities and challenges inspired by our work from two perspectives, VA for IoT and IoT for VA.
Collapse
|
12
|
Wu J, Liu D, Guo Z, Wu Y. RASIPAM: Interactive Pattern Mining of Multivariate Event Sequences in Racket Sports. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:940-950. [PMID: 36179006 DOI: 10.1109/tvcg.2022.3209452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experts in racket sports like tennis and badminton use tactical analysis to gain insight into competitors' playing styles. Many data-driven methods apply pattern mining to racket sports data - which is often recorded as multivariate event sequences - to uncover sports tactics. However, tactics obtained in this way are often inconsistent with those deduced by experts through their domain knowledge, which can be confusing to those experts. This work introduces RASIPAM, a RAcket-Sports Interactive PAttern Mining system, which allows experts to incorporate their knowledge into data mining algorithms to discover meaningful tactics interactively. RASIPAM consists of a constraint-based pattern mining algorithm that responds to the analysis demands of experts: Experts provide suggestions for finding tactics in intuitive written language, and these suggestions are translated into constraints to run the algorithm. RASIPAM further introduces a tailored visual interface that allows experts to compare the new tactics with the original ones and decide whether to apply a given adjustment. This interactive workflow iteratively progresses until experts are satisfied with all tactics. We conduct a quantitative experiment to show that our algorithm supports real-time interaction. Two case studies in tennis and in badminton respectively, each involving two domain experts, are conducted to show the effectiveness and usefulness of the system.
Collapse
|
13
|
Zhou Z, Zhang H. A Visible Analysis Approach for Table Tennis Tactical Benefit. J Sports Sci Med 2022; 21:517-527. [PMID: 36523889 PMCID: PMC9741712 DOI: 10.52082/jssm.2022.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
Tactics are one of the winning factors in table tennis matches because they can reflect the technical strength and strategies of players. However, the current evaluation method of tactics is relatively simple, and it can be difficult to distinguish the pros and cons of different tactics. To solve these issues, this study used information from 60 matches played by top-25 men's right-handed shake-hand offensive players as samples and proposed a tactical benefit algorithm and a visible evaluation model to analyse tactical performance. The model could help coaches and players find meaningful tactics quickly and easily and make reasonable comparisons between them. The results showed that 1) the numbers of tactics based on the tactical association-mining model and the L-shaped curve were 37 in the first six strokes. Among them, there were 9 selected tactics in the first to third strokes, the third to fifth strokes, and the second to fourth strokes, respectively, and 10 selected tactics in the fourth to sixth strokes. 2) The visible evaluation model of tactical benefit can determine the difference between the frequency, scoring rate, and benefit of different tactics as mapped into the model as well as quickly and effectively discover the distribution of tactics and measure the advantages and disadvantages of tactics from multiple dimensions.
Collapse
Affiliation(s)
| | - Hui Zhang
- Department of Sport Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
14
|
Yao L, Bezerianos A, Vuillemot R, Isenberg P. Visualization in Motion: A Research Agenda and Two Evaluations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3546-3562. [PMID: 35727779 DOI: 10.1109/tvcg.2022.3184993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We contribute a research agenda for visualization in motion and two experiments to understand how well viewers can read data from moving visualizations. We define visualizations in motion as visual data representations that are used in contexts that exhibit relative motion between a viewer and an entire visualization. Sports analytics, video games, wearable devices, or data physicalizations are example contexts that involve different types of relative motion between a viewer and a visualization. To analyze the opportunities and challenges for designing visualization in motion, we show example scenarios and outline a first research agenda. Motivated primarily by the prevalence of and opportunities for visualizations in sports and video games we started to investigate a small aspect of our research agenda: the impact of two important characteristics of motion-speed and trajectory on a stationary viewer's ability to read data from moving donut and bar charts. We found that increasing speed and trajectory complexity did negatively affect the accuracy of reading values from the charts and that bar charts were more negatively impacted. In practice, however, this impact was small: both charts were still read fairly accurately.
Collapse
|
15
|
Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y. Compass: Towards Better Causal Analysis of Urban Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1051-1061. [PMID: 34596550 DOI: 10.1109/tvcg.2021.3114875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
Collapse
|
16
|
Chu X, Xie X, Ye S, Lu H, Xiao H, Yuan Z, Zhu-Tian C, Zhang H, Wu Y. TIVEE: Visual Exploration and Explanation of Badminton Tactics in Immersive Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:118-128. [PMID: 34596547 DOI: 10.1109/tvcg.2021.3114861] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tactic analysis is a major issue in badminton as the effective usage of tactics is the key to win. The tactic in badminton is defined as a sequence of consecutive strokes. Most existing methods use statistical models to find sequential patterns of strokes and apply 2D visualizations such as glyphs and statistical charts to explore and analyze the discovered patterns. However, in badminton, spatial information like the shuttle trajectory, which is inherently 3D, is the core of a tactic. The lack of sufficient spatial awareness in 2D visualizations largely limited the tactic analysis of badminton. In this work, we collaborate with domain experts to study the tactic analysis of badminton in a 3D environment and propose an immersive visual analytics system, TIVEE, to assist users in exploring and explaining badminton tactics from multi-levels. Users can first explore various tactics from the third-person perspective using an unfolded visual presentation of stroke sequences. By selecting a tactic of interest, users can turn to the first-person perspective to perceive the detailed kinematic characteristics and explain its effects on the game result. The effectiveness and usefulness of TIVEE are demonstrated by case studies and an expert interview.
Collapse
|
17
|
Wu J, Liu D, Guo Z, Xu Q, Wu Y. TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:835-845. [PMID: 34587062 DOI: 10.1109/tvcg.2021.3114832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.
Collapse
|
18
|
Ying L, Tangl T, Luo Y, Shen L, Xie X, Yu L, Wu Y. GlyphCreator: Towards Example-based Automatic Generation of Circular Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:400-410. [PMID: 34596552 DOI: 10.1109/tvcg.2021.3114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.
Collapse
|
19
|
Tang J, Zhou Y, Tang T, Weng D, Xie B, Yu L, Zhang H, Wu Y. A Visualization Approach for Monitoring Order Processing in E-Commerce Warehouse. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:857-867. [PMID: 34596553 DOI: 10.1109/tvcg.2021.3114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The efficiency of warehouses is vital to e-commerce. Fast order processing at the warehouses ensures timely deliveries and improves customer satisfaction. However, monitoring, analyzing, and manipulating order processing in the warehouses in real time are challenging for traditional methods due to the sheer volume of incoming orders, the fuzzy definition of delayed order patterns, and the complex decision-making of order handling priorities. In this paper, we adopt a data-driven approach and propose OrderMonitor, a visual analytics system that assists warehouse managers in analyzing and improving order processing efficiency in real time based on streaming warehouse event data. Specifically, the order processing pipeline is visualized with a novel pipeline design based on the sedimentation metaphor to facilitate real-time order monitoring and suggest potentially abnormal orders. We also design a novel visualization that depicts order timelines based on the Gantt charts and Marey's graphs. Such a visualization helps the managers gain insights into the performance of order processing and find major blockers for delayed orders. Furthermore, an evaluating view is provided to assist users in inspecting order details and assigning priorities to improve the processing performance. The effectiveness of OrderMonitor is evaluated with two case studies on a real-world warehouse dataset.
Collapse
|
20
|
Chen Z, Ye S, Chu X, Xia H, Zhang H, Qu H, Wu Y. Augmenting Sports Videos with VisCommentator. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:824-834. [PMID: 34587045 DOI: 10.1109/tvcg.2021.3114806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualizing data in sports videos is gaining traction in sports analytics, given its ability to communicate insights and explicate player strategies engagingly. However, augmenting sports videos with such data visualizations is challenging, especially for sports analysts, as it requires considerable expertise in video editing. To ease the creation process, we present a design space that characterizes augmented sports videos at an element-level (what the constituents are) and clip-level (how those constituents are organized). We do so by systematically reviewing 233 examples of augmented sports videos collected from TV channels, teams, and leagues. The design space guides selection of data insights and visualizations for various purposes. Informed by the design space and close collaboration with domain experts, we design VisCommentator, a fast prototyping tool, to eases the creation of augmented table tennis videos by leveraging machine learning-based data extractors and design space-based visualization recommendations. With VisCommentator, sports analysts can create an augmented video by selecting the data to visualize instead of manually drawing the graphical marks. Our system can be generalized to other racket sports (e.g., tennis, badminton) once the underlying datasets and models are available. A user study with seven domain experts shows high satisfaction with our system, confirms that the participants can reproduce augmented sports videos in a short period, and provides insightful implications into future improvements and opportunities.
Collapse
|
21
|
Wang Y, Peng TQ, Lu H, Wang H, Xie X, Qu H, Wu Y. Seek for Success: A Visualization Approach for Understanding the Dynamics of Academic Careers. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:475-485. [PMID: 34587034 DOI: 10.1109/tvcg.2021.3114790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How to achieve academic career success has been a long-standing research question in social science research. With the growing availability of large-scale well-documented academic profiles and career trajectories, scholarly interest in career success has been reinvigorated, which has emerged to be an active research domain called the Science of Science (i.e., SciSci). In this study, we adopt an innovative dynamic perspective to examine how individual and social factors will influence career success over time. We propose ACSeeker, an interactive visual analytics approach to explore the potential factors of success and how the influence of multiple factors changes at different stages of academic careers. We first applied a Multi-factor Impact Analysis framework to estimate the effect of different factors on academic career success over time. We then developed a visual analytics system to understand the dynamic effects interactively. A novel timeline is designed to reveal and compare the factor impacts based on the whole population. A customized career line showing the individual career development is provided to allow a detailed inspection. To validate the effectiveness and usability of ACSeeker, we report two case studies and interviews with a social scientist and general researchers.
Collapse
|
22
|
Tang T, Wu Y, Wu Y, Yu L, Li Y. VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:846-856. [PMID: 34587029 DOI: 10.1109/tvcg.2021.3114781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Video moderation, which refers to remove deviant or explicit content from e-commerce livestreams, has become prevalent owing to social and engaging features. However, this task is tedious and time consuming due to the difficulties associated with watching and reviewing multimodal video content, including video frames and audio clips. To ensure effective video moderation, we propose VideoModerator, a risk-aware framework that seamlessly integrates human knowledge with machine insights. This framework incorporates a set of advanced machine learning models to extract the risk-aware features from multimodal video content and discover potentially deviant videos. Moreover, this framework introduces an interactive visualization interface with three views, namely, a video view, a frame view, and an audio view. In the video view, we adopt a segmented timeline and highlight high-risk periods that may contain deviant information. In the frame view, we present a novel visual summarization method that combines risk-aware features and video context to enable quick video navigation. In the audio view, we employ a storyline-based design to provide a multi-faceted overview which can be used to explore audio content. Furthermore, we report the usage of VideoModerator through a case scenario and conduct experiments and a controlled user study to validate its effectiveness.
Collapse
|
23
|
Sun G, Li T, Liang R. SurVizor: visualizing and understanding the key content of surveillance videos. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
VeLight: A 3D virtual reality tool for CT-based anatomy teaching and training. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Wang J, Cai X, Su J, Liao Y, Wu Y. What makes a scatterplot hard to comprehend: data size and pattern salience matter. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00778-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
RallyComparator: visual comparison of the multivariate and spatial stroke sequence in table tennis rally. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Jiang Q, Sun G, Dong Y, Liang R. DT2VIS: A Focus+Context Answer Generation System to Facilitate Visual Exploration of Tabular Data. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:45-56. [PMID: 34260350 DOI: 10.1109/mcg.2021.3097326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The visual analysis dialog system utilizing natural language interface is emerging as a promising data analysis tool. However, previous work mostly focused on accurately understanding the query intention of a user but not on generating answers and inducing explorations. A focus+context answer generation approach, which allows users to obtain insight and contextual information simultaneously, is proposed in this work to address the incomplete user query (i.e., input query cannot reflect all possible intentions of the user). A query recommendation algorithm, which applies the historical query information of a user to recommend a follow-up query, is also designed and implemented to provide an in-depth exploration. These ideas are implemented in a system called DT2VIS. Specific cases of utilizing DT2VIS are also provided to analyze data. Finally, the results show that DT2VIS could help users easily and efficiently reach their analysis goals in a comparative study.
Collapse
|
28
|
Zheng F, Wen J, Zhang X, Chen Y, Zhang X, Liu Y, Xu T, Chen X, Wang Y, Su W, Zhou Z. Visual abstraction of large-scale geographical point data with credible spatial interpolation. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|