1
|
Ha KS. Transglutaminase 2 in diabetes mellitus: Unraveling its multifaceted role and therapeutic implications for vascular complications. Theranostics 2024; 14:2329-2344. [PMID: 38646650 PMCID: PMC11024853 DOI: 10.7150/thno.95742] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetes, a severe metabolic disease characterized by chronic hypoglycemia, poses debilitating and life-threatening risks of microvascular and macrovascular complications, including blindness, kidney failure, heart attacks, and limb amputation. Addressing these complications is paramount, urging the development of interventions targeting diabetes-associated vascular dysfunctions. To effectively combat diabetes, a comprehensive understanding of the pathological mechanisms underlying complications and identification of precise therapeutic targets are imperative. Transglutaminase 2 (TGase2) is a multifunctional enzyme implicated in the pathogenesis of diverse diseases such as neurodegenerative disorders, fibrosis, and inflammatory conditions. TGase2 has recently emerged as a key player in both the pathogenesis and therapeutic intervention of diabetic complications. This review highlights TGase2 as a therapeutic target for diabetic complications and explores TGase2 inhibition as a promising therapeutic approach in their treatment.
Collapse
Affiliation(s)
- Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Korea
| |
Collapse
|
2
|
Lee JY, Lee YJ, Jeon HY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction. FASEB J 2019; 33:12655-12667. [PMID: 31462079 DOI: 10.1096/fj.201901358rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical trials suggested that the vascular system can remember episodes of poor glycemic control through a phenomenon known as hyperglycemic memory (HGM). HGM is associated with long-term diabetic vascular complications in type 1 and type 2 diabetes, although the molecular mechanism of that association is not clearly understood. We hypothesized that transglutaminase 2 (TGase2) and intracellular reactive oxygen species (ROS) play a key role in HGM-induced vascular dysfunction. We found that hyperglycemia induced persistent oxidative stress, expression of inflammatory adhesion molecules, and apoptosis in the aortic endothelium of HGM mice whose blood glucose levels had been normalized by insulin supplementation. TGase2 activation and ROS generation were in a vicious cycle in the aortic endothelium of HGM mice and also in human aortic endothelial cells after glucose normalization, which played a key role in the sustained expression of inflammatory adhesion molecules and apoptosis. Our findings suggest that the TGase2-ROS vicious cycle plays an important role in HGM-induced endothelial dysfunction.-Lee, J.-Y., Lee, Y.-J., Jeon, H.-Y., Han, E.-T., Park, W. S., Hong, S.-H., Kim, Y.-M., Ha, K.-S. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Jee-Yeon Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
3
|
Chern J, Lu CP, Fang Z, Chang CM, Hua KF, Chen YT, Ng CY, Chen YLS, Lam Y, Wu SH. Affinity-Driven Covalent Modulator of the Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Cascade. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jeffy Chern
- Institute of Biological Chemistry, Academia Sinica; Taiwan
- Chemical Biology and Molecular Biophysics Program; Taiwan International Graduate Program; Academia Sinica; Taipei Taiwan
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Chun-Ping Lu
- Department of Food Science; Fu Jen Catholic University; Taipei Taiwan
| | - Zhanxiong Fang
- Department of Chemistry; National University of Singapore; Singapore
| | - Ching-Ming Chang
- Chemical Biology and Molecular Biophysics Program; Taiwan International Graduate Program; Academia Sinica; Taipei Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science; National Ilan University; Ilan Taiwan
| | - Yi-Ting Chen
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Cheng Yang Ng
- Department of Chemistry; National University of Singapore; Singapore
| | - Yi-Lin Sophia Chen
- Department of Biotechnology and Animal Science; National Ilan University; Ilan Taiwan
| | - Yulin Lam
- Department of Chemistry; National University of Singapore; Singapore
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica; Taiwan
- Chemical Biology and Molecular Biophysics Program; Taiwan International Graduate Program; Academia Sinica; Taipei Taiwan
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
4
|
Chern J, Lu CP, Fang Z, Chang CM, Hua KF, Chen YT, Ng CY, Chen YLS, Lam Y, Wu SH. Affinity-Driven Covalent Modulator of the Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Cascade. Angew Chem Int Ed Engl 2018; 57:7040-7045. [DOI: 10.1002/anie.201801618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffy Chern
- Institute of Biological Chemistry, Academia Sinica; Taiwan
- Chemical Biology and Molecular Biophysics Program; Taiwan International Graduate Program; Academia Sinica; Taipei Taiwan
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Chun-Ping Lu
- Department of Food Science; Fu Jen Catholic University; Taipei Taiwan
| | - Zhanxiong Fang
- Department of Chemistry; National University of Singapore; Singapore
| | - Ching-Ming Chang
- Chemical Biology and Molecular Biophysics Program; Taiwan International Graduate Program; Academia Sinica; Taipei Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science; National Ilan University; Ilan Taiwan
| | - Yi-Ting Chen
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Cheng Yang Ng
- Department of Chemistry; National University of Singapore; Singapore
| | - Yi-Lin Sophia Chen
- Department of Biotechnology and Animal Science; National Ilan University; Ilan Taiwan
| | - Yulin Lam
- Department of Chemistry; National University of Singapore; Singapore
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica; Taiwan
- Chemical Biology and Molecular Biophysics Program; Taiwan International Graduate Program; Academia Sinica; Taipei Taiwan
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
5
|
Kunjithapatham R, Geschwind JF, Devine L, Boronina TN, O'Meally RN, Cole RN, Torbenson MS, Ganapathy-Kanniappan S. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J Proteome Res 2015; 14:1645-56. [PMID: 25734908 DOI: 10.1021/acs.jproteome.5b00089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.
Collapse
Affiliation(s)
- Rani Kunjithapatham
- †Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Jean-Francois Geschwind
- †Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Lauren Devine
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tatiana N Boronina
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N O'Meally
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael S Torbenson
- §Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Shanmugasundaram Ganapathy-Kanniappan
- †Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
6
|
Lazarev VF, Benken KA, Semenyuk PI, Sarantseva SV, Bolshakova OI, Mikhaylova ER, Muronetz VI, Guzhova IV, Margulis BA. GAPDH binders as potential drugs for the therapy of polyglutamine diseases: Design of a new screening assay. FEBS Lett 2015; 589:581-7. [DOI: 10.1016/j.febslet.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
7
|
Margulis BA, Vigont V, Lazarev VF, Kaznacheyeva EV, Guzhova IV. Pharmacological protein targets in polyglutamine diseases: mutant polypeptides and their interactors. FEBS Lett 2013; 587:1997-2007. [PMID: 23684638 DOI: 10.1016/j.febslet.2013.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
Polyglutamine diseases are a group of pathologies affecting different parts of the brain and causing dysfunction and atrophy of certain neural cell populations. These diseases stem from mutations in various cellular genes that result in the synthesis of proteins with extended polyglutamine tracts. In particular, this concerns huntingtin, ataxins, and androgen receptor. These mutant proteins can form oligomers, aggregates, and, finally, aggresomes with distinct functions and different degrees of cytotoxicity. In this review, we analyze the effects of different forms of polyQ proteins on other proteins and their functions, which are considered as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
8
|
Jeitner TM, Battaile K, Cooper AJL. γ-Glutamylamines and neurodegenerative diseases. Amino Acids 2012; 44:129-42. [PMID: 22407484 DOI: 10.1007/s00726-011-1209-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Transglutaminases catalyze the formation of γ-glutamylamines utilizing glutamyl residues and amine-bearing compounds such as lysyl residues and polyamines. These γ-glutamylamines can be released from proteins by proteases in an intact form. The free γ-glutamylamines can be catabolized to 5-oxo-L-proline and the free amine by γ-glutamylamine cyclotransferase. Free γ-glutamylamines, however, accumulate in the CSF and affected areas of Huntington Disease brain. This observation suggests transglutaminase-derived γ-glutamylamines may play a more significant role in neurodegeneration than previously thought. The following monograph reviews the metabolism of γ-glutamylamines and examines the possibility that these species contribute to neurodegeneration.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Neurosciences, Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, USA.
| | | | | |
Collapse
|
9
|
The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex. Amino Acids 2011; 44:227-34. [PMID: 22086212 DOI: 10.1007/s00726-011-1144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Subunit T of the native muscle troponin complex is a recognised substrate of transglutaminase both in vitro and in situ with formation of isopeptide bonds. Using a proteomic approach, we have now determined the precise site of in vitro labelling of the protein. A preparation of troponin purified from ether powder from mixed rabbit skeletal muscles was employed as transglutaminase substrate. The only isoform TnT2F present in our preparation was recognised as acyl-substrate by human type 2 transglutaminase which specifically modified glutamine 13 in the N-terminal region. During the reaction, the troponin protein complex was polymerized. Results are discussed in relation to the structure of the troponin T subunit, in the light of the role of troponins in skeletal and cardiac muscle diseases, and to the rules governing glutamine side chain selection by tissue transglutaminase.
Collapse
|
10
|
Guzhova IV, Lazarev VF, Kaznacheeva AV, Ippolitova MV, Muronetz VI, Kinev AV, Margulis BA. Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum Mol Genet 2011; 20:3953-63. [PMID: 21775503 DOI: 10.1093/hmg/ddr314] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The key feature of polyglutamine aggregates accumulating in the course of Huntington disease (HD) is their resistance to protein denaturants, and to date only chaperones are proved to prevent mutant protein aggregation. It was suggested that expanded polyglutamine chains (polyQ) of mutant huntingtin are cross-linked to other proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Here we clarify the roles of GAPDH and molecular chaperone Hsp70 in the formation of sodium dodecyl sulfate (SDS)-insoluble polyQ aggregates. First, the addition of pure GAPDH was found to enhance the aggregation of polyQ in a cell-free model of HD. Secondly, the immunodepletion of GAPDH dose-dependently decreased polyQ aggregation. Finally, siRNA-mediated inhibition of GAPDH protein in SK-N-SH neuroblastoma cells has also reduced the aggregation of cellular polyQ. Regulated over-expression of Hsp70 decreased the amount of GAPDH associated with SDS-insoluble polyQ aggregates. Physical association of Hsp70 and GAPDH in SK-N-SH cells was shown by reciprocal immunoprecipitation and confocal microscopy. Pure Hsp70 dose-dependently inhibited the formation of polyQ aggregates in cell-free model of HD by sequestering both GAPDH and polyQ. We demonstrated that Hsp70 binds to polyQ in adenosine triphosphate-dependent manner, which suggests that Hsp70 exerts a chaperoning activity in the course of this interaction. Binding of Hsp70 to GAPDH was nicotinamide adenine dinucleotide-dependent suggesting another type of association. Based on our findings, we conclude that Hsp70 protects cells in HD by removing/sequestering two intrinsic components of protein aggregates: the polyQ itself and GAPDH. We propose that GAPDH might be an important target for pharmacological treatment of HD and other polyglutamine expansion-related diseases.
Collapse
Affiliation(s)
- Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Nemes Z, Petrovski G, Fésüs L. Tools for the detection and quantitation of protein transglutamination. Anal Biochem 2005; 342:1-10. [PMID: 15958174 DOI: 10.1016/j.ab.2004.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zoltan Nemes
- Department of Psychiatry, Medical and Health Sciences Center, University of Debrecen, H-4012 Debrecen, Hungary.
| | | | | |
Collapse
|
12
|
Esposito C, Caputo I. Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 2005; 272:615-31. [PMID: 15670145 DOI: 10.1111/j.1742-4658.2004.04476.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transglutaminases form a large family of intracellular and extracellular enzymes that catalyse the Ca2+-dependent post-translational modification of proteins. Despite significant advances in our understanding of the biological role of most mammalian transglutaminase isoforms, recent findings suggest new scenarios, most notably for the ubiquitous tissue transglutaminase. It is becoming apparent that some transglutaminases, normally expressed at low levels in many tissue types, are activated and/or overexpressed in a variety of diseases, thereby resulting in enhanced concentrations of cross-linked proteins. As applies to all enzymes that exert their metabolic function by modifying the properties of target proteins, the identification and characterization of the modified proteins will cast light on the functions of transglutaminases and their involvement in human diseases. In this paper we review data on the properties of mammalian transglutaminases, particularly as regards their protein substrates and the relevance of transglutaminase-catalysed reactions in physiological and disease conditions.
Collapse
|