1
|
Ferrari M, Righi M, Baldan V, Wawrzyniecka P, Bulek A, Kinna A, Ma B, Bughda R, Akbar Z, Srivastava S, Gannon I, Robson M, Sillibourne J, Jha R, El-Kholy M, Amin OM, Kokalaki E, Banani MA, Hussain R, Day W, Lim WC, Ghongane P, Hopkins JR, Jungherz D, Herling M, Welin M, Surade S, Dyson M, McCafferty J, Logan D, Cordoba S, Thomas S, Sewell A, Maciocia P, Onuoha S, Pule M. Structure-guided engineering of immunotherapies targeting TRBC1 and TRBC2 in T cell malignancies. Nat Commun 2024; 15:1583. [PMID: 38383515 PMCID: PMC10881500 DOI: 10.1038/s41467-024-45854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Peripheral T cell lymphomas are typically aggressive with a poor prognosis. Unlike other hematologic malignancies, the lack of target antigens to discriminate healthy from malignant cells limits the efficacy of immunotherapeutic approaches. The T cell receptor expresses one of two highly homologous chains [T cell receptor β-chain constant (TRBC) domains 1 and 2] in a mutually exclusive manner, making it a promising target. Here we demonstrate specificity redirection by rational design using structure-guided computational biology to generate a TRBC2-specific antibody (KFN), complementing the antibody previously described by our laboratory with unique TRBC1 specificity (Jovi-1) in targeting broader spectrum of T cell malignancies clonally expressing either of the two chains. This permits generation of paired reagents (chimeric antigen receptor-T cells) specific for TRBC1 and TRBC2, with preclinical evidence to support their efficacy in T cell malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Ma
- Autolus Therapeutics, London, UK
| | | | | | | | | | | | | | - Ram Jha
- Autolus Therapeutics, London, UK
| | | | | | | | | | | | | | | | | | - Jade R Hopkins
- Cardiff University School of Medicine; Heath Park, Cardiff, UK
| | - Dennis Jungherz
- Department of Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University of Leipzig Medical Centre, Leipzig, Germany
| | - Marco Herling
- Department of Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University of Leipzig Medical Centre, Leipzig, Germany
| | | | | | | | | | | | | | | | - Andrew Sewell
- Cardiff University School of Medicine; Heath Park, Cardiff, UK
| | - Paul Maciocia
- Cancer Institute; University College London, London, UK
| | | | - Martin Pule
- Autolus Therapeutics, London, UK.
- Cancer Institute; University College London, London, UK.
| |
Collapse
|
2
|
Fernandes CFC, Pereira SS, Luiz MB, Silva NKRL, Silva MCS, Marinho ACM, Fonseca MHG, Furtado GP, Trevizani R, Nicolete R, Soares AM, Zuliani JP, Stabeli RG. Engineering of single-domain antibodies for next-generation snakebite antivenoms. Int J Biol Macromol 2021; 185:240-250. [PMID: 34118288 DOI: 10.1016/j.ijbiomac.2021.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.
Collapse
Affiliation(s)
| | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Nauanny K R L Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcela Cristina S Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | - Andreimar M Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | - Rodrigo G Stabeli
- Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc Natl Acad Sci U S A 2020; 117:27307-27318. [PMID: 33067389 DOI: 10.1073/pnas.2002954117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.
Collapse
|
4
|
Brockmann EC, Pyykkö M, Hannula H, Khan K, Lamminmäki U, Huovinen T. Combinatorial mutagenesis with alternative CDR-L1 and -H2 loop lengths contributes to affinity maturation of antibodies. N Biotechnol 2020; 60:173-182. [PMID: 33039698 DOI: 10.1016/j.nbt.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Loop length variation in the complementary determining regions (CDRs) 1 and 2 encoded in germline variable antibody genes provides structural diversity in naïve antibody libraries. In synthetic single framework libraries the parental CDR-1 and CDR-2 length is typically unchanged and alternative lengths are provided only at CDR-3 sites. Based on an analysis of the germline repertoire and structure-solved anti-hapten and anti-peptide antibodies, we introduced combinatorial diversity with alternative loop lengths into the CDR-L1, CDR-L3 and CDR-H2 loops of anti-digoxigenin and anti-microcystin-LR single chain Fv fragments (scFvs) sharing human IGKV3-20/IGHV3-23 frameworks. The libraries were phage display selected for folding and affinity, and analysed by single clone screening and deep sequencing. Among microcystin-LR binders the most frequently encountered alternative loop lengths were one amino acid shorter (6 aa) and four amino acids longer (11 aa) CDR-L1 loops leading up to 17- and 28-fold improved affinity, respectively. Among digoxigenin binders, 2 amino acids longer (10 aa) CDR-H2 loops were strongly enriched, but affinity improved anti-digoxigenin scFvs were also encountered with 7 aa CDR-H2 and 11 aa CDR-L1 loops. Despite the fact that CDR-L3 loop length variants were not specifically enriched in selections, one clone with 22-fold improved digoxigenin binding affinity was identified containing a 2 residues longer (10 aa) CDR-L3 loop. Based on our results the IGKV3-20/IGHV3-23 scaffold tolerates loop length variation, particularly in CDR-L1 and CDR-H2 loops, without compromising antibody stability, laying the foundation for developing novel synthetic antibody libraries with loop length combinations not existing in the natural human Ig gene repertoire.
Collapse
Affiliation(s)
| | - Mikko Pyykkö
- University of Turku, Department of Biochemistry/Biotechnology, Turku, Finland
| | - Heidi Hannula
- University of Turku, Department of Biochemistry/Biotechnology, Turku, Finland; Current Affiliation: Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Kamran Khan
- University of Turku, Department of Biochemistry/Biotechnology, Turku, Finland
| | - Urpo Lamminmäki
- University of Turku, Department of Biochemistry/Biotechnology, Turku, Finland
| | - Tuomas Huovinen
- University of Turku, Department of Biochemistry/Biotechnology, Turku, Finland.
| |
Collapse
|
5
|
Deguigne M, Brunet M, Abbara C, Turcant A, Le Roux G, Lelièvre B. Enzalutamide and analytical interferences in digoxin assays. Clin Toxicol (Phila) 2018; 56:1150-1154. [DOI: 10.1080/15563650.2018.1469758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marie Deguigne
- Centre Antipoison-Toxicovigilance Grand Ouest, CHU Angers, Angers, France
| | - Marion Brunet
- Centre Antipoison-Toxicovigilance Grand Ouest, CHU Angers, Angers, France
| | - Chadi Abbara
- Laboratoire de Pharmacologie-Toxicologie, CHU Angers, Angers, France
| | - Alain Turcant
- Laboratoire de Pharmacologie-Toxicologie, CHU Angers, Angers, France
| | - Gaël Le Roux
- Centre Antipoison-Toxicovigilance Grand Ouest, CHU Angers, Angers, France
| | | |
Collapse
|
6
|
Sefid F, Payandeh Z, Azamirad G, Abdolhamidi R, Rasooli I. In Silico Engineering Towards Enhancement of Bap–VHH Monoclonal Antibody Binding Affinity. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9670-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Safdari Y, Farajnia S, Asgharzadeh M, Khalili M. Antibody humanization methods – a review and update. Biotechnol Genet Eng Rev 2013; 29:175-86. [DOI: 10.1080/02648725.2013.801235] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razai A, Lou J, Geren I, Stevens RC, Marks JD. Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 2006; 25:107-16. [PMID: 17173035 DOI: 10.1038/nbt1269] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/20/2006] [Indexed: 11/09/2022]
Abstract
Broadening antibody specificity without compromising affinity should facilitate detection and neutralization of toxin and viral subtypes. We used yeast display and a co-selection strategy to increase cross-reactivity of a single chain (sc) Fv antibody to botulinum neurotoxin type A (BoNT/A). Starting with a scFv that binds the BoNT/A1 subtype with high affinity (136 pM) and the BoNT/A2 subtype with low affinity (109 nM), we increased its affinity for BoNT/A2 1,250-fold, to 87 pM, while maintaining high-affinity binding to BoNT/A1 (115 pM). To find the molecular basis for improved cross-reactivity, we determined the X-ray co-crystal structures of wild-type and cross-reactive antibodies complexed to BoNT/A1 at resolutions up to 2.6 A, and measured the thermodynamic contribution of BoNT/A1 and A2 amino acids to wild-type and cross-reactive antibody binding. The results show how an antibody can be engineered to bind two different antigens despite structural differences in the antigen-antibody interface and may provide a general strategy for tuning antibody specificity and cross-reactivity.
Collapse
Affiliation(s)
- Consuelo Garcia-Rodriguez
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco Rm. 3C-38, San Francisco General Hospital, 1001 Potrero Ave., San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|