1
|
Abstract
The key regulatory enzymes of glycogenolysis are phosphorylase kinase, a hetero-oligomer with four different types of subunits, and glycogen phosphorylase, a homodimer. Both enzymes are activated by phosphorylation and small ligands, and both enzymes have distinct isoforms that are predominantly expressed in muscle, liver, or brain; however, whole-transcriptome high-throughput sequencing analyses show that in brain both of these enzymes are likely composed of subunit isoforms representing all three tissues. This Minireview examines the regulatory properties of the isoforms of these two enzymes expressed in the three tissues, focusing on their potential regulatory similarities and differences. Additionally, the activity, structure, and regulation of the remaining enzyme necessary for glycogenolysis, glycogen-debranching enzyme, are also reviewed.
Collapse
Affiliation(s)
- Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421
| | - Joseph D Fontes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421.
| |
Collapse
|
2
|
Herrera JE, Thompson JA, Rimmer MA, Nadeau OW, Carlson GM. Activation of Phosphorylase Kinase by Physiological Temperature. Biochemistry 2015; 54:7524-30. [PMID: 26632861 PMCID: PMC5014378 DOI: 10.1021/acs.biochem.5b01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.
Collapse
Affiliation(s)
| | - Jackie A. Thompson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mary Ashley Rimmer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Owen W. Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gerald M. Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
3
|
Rimmer MA, Artigues A, Nadeau OW, Villar MT, Vasquez-Montes V, Carlson GM. Mass Spectrometric Analysis of Surface-Exposed Regions in the Hexadecameric Phosphorylase Kinase Complex. Biochemistry 2015; 54:6887-95. [PMID: 26551836 DOI: 10.1021/acs.biochem.5b00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylase kinase (PhK) is a 1.3 MDa (αβγδ)4 enzyme complex, in which αβγδ protomers associate in D2 symmetry to form two large octameric lobes that are interconnected by four bridges. The approximate locations of the subunits have been mapped in low-resolution cryo-electron microscopy structures of the complex; however, the disposition of the subunits within the complex remains largely unknown. We have used partial proteolysis and chemical footprinting in combination with high-resolution mass spectrometry to identify surface-exposed regions of the intact nonactivated and phospho-activated conformers. In addition to the known interaction of the γ subunit's C-terminal regulatory domain with the δ subunit (calmodulin), our exposure results indicate that the catalytic core of γ may also anchor to the PhK complex at the bottom backside of its C-terminal lobe facing away from the active site cleft. Exposed loops on the α and β regulatory subunits within the complex occur at regions overlapping with tissue-specific alternative RNA splice sites and regulatory phosphorylatable domains. Their phosphorylation alters the surface exposure of α and β, corroborating previous biophysical and biochemical studies that detected phosphorylation-dependent conformational changes in these subunits; however, for the first time, specific affected regions have been identified.
Collapse
Affiliation(s)
- Mary Ashley Rimmer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Maria T Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
4
|
Thompson JA, Nadeau OW, Carlson GM. A model for activation of the hexadecameric phosphorylase kinase complex deduced from zero-length oxidative crosslinking. Protein Sci 2015; 24:1956-63. [PMID: 26362516 DOI: 10.1002/pro.2804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022]
Abstract
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)(4) enzyme complex that upon activation by phosphorylation stimulates glycogenolysis. Due to its large size (1.3 MDa), elucidating the structural changes associated with the activation of PhK has been challenging, although phosphoactivation has been linked with an increased tendency of the enzyme's regulatory β-subunits to self-associate. Here we report the effect of a peptide mimetic of the phosphoryltable N-termini of β on the selective, zero-length, oxidative crosslinking of these regulatory subunits to form β-β dimers in the nonactivated PhK complex. This peptide stimulated β-β dimer formation when not phosphorylated, but was considerably less effective in its phosphorylated form. Because this peptide mimetic of β competes with its counterpart region in the nonactivated enzyme complex in binding to the catalytic γ-subunit, we were able to formulate a structural model for the phosphoactivation of PhK. In this model, the nonactivated state of PhK is maintained by the interaction between the nonphosphorylated N-termini of β and the regulatory C-terminal domains of the γ-subunits; phosphorylation of β weakens this interaction, leading to activation of the γ-subunits.
Collapse
Affiliation(s)
- Jackie A Thompson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, Kansas, 66160
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, Kansas, 66160
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, Kansas, 66160
| |
Collapse
|
5
|
Liu W, Nadeau OW, Sage J, Carlson GM. Physicochemical changes in phosphorylase kinase induced by its cationic activator Mg(2+). Protein Sci 2013; 22:444-54. [PMID: 23359552 DOI: 10.1002/pro.2226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/12/2022]
Abstract
For over four decades free Mg(2+) ions, that is, those in excess of MgATP, have been reported to affect a wide variety of properties of phosphorylase kinase (PhK), including its affinity for other molecules, proteolysis, chemical crosslinking, phosphorylation, binding to certain monoclonal antibodies, and activity, which is stimulated. Additionally, for over three decades Mg(2+) has been known to act synergistically with Ca(2+) , another divalent activator of PhK, to affect even more properties of the enzyme. During all of this time, however, no study has been performed to determine the overall effects of free Mg(2+) ions on the physical properties of PhK, even though the effects of Ca(2+) ions on PhK's properties are well documented. In this study, changes in the physicochemical properties of PhK induced by Mg(2+) under nonactivating (pH 6.8) and activating (pH 8.2) conditions were investigated by circular dichroism spectroscopy, zeta potential analyses, dynamic light scattering, second derivative UV absorption, negative stain electron microscopy, and differential chemical crosslinking. The effects of the activator Mg(2+) on some of the properties of PhK measured by these techniques were found to be quite different at the two pH values, and displayed both differences and similarities with the effects previously reported to be induced by the activator Ca(2+) (Liu et al., Protein Sci 2008;17:2111-2119). The similarities may reflect the fact that both cations are activators, and foremost among their similarities is the dramatically less negative zeta potential induced by their binding to PhK.
Collapse
Affiliation(s)
- Weiya Liu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
6
|
Nadeau OW, Lane LA, Xu D, Sage J, Priddy TS, Artigues A, Villar MT, Yang Q, Robinson CV, Zhang Y, Carlson GM. Structure and location of the regulatory β subunits in the (αβγδ)4 phosphorylase kinase complex. J Biol Chem 2012; 287:36651-61. [PMID: 22969083 DOI: 10.1074/jbc.m112.412874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)(4) complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)(2) lobes joined with D(2) symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)(4) complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)(4) kinase core, because a β(4) subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit.
Collapse
Affiliation(s)
- Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lane LA, Nadeau OW, Carlson GM, Robinson CV. Mass spectrometry reveals differences in stability and subunit interactions between activated and nonactivated conformers of the (αβγδ)4 phosphorylase kinase complex. Mol Cell Proteomics 2012; 11:1768-76. [PMID: 22964223 PMCID: PMC3518106 DOI: 10.1074/mcp.m112.021394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phosphorylase kinase (PhK), a 1.3 MDa enzyme complex that regulates glycogenolysis, is composed of four copies each of four distinct subunits (α, β, γ, and δ). The catalytic protein kinase subunit within this complex is γ, and its activity is regulated by the three remaining subunits, which are targeted by allosteric activators from neuronal, metabolic, and hormonal signaling pathways. The regulation of activity of the PhK complex from skeletal muscle has been studied extensively; however, considerably less is known about the interactions among its subunits, particularly within the non-activated versus activated forms of the complex. Here, nanoelectrospray mass spectrometry and partial denaturation were used to disrupt PhK, and subunit dissociation patterns of non-activated and phospho-activated (autophosphorylation) conformers were compared. In so doing, we have established a network of subunit contacts that complements and extends prior evidence of subunit interactions obtained from chemical crosslinking, and these subunit interactions have been modeled for both conformers within the context of a known three-dimensional structure of PhK solved by cryoelectron microscopy. Our analyses show that the network of contacts among subunits differs significantly between the nonactivated and phospho-activated conformers of PhK, with the latter revealing new interprotomeric contact patterns for the β subunit, the predominant subunit responsible for PhK's activation by phosphorylation. Partial disruption of the phosphorylated conformer yields several novel subcomplexes containing multiple β subunits, arguing for their self-association within the activated complex. Evidence for the theoretical αβγδ protomeric subcomplex, which has been sought but not previously observed, was also derived from the phospho-activated complex. In addition to changes in subunit interaction patterns upon phospho-activation, mass spectrometry revealed a large change in the overall stability of the complex, with the phospho-activated conformer being more labile, in concordance with previous hypotheses on the mechanism of allosteric activation of PhK through perturbation of its inhibitory quaternary structure.
Collapse
Affiliation(s)
- Laura A Lane
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
8
|
A review of methods used for identifying structural changes in a large protein complex. Methods Mol Biol 2012; 796:117-32. [PMID: 22052488 DOI: 10.1007/978-1-61779-334-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter explores the structural responses of a massive, hetero-oligomeric protein complex to a single allosteric activator as probed by a wide range of chemical, biochemical, and biophysical approaches. Some of the approaches used are amenable only to large protein targets, whereas others push the limits of their utility. Some of the techniques focus on individual subunits, or portions thereof, while others examine the complex as a whole. Despite the absence of crystallographic data for the complex, the diverse techniques identify and implicate a small region of its catalytic subunit as the master allosteric activation switch for the entire complex.
Collapse
|
9
|
Skelding KA, Rostas JAP. The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:703-30. [PMID: 22453966 DOI: 10.1007/978-94-007-2888-2_31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium/calmodulin-stimulated protein kinases can be classified as one of two types - restricted or multifunctional. This family of kinases contains several structural similarities: all possess a calmodulin binding motif and an autoinhibitory region. In addition, all of the calcium/calmodulin-stimulated protein kinases examined in this chapter are regulated by phosphorylation, which either activates or inhibits their kinase activity. However, as the multifunctional calcium/calmodulin-stimulated protein kinases are ubiquitously expressed, yet regulate a broad range of cellular functions, additional levels of regulation that control these cell-specific functions must exist. These additional layers of control include gene expression, signaling pathways, and expression of binding proteins and molecular targeting. All of the multifunctional calcium/calmodulin-stimulated protein kinases examined in this chapter appear to be regulated by these additional layers of control, however, this does not appear to be the case for the restricted kinases.
Collapse
Affiliation(s)
- Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
10
|
Wang Y, Xiong Y, Ren Z, Yang C, Li F, Lei M, Zuo B, Xu D. Isolation, expression patterns and SNP frequencies of the porcine PHKG2 gene. Livest Sci 2009. [DOI: 10.1016/j.livsci.2008.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Vénien-Bryan C, Jonic S, Skamnaki V, Brown N, Bischler N, Oikonomakos NG, Boisset N, Johnson LN. The structure of phosphorylase kinase holoenzyme at 9.9 angstroms resolution and location of the catalytic subunit and the substrate glycogen phosphorylase. Structure 2009; 17:117-27. [PMID: 19141288 PMCID: PMC2639635 DOI: 10.1016/j.str.2008.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 11/30/2022]
Abstract
Phosphorylase kinase (PhK) coordinates hormonal and neuronal signals to initiate the breakdown of glycogen. The enzyme catalyzes the phosphorylation of inactive glycogen phosphorylase b (GPb), resulting in the formation of active glycogen phosphorylase a. We present a 9.9 Å resolution structure of PhK heterotetramer (αβγδ)4 determined by cryo-electron microscopy single-particle reconstruction. The enzyme has a butterfly-like shape comprising two lobes with 222 symmetry. This three-dimensional structure has allowed us to dock the catalytic γ subunit to the PhK holoenzyme at a location that is toward the ends of the lobes. We have also determined the structure of PhK decorated with GPb at 18 Å resolution, which shows the location of the substrate near the kinase subunit. The PhK preparation contained a number of smaller particles whose structure at 9.8 Å resolution was consistent with a proteolysed activated form of PhK that had lost the α subunits and possibly the γ subunits.
Collapse
Affiliation(s)
- Catherine Vénien-Bryan
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bershteyn A, Chaparro J, Yau R, Kim M, Reinherz E, Ferreira-Moita L, Irvine DJ. Polymer-supported lipid shells, onions, and flowers. SOFT MATTER 2008; 4:1787-1791. [PMID: 19756178 PMCID: PMC2743563 DOI: 10.1039/b804933e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phospholipid-enveloped biodegradable polymer microparticles and nanoparticles synthesized by an emulsion/solvent evaporation process were characterized by confocal and cryoelectron microscopies to show that the lipid envelope exhibits two-dimensional fluidity and can be configured into 'shell', 'onion', or 'flower' nanostructures, depending on the quantity and composition of lipids employed in the synthesis.
Collapse
Affiliation(s)
- Anna Bershteyn
- Department of Materials Science and Engineering, and Biological Engineering, Massachusetts Institute of Technology Room 8-425, 77, Massachusetts Avenue, Cambridge, MA 02139. ;, Tel: +1 617 452 4174
| | | | | | | | | | | | | |
Collapse
|
13
|
Priddy TS, Price ES, Johnson CK, Carlson GM. Single molecule analyses of the conformational substates of calmodulin bound to the phosphorylase kinase complex. Protein Sci 2007; 16:1017-23. [PMID: 17525461 PMCID: PMC2206654 DOI: 10.1110/ps.062747407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The four integral delta subunits of the phosphorylase kinase (PhK) complex are identical to calmodulin (CaM) and confer Ca(2+) sensitivity to the enzyme, but bind independently of Ca(2+). In addition to binding Ca(2+), an obligatory activator of PhK's phosphoryltransferase activity, the delta subunits transmit allosteric signals to PhK's remaining alpha, beta, and gamma subunits in activating the enzyme. Under mild conditions about 10% of the delta subunits can be exchanged for exogenous CaM. In this study, a CaM double-mutant derivatized with a fluorescent donor-acceptor pair (CaM-DA) was exchanged for delta to assess the conformational substates of PhKdelta by single molecule fluorescence resonance energy transfer (FRET) +/-Ca(2+). The exchanged subunits were determined to occupy distinct conformations, depending on the absence or presence of Ca(2+), as observed by alterations of the compact, mid-length, and extended populations of their FRET distance distributions. Specifically, the combined predominant mid-length and less common compact conformations of PhKdelta became less abundant in the presence of Ca(2+), with the delta subunits assuming more extended conformations. This behavior is in contrast to the compact forms commonly observed for many of CaM's Ca(2+)-dependent interactions with other proteins. In addition, the conformational distributions of the exchanged PhKdelta subunits were distinct from those of CaM-DA free in solution, +/-Ca(2+), as well as from exogenous CaM bound to the PhK complex as delta'. The distinction between delta and delta' is that the latter binds only in the presence of Ca(2+), but stoichiometrically and at a different location in the complex than delta.
Collapse
Affiliation(s)
- Timothy S Priddy
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
14
|
Priddy TS, Middaugh CR, Carlson GM. Electrostatic changes in phosphorylase kinase induced by its obligatory allosteric activator Ca2+. Protein Sci 2007; 16:517-27. [PMID: 17322534 PMCID: PMC2203309 DOI: 10.1110/ps.062577507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle phosphorylase kinase (PhK) is a 1.3-MDa hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase b. PhK has an absolute requirement for Ca(2+) ions, which couples the cascade activation of glycogenolysis with muscle contraction. Ca(2+) activates PhK by binding to its nondissociable calmodulin subunits; however, specific changes in the structure of the PhK complex associated with its activation by Ca(2+) have been poorly understood. We present herein the first comparative investigation of the physical characteristics of highly purified hexadecameric PhK in the absence and presence of Ca(2+) ions using a battery of biophysical probes as a function of temperature. Ca(2+)-induced differences in the tertiary and secondary structure of PhK measured by fluorescence, UV absorption, FTIR, and CD spectroscopies as low resolution probes of PhK's structure were subtle. In contrast, the surface electrostatic properties of solvent accessible charged and polar groups were altered upon the binding of Ca(2+) ions to PhK, which substantially affected both its diffusion rate and electrophoretic mobility, as measured by dynamic light scattering and zeta potential analyses, respectively. Overall, the observed physicochemical effects of Ca(2+) binding to PhK were numerous, including a decrease in its electrostatic surface charge that reduced particle mobility without inducing a large alteration in secondary structure content or hydrophobic tertiary interactions. Without exception, for all analyses in which the temperature was varied, the presence of Ca(2+) rendered the enzyme increasingly labile to thermal perturbation.
Collapse
Affiliation(s)
- Timothy S Priddy
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
15
|
Priddy TS, MacDonald BA, Heller WT, Nadeau OW, Trewhella J, Carlson GM. Ca2+-induced structural changes in phosphorylase kinase detected by small-angle X-ray scattering. Protein Sci 2005; 14:1039-48. [PMID: 15741333 PMCID: PMC2253434 DOI: 10.1110/ps.041124705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phosphorylase kinase (PhK), a 1.3-MDa (alphabetagammadelta)(4) hexadecameric complex, is a Ca(2+)-dependent regulatory enzyme in the cascade activation of glycogenolysis. PhK comprises two arched (alphabetagammadelta)(2) octameric lobes that are oriented back-to-back with overall D(2) symmetry and joined by connecting bridges. From chemical cross-linking and electron microscopy, it is known that the binding of Ca(2+) by PhK perturbs the structure of all its subunits and promotes redistribution of density throughout both its lobes and bridges; however, little is known concerning the interrelationship of these effects. To measure structural changes induced by Ca(2+) in the PhK complex in solution, small-angle X-ray scattering was performed on nonactivated and Ca(2+)-activated PhK. Although the overall dimensions of the complex were not affected by Ca(2+), the cation did promote a shift in the distribution of the scattering density within the hydrated volume occupied by the PhK molecule, indicating a Ca(2+)-induced conformational change. Computer-generated models, based on elements of the known structure of PhK from electron microscopy, were constructed to aid in the interpretation of the scattering data. Models containing two ellipsoids and four cylinders to represent, respectively, the lobes and bridges of the PhK complex provided theoretical scattering profiles that accurately fit the experimental data. Structural differences between the models representing the nonactivated and Ca(2+)-activated conformers of PhK are consistent with Ca(2+)-induced conformational changes in both the lobes and the interlobal bridges.
Collapse
Affiliation(s)
- Timothy S Priddy
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|