1
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
2
|
Wu JA, Chen YC, Tu LH. Dopamine-Conjugated Carbon Dots Inhibit Human Calcitonin Fibrillation. NANOMATERIALS 2021; 11:nano11092242. [PMID: 34578556 PMCID: PMC8465381 DOI: 10.3390/nano11092242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
The development of biocompatible nanomaterials has become a new trend in the treatment and prevention of human amyloidosis. Human calcitonin (hCT), a hormone peptide secreted from parafollicular cells, plays a major role in calcium–phosphorus metabolism. Moreover, it can be used in the treatment of osteoporosis and Paget’s disease. Unfortunately, it tends to form amyloid fibrils irreversibly in an aqueous solution, resulting in a reduction of its bioavailability and therapeutic activity. Salmon calcitonin is the replacement of hCT as a widely therapeutic agent due to its lower propensity in aggregation and better bioactivity. Herein, we used citric acid to synthesize carbon dots (CDs) and modified their surface properties by a variety of chemical conjugations to provide different functionalized CDs. It was found that dopamine-conjugated CDs can effectively inhibit hCT aggregation especially in the fibril growth phase and dissociate preformed hCT amyloids. Although the decomposition mechanism of dopamine-conjugated CDs is not clear, it seems to be specific to hCT amyloids. In addition, we also tested dopamine-conjugated mesoporous silica nanoparticles in preventing hCT fibrillization. They also can work as inhibitors but are much less effective than CDs. Our studies emphasized the importance of the size and surface functionalization of core materials in the development of nanomaterials as emerging treatments for amyloidosis. On the other hand, proper functionalized CDs would be useful in hCT formulation.
Collapse
|
3
|
Chen YT, Hu KW, Huang BJ, Lai CH, Tu LH. Inhibiting Human Calcitonin Fibril Formation with Its Most Relevant Aggregation-Resistant Analog. J Phys Chem B 2019; 123:10171-10180. [PMID: 31692350 DOI: 10.1021/acs.jpcb.9b08514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most common obstacles to the development of therapeutic polypeptides are peptide stability and aggregation. Human calcitonin (hCT) is a 32-residue hormone polypeptide secreted from the C-cells of the thyroid gland and is responsible for calcium and phosphate regulation in the blood. hCT reduces calcium levels by inhibiting the activity of osteoclasts, which are bone cells that are mainly responsible for breaking down the bone tissue or decreasing the resorption of calcium from the kidneys. Thus, calcitonin injection has been used to treat osteoporosis and Paget's disease of bone. hCT is an aggregation-prone peptide with a high tendency to form amyloid fibrils. As a result, salmon calcitonin (sCT), which is different from hCT at 16-residue positions and has a lower propensity to aggregate, has been chosen as a clinical substitute for hCT. However, significant side effects, including immune reactions, have been shown with the use of sCT injection. In this study, we found that two residues, Tyr-12 and Asn-17, play key roles in inducing the fibrillization of hCT. Double mutation of hCT at these two crucial sites could greatly enhance its resistance to aggregation and provide a peptide-based inhibitor to prevent amyloid formation by hCT. Double-mutated hCT retains its ability to interact with its receptor in vivo. These findings suggest that this variant of hCT would serve as a valuable therapeutic alternative to sCT.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Kai-Wei Hu
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| | - Bo-Jie Huang
- Graduate Institute of Biomedical Engineering , National Chung Hsing University , Taichung 402 , Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering , National Chung Hsing University , Taichung 402 , Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry , National Taiwan Normal University , Taipei 116 , Taiwan
| |
Collapse
|
4
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Matsuzaki K, Kato K, Yanagisawa K. Ganglioside-Mediated Assembly of Amyloid β-Protein: Roles in Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:413-434. [PMID: 29747822 DOI: 10.1016/bs.pmbts.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assembly and deposition of amyloid β-protein (Aβ) is an early and invariable pathological event of Alzheimer's disease (AD), a chronic neurodegenerative disease affecting the neurons in the brain of aging population. Thus, clarification of the molecular mechanism underlying Aβ assembly is crucial not only for understanding the pathogenesis of AD, but also for developing disease-modifying remedies. In 1995, ganglioside-bound Aβ (GAβ), with unique molecular characteristics, including its altered immunoreactivity and its conspicuous ability to accelerate Aβ assembly, was discovered in an autopsied brain showing early pathological changes of AD. Based on these findings, it was hypothesized that GAβ is an endogenous seed for amyloid fibril formation in the AD brain. A body of evidence that supports the GAβ hypothesis has been growing for over 20years as follows. First, the conformational changes of Aβ from a random coil to an α-helix, and then to a β-sheet in the presence of ganglioside were validated by several techniques. Second, the seed activity of GAβ to accelerate the assembly of soluble Aβ into amyloid fibrils was confirmed by various in vitro and in vivo experiments. Third, it was found that the Aβ binding to ganglioside to form GAβ occurs under limited conditions, which were provided by the lipid environment surrounding ganglioside. Fourth, the region-specific Aβ deposition in the brain appeared to be dependent on the presence of the lipid environment that was in favor of GAβ generation. In this chapter, further progress of the study of ganglioside-mediated Aβ assembly, especially from the aspects of physicochemistry, structural biology, and neuropathology, is reviewed.
Collapse
Affiliation(s)
| | - Koichi Kato
- Nagoya City University, Nagoya, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Katsuhiko Yanagisawa
- Center for Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
6
|
Kamgar-Parsi K, Tolchard J, Habenstein B, Loquet A, Naito A, Ramamoorthy A. Structural Biology of Calcitonin: From Aqueous Therapeutic Properties to Amyloid Aggregation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kian Kamgar-Parsi
- Applied Physics Program; University of Michigan; Ann Arbor MI 48109-1040 USA
| | - James Tolchard
- Institute of Chemistry and Biology of Membranes and Nanoobjects, CNRS, CBMN, UMR 5248; University of Bordeaux; 33600 Pessac France
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects, CNRS, CBMN, UMR 5248; University of Bordeaux; 33600 Pessac France
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, CNRS, CBMN, UMR 5248; University of Bordeaux; 33600 Pessac France
| | - Akira Naito
- Graduate School of Engineering; Yokohama National University; 79-5 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics Program; University of Michigan; 930 North University Avenue Ann Arbor MI 48109-1055 USA
| |
Collapse
|
7
|
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. SOFT MATTER 2014; 10:7425-7451. [PMID: 25105988 DOI: 10.1039/c4sm00907j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides - which has been studied less intensively than either type of peptides - to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide-membrane interactions important in human health and diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | |
Collapse
|
8
|
Venkatasubramaniam A, Drude A, Good T. Role of N-terminal residues in Aβ interactions with integrin receptor and cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2568-77. [DOI: 10.1016/j.bbamem.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 01/12/2023]
|
9
|
Native metastable prefibrillar oligomers are the most neurotoxic species among amyloid aggregates. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1622-9. [PMID: 24932517 DOI: 10.1016/j.bbadis.2014.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/16/2014] [Accepted: 06/04/2014] [Indexed: 11/23/2022]
Abstract
Many proteins belonging to the amyloid family share the tendency to misfold and aggregate following common steps, and display similar neurotoxicity. In the aggregation pathway different kinds of species are formed, including several types of oligomers and eventually mature fibers. It is now suggested that the pathogenic aggregates are not the mature fibrils, but the intermediate, soluble oligomers. Many kinds of aggregates have been described to exist in a metastable state and in equilibrium with monomers. Up to now it is not clear whether a specific structure is at the basis of the neurotoxicity. Here we characterized, starting from the early aggregation stages, the oligomer populations formed by an amyloid protein, salmon calcitonin (sCT), chosen due to its very slow aggregation rate. To prepare different oligomer populations and characterize them by means of photoinduced cross-linking SDS-PAGE, Energy Filtered-Transmission Electron Microscopy (EF-TEM) and Circular Dichroism (CD) spectroscopy, we used Size Exclusion Chromatography (SEC), a technique that does not influence the aggregation process leaving the protein in the native state. Taking advantage of sCT low aggregation rate, we characterized the neurotoxic potential of the SEC-separated, non-crosslinked fractions in cultured primary hippocampal neurons, analyzing intracellular Ca(2+) influx and apoptotic trend. We provide evidence that native, globular, metastable, prefibrillar oligomers (dimers, trimers and tetramers) were the toxic species and that low concentrations of these aggregates in the population was sufficient to render the sample neurotoxic. Monomers and other kind of aggregates, such as annular or linear protofibers and mature fibers, were totally biologically inactive.
Collapse
|
10
|
Manosroi A, Chankhampan C, Ofoghi H, Manosroi W, Manosroi J. Low cytotoxic elastic niosomes loaded with salmon calcitonin on human skin fibroblasts. Hum Exp Toxicol 2012; 32:31-44. [DOI: 10.1177/0960327112454892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A low cytotoxic elastic niosomal formulation loaded with salmon calcitonin was developed. The elastic niosomes were prepared from Tween 61 mixed with cholesterol at various concentrations of the edge activators (sodium cholate (NaC) and sodium deoxycholate (NaDC); 0.25, 0.5, 2.5, 5 and 10% mole) or ethanol (10–30% v/v). The effects of the niosomal concentrations (5, 10 and 20 mM) and phosphate buffer at pH 7.0 (5, 10, 20 and 30 mM) on the physical characteristics of niosomes were investigated. The 5 mM elastic niosomes in 5 mM phosphate buffer containing calcitonin 0.22 mg/mL gave the highest elasticity (deformability index (DI)) at 6.79 ± 2.03 determined by the extrusion method. The blank elastic niosomes comprised 2.5% mole NaDC, 5% mole NaC or 20% v/v ethanol showed the highest elasticity. The 5% mole NaC elastic niosomes loaded with calcitonin gave the highest DI (21.59 ± 0.91) and percentages of calcitonin entrapment efficiency (60.11 ± 4.98). This study has demonstrated that this NaC elastic niosome did not only reduce the cytotoxicity of the loaded calcitonin but also gave superior cell viability to the ethanolic elastic niosome as well.
Collapse
Affiliation(s)
- Aranya Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Natural Products Research and Development Center (NPRDC), Science and Technology Research Institute (STRI), Chiang Mai University, Chiang Mai, Thailand
| | - C Chankhampan
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - H Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, (IROST), Tehran, Islamic Republic of Iran
| | - W Manosroi
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - J Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Natural Products Research and Development Center (NPRDC), Science and Technology Research Institute (STRI), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Malchiodi-Albedi F, Paradisi S, Matteucci A, Frank C, Diociaiuti M. Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimers Dis 2011; 2011:906964. [PMID: 21331330 PMCID: PMC3038657 DOI: 10.4061/2011/906964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A number of diseases are associated with misfolding and aggregation of proteins, although only in some of them—most notably Alzheimer's disease (AD) and transmissible spongiform encephalopathies (TSEs)—a pathogenetic link with misfolded proteins is now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein, prion protein, and calcitonin.
Collapse
Affiliation(s)
- Fiorella Malchiodi-Albedi
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
12
|
Malchiodi-Albedi F, Contrusciere V, Raggi C, Fecchi K, Rainaldi G, Paradisi S, Matteucci A, Santini MT, Sargiacomo M, Frank C, Gaudiano MC, Diociaiuti M. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity. Biochim Biophys Acta Mol Basis Dis 2010; 1802:406-15. [PMID: 20060899 DOI: 10.1016/j.bbadis.2010.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/18/2009] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.
Collapse
|
13
|
Sokolovski M, Sheynis T, Kolusheva S, Jelinek R. Membrane interactions and lipid binding of casein oligomers and early aggregates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2341-9. [DOI: 10.1016/j.bbamem.2008.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/04/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
|
14
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Yamamoto N, Fukata Y, Fukata M, Yanagisawa K. GM1-ganglioside-induced Aβ assembly on synaptic membranes of cultured neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1128-37. [PMID: 17306220 DOI: 10.1016/j.bbamem.2007.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research National Institute for Longevity Sciences National Center for Geriatrics and Gerontology 36-3 Gengo, Morioka, Obu 474-8522, Japan
| | | | | | | |
Collapse
|
16
|
Luo X, Sharma D, Inouye H, Lee D, Avila RL, Salmona M, Kirschner DA. Cytoplasmic domain of human myelin protein zero likely folded as beta-structure in compact myelin. Biophys J 2006; 92:1585-97. [PMID: 17142269 PMCID: PMC1796833 DOI: 10.1529/biophysj.106.094722] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin protein zero (P0 or P0 glycoprotein), the major integral membrane protein in peripheral nervous system myelin, plays a key role in myelin membrane compaction and stability. While the structure of P0 extracellular domain was determined by crystallography, the paucity of any structural data on the highly positive-charged P0 cytoplasmic domain (P0-cyt) has greatly limited our understanding of the mechanism of P0 function. Here, using circular dichroism and intrinsic fluorescence spectroscopy, we attempted to elucidate the structure of human P0-cyt (hP0-cyt) in membrane mimetic environments composed of detergents or lipid vesicles. We found that the secondary structure of P0-cyt was polymorphic-at the lipid/protein ratio corresponding to that of mature peripheral myelin ( approximately 50:1), hP0-cyt mainly adopted a beta-conformation, whereas when the proportion of lipid increased, the structure underwent a beta-->alpha transition. By contrast, the secondary structure of the major isoform of myelin basic protein, another myelin protein with a very large positive charge, remained unchanged across a wide range of lipid/protein ratios. We propose that when hP0-cyt is bound at sufficient concentration to lamellar lipid bilayers such as myelin, it folds into a beta-conformation; before this threshold lipid/protein ratio is reached, the domain is alpha-helical. We suggest that the cytoplasmic apposition (major dense line) in compact myelin may be stabilized via the hydrogen-bonding of beta-strands formed as a result of local P0-P0 aggregation.
Collapse
Affiliation(s)
- Xiaoyang Luo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang SSS, Chen PH, Hung YT. Effects of p-benzoquinone and melatonin on amyloid fibrillogenesis of hen egg-white lysozyme. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Tellinghuisen J. Van't Hoff analysis of K degrees (T): how good...or bad? Biophys Chem 2005; 120:114-20. [PMID: 16303233 DOI: 10.1016/j.bpc.2005.10.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 10/21/2005] [Accepted: 10/23/2005] [Indexed: 10/25/2022]
Abstract
Binding constant data K degrees (T) are commonly subjected to van't Hoff analysis to extract estimates of DeltaH degrees, DeltaS degrees, and DeltaCP degrees for the process in question. When such analyses employ unweighted least-squares fitting of lnK degrees to an appropriate function of the temperature T, they are tacitly assuming constant relative error in K degrees. When this assumption is correct, the statistical errors in DeltaG degrees, DeltaH degrees, DeltaS degrees, DeltaCP degrees, and the T-derivative of DeltaCP degrees (if determined) are all independent of the actual values of K degrees and can be computed from knowledge of just the T values at which K degrees is known and the percent error in K degrees. All of these statistical errors except that for the highest-order constant are functions of T, so they must normally be calculated using a form of the error propagation equation that is not widely known. However, this computation can be bypassed by defining DeltaH degrees as a polynomial in (T-T0), the coefficients of which thus become DeltaH degrees, DeltaCP degrees, and 1/2 dDeltaCP degrees/dT at T=T0. The errors in the key quantities can then be computed by just repeating the fit for different T0. Procedures for doing this are described for a representative data analysis program. Results of such calculations show that expanding the T range from 10-40 to 5-45 degrees C gives significant improvement in the precision of all quantities. DeltaG degrees is typically determined with standard error a factor of approximately 30 smaller than that for DeltaH degrees. Accordingly, the error in TDeltaS degrees is nearly identical to that in DeltaH degrees. For 4% error in K degrees, the T-derivative in DeltaCP degrees cannot be determined unless it is approximately 10 cal mol-1 K-2 or greater; and DeltaCP degrees must be approximately 50 cal mol-1 K-1. Since all errors scale with the data error and inversely with the square root of the number of data points, the present results for 4% error cover any other relative error and number of points, for the same approximate T structure of the data.
Collapse
Affiliation(s)
- Joel Tellinghuisen
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|