1
|
Bhowal P, Jameson D, Banerjee R. Investigating the binding of fluorescent probes to a trypanosomal-tRNA synthetase: A fluorescence spectroscopic and molecular dynamics study. Arch Biochem Biophys 2025; 764:110263. [PMID: 39657888 DOI: 10.1016/j.abb.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Given the high prevalence of Chagas disease in the Americas, we targeted the unique arginyl-tRNA synthetase of its causative agent Trypanosoma cruzi. Among their many possible uses, naphthalene-derived fluorescent ligands, such as ANS and bis-ANS, may be employed in pharmacokinetic research. Although ANS and bis-ANS have become prominent fluorescent probes for protein characterization, the structural and spectroscopic characteristics of protein-ANS/bis-ANS complexes remain largely unknown. Both fluorescent dyes bind to either the folded or partially folded hydrophobic regions of proteins. Additionally, they serve to identify molten globule-like intermediates. These probes have been used to study the folding problems of protein structures and the mechanisms of protein-protein interactions. ANS and bis-ANS exhibited significant enhancement and blue shift in their emission spectra upon binding to TcArgRS, the primary enzyme responsible for attaching l-arginine to its corresponding tRNA. Through fluorescence spectroscopy and computational studies, we concluded that bis-ANS binds more tightly to TcArgRS and that ATP affects bis-ANS fluorescence signal. Thus, these probes are useful resources for studying the intricate intermolecular relationships between proteins in terms of their structure, function, and mechanism. Our study provides a framework for identifying the hydrophobic regions present in TcArgRS. The utilization of hydrophobic patches on proteins for drug targeting is noteworthy because they can assist in identifying regions on the surface of proteins that are likely to interact with ligands. These patches help identify hotspot residues that play a vital role in determining binding affinity. Drugs are mainly small and hydrophobic in nature, and they target protein surfaces which have complementary properties. In this study, we elucidated the potential of TcArgRS as a target for combating trypanosomal diseases and extending life expectancy.
Collapse
Affiliation(s)
- Pratyasha Bhowal
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - David Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, USA
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India.
| |
Collapse
|
2
|
Farhana A, Alsrhani A, Khan YS, Salahuddin M, Sayeed MU, Rasheed Z. Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights. Biomolecules 2024; 14:576. [PMID: 38785983 PMCID: PMC11117476 DOI: 10.3390/biom14050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Peroxynitrite (ONOO-) is an oxidant linked with several human pathologies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation to ONOO- effects. This study investigated the potential of apigenin to structurally protect fibrinogen, an essential blood clotting factor, from ONOO--induced damage. METHODS Multi-approach analyses were carried out where fibrinogen was exposed to ONOO- generation while testing the efficacy of apigenin. The role of apigenin against ONOO--induced modifications in fibrinogen was investigated using UV spectroscopy, tryptophan or tyrosine fluorescence, protein hydrophobicity, carbonylation, and electrophoretic analyses. RESULTS The findings demonstrate that apigenin significantly inhibits ONOO--induced oxidative damage in fibrinogen. ONOO- caused reduced UV absorption, which was reversed by apigenin treatment. Moreover, ONOO- diminished tryptophan and tyrosine fluorescence, which was effectively restored by apigenin treatment. Apigenin also reduced the hydrophobicity of ONOO--damaged fibrinogen. Moreover, apigenin exhibited protective effects against ONOO--induced protein carbonylation. SDS-PAGE analyses revealed that ONOO-treatment eliminated bands corresponding to fibrinogen polypeptide chains Aα and γ, while apigenin preserved these changes. CONCLUSIONS This study highlights, for the first time, the role of apigenin in structural protection of human fibrinogen against peroxynitrite-induced nitrosative damage. Our data indicate that apigenin offers structural protection to all three polypeptide chains (Aα, Bβ, and γ) of human fibrinogen. Specifically, apigenin prevents the dislocation or breakdown of the amino acids tryptophan, tyrosine, lysine, arginine, proline, and threonine and also prevents the exposure of hydrophobic sites in fibrinogen induced by ONOO-.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Hail, Hail 55476, Hail Province, Saudi Arabia
| | - Mohammad Salahuddin
- Department of Physiology, College of Medicine, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Mohammed Ubaidullah Sayeed
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Qassim Province, Saudi Arabia;
| |
Collapse
|
3
|
Mitra M, Agarwal P, Roy S. The N-terminal MYB domains affect the stability and folding aspects of Arabidopsis thaliana MYB4 transcription factor under thermal stress. PROTOPLASMA 2021; 258:633-650. [PMID: 33398463 DOI: 10.1007/s00709-020-01590-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The MYB4 transcription factor, a member of R2R3-type subfamily of MYB domain protein, plays a key role in the regulation of accumulation of UV-B absorbing phenylpropanoids in Arabidopsis. Although UV-B and thermal stress generate some common stress response, the effect of elevated temperature on the conformational stability of MYB4 remains limited. This study describes the folding and aggregation properties of Arabidopsis MYB4 protein under thermal stress condition. Circular dichroism spectral studies and Bis-ANS binding assays have indicated that the removal of the N-terminal MYB domain affects the structural conformation of the protein and disrupts surface hydrophobic binding sites at higher temperature. Urea-induced equilibrium unfolding studies revealed that the removal of the N-terminal region lowers the thermodynamic stability of MYB4 at elevated temperature. Tryptophan fluorescence spectral pattern and both in vitro and in vivo aggregation studies have revealed the importance of the N-terminal second MYB domain encompassing the N-terminal 62-116 amino acid residues in regulating MYB4 protein stability at higher temperature. On the other hand, comparison of the growth response of wild-type Arabidopsis and atmyb4 mutant line have suggested that MYB4 may not directly affect plant response under thermal stress condition and only marginal role of MYB4 in controlling thermomorphogenesis in Arabidopsis. Interestingly, immunoprecipitation studies have revealed that HSP90 specifically interacts with MYB4 in vivo at the endogenous level, indicating the possible role of HSP90 in governing the stability of MYB4 at elevated temperature in Arabidopsis.
Collapse
Affiliation(s)
- Mehali Mitra
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, West Bengal, 713104, Burdwan, India
| | - Puja Agarwal
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, West Bengal, 713104, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, West Bengal, 713104, Burdwan, India.
| |
Collapse
|
4
|
Purification and sweetness properties of egg white lysozymes from Indonesian local poultry of ayam kampung and Cihateup duck. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
An insight into the folding and stability of Arabidopsis thaliana SOG1 transcription factor under salinity stress in vitro. Biochem Biophys Res Commun 2019; 515:531-537. [PMID: 31176488 DOI: 10.1016/j.bbrc.2019.05.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022]
Abstract
The present study describes the biophysical characterization of Arabidopsis thaliana SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) protein, a NAC domain transcription factor which plays central role in DNA damage response pathway, under salinity stress in vitro. Tryptophan fluorescence studies using purified recombinant wild type (full length) AtSOG1 and its N-terminal or C-terminal deletion forms (AtSOG1ΔNAC and AtSOG1ΔCT respectively) have revealed high salinity induced conformational change due to removal of the N-terminal NAC domain. Bis-ANS binding assays indicate that removal of the N-terminal NAC domain increases the surface hydrophobic binding sites, while the C-terminal region of SOG1 also plays important role in regulating the surface hydrophobicity aspects following exposure to high salinity. Circular dichroism (CD) spectral studies have indicated that removal of the N-terminal NAC domain affects the structural conformation of the protein under high salt concentration. Urea-induced equilibrium unfolding studies revealed decreased stability of C-terminal region due to removal of the N-terminal NAC domain. In vitro aggregation studies have indicated higher propensity of aggregation of AtSOG1ΔNAC due to salt treatment. Overall, our results provide evidence for the importance of both N-terminal NAC domain and the C-terminal region in regulating the stability of SOG1 protein under salinity stress in vitro.
Collapse
|
6
|
Rosú SA, Rimoldi OJ, Prieto ED, Curto LM, Delfino JM, Ramella NA, Tricerri MA. Amyloidogenic propensity of a natural variant of human apolipoprotein A-I: stability and interaction with ligands. PLoS One 2015; 10:e0124946. [PMID: 25950566 PMCID: PMC4423886 DOI: 10.1371/journal.pone.0124946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
Abstract
A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses.
Collapse
Affiliation(s)
- Silvana A. Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Omar J. Rimoldi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Eduardo D. Prieto
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, La Plata, Buenos Aires, Argentina
| | - Lucrecia M. Curto
- Departamento de Química Biológica e Instituto de Bioquímica y Biofísica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José M. Delfino
- Departamento de Química Biológica e Instituto de Bioquímica y Biofísica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel A. Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - M. Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
Godin-Roulling A, Schmidpeter PAM, Schmid FX, Feller G. Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environ Microbiol 2015; 17:2407-20. [PMID: 25389111 DOI: 10.1111/1462-2920.12707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 01/26/2023]
Abstract
Trigger factor (TF) is the first molecular chaperone interacting cotranslationally with virtually all nascent polypeptides synthesized by the ribosome in bacteria. Thermal adaptation of chaperone function was investigated in TFs from the Antarctic psychrophile Pseudoalteromonas haloplanktis, the mesophile Escherichia coli and the hyperthermophile Thermotoga maritima. This series covers nearly all temperatures encountered by bacteria. Although structurally homologous, these TFs display strikingly distinct properties that are related to the bacterial environmental temperature. The hyperthermophilic TF strongly binds model proteins during their folding and protects them from heat-induced misfolding and aggregation. It decreases the folding rate and counteracts the fast folding rate imposed by high temperature. It also functions as a carrier of partially folded proteins for delivery to downstream chaperones ensuring final maturation. By contrast, the psychrophilic TF displays weak chaperone activities, showing that these functions are less important in cold conditions because protein folding, misfolding and aggregation are slowed down at low temperature. It efficiently catalyses prolyl isomerization at low temperature as a result of its increased cellular concentration rather than from an improved activity. Some chaperone properties of the mesophilic TF possibly reflect its function as a cold shock protein in E. coli.
Collapse
Affiliation(s)
- Amandine Godin-Roulling
- Laboratory of Biochemistry, Centre for Protein Engineering, University of Liège, Liège, B-4000, Belgium
| | - Philipp A M Schmidpeter
- Laboratorium für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, D-95447, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, D-95447, Germany
| | - Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, University of Liège, Liège, B-4000, Belgium
| |
Collapse
|
8
|
Shi Y, Shinjo M, Zhou JM, Kihara H. Structural stability of E. coli trigger factor studied by synchrotron small-angle X-ray scattering. Biophys Chem 2014; 195:1-7. [PMID: 25133354 DOI: 10.1016/j.bpc.2014.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
Solution small-angle X-ray scattering (SAXS) is an effective technique for quantitatively measuring the compactness and shape of proteins. We use SAXS to study the structural characteristics and unfolding transitions induced by urea for full length Escherichia coli trigger factor (TF) and a series of truncation mutants, obtaining and comparing the radiuses of gyration (Rg), the distance-distribution function (P(r) function) and integrated intensity of TF variants in native and unfolding states. The C-terminal 72-residue truncated mutant TF360 exhibited dramatic structural differences and reduced stability compared with the whole TF molecule, while the N-domain truncated mutant MC maintained its compact structure with reduced stability. These results indicate that the C-terminal region of TF plays an important role in the structural and conformational stabilities of the TF molecule, while the N-domain is relatively independent.
Collapse
Affiliation(s)
- Yi Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China.
| | - Masaji Shinjo
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata 573-1010, Japan
| | - Jun-Mei Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Hiroshi Kihara
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata 573-1010, Japan.
| |
Collapse
|
9
|
Kamal MZ, Ali J, Rao NM. Binding of bis-ANS to Bacillus subtilis lipase: a combined computational and experimental investigation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1501-9. [PMID: 23639749 DOI: 10.1016/j.bbapap.2013.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 12/19/2022]
Abstract
8-Anilino-1-naphthalene sulfonate (ANS) and its covalent dimer bis-ANS are widely used for titrating hydrophobic surfaces of proteins. Interest to understand the nature of interaction of these dyes with proteins was seriously pursued. However as the techniques used in these studies varied, they often provided varied information regarding stoichiometry, binding affinity, actual binding sites etc. In the present study, we used combination of computation methods (docking and MD simulation) and experimental methods (mutations, steady-state and time-resolved fluorescence) to investigate bis-ANS interaction with Bacillus subtilis lipase. We identified seven binding sites for bis-ANS on lipase using computational docking and MD simulation and verified these data using a set of single amino acid substituted mutants. Docking and MD simulation studies indicated that the binding sites were various indentations and grooves on protein surface with hydrophobic characteristics. Both hydrophobic and ionic interactions were involved in each of these binding events. We further examine the fluorescence properties of bis-ANS bound to mutant lipases that either gained or lost a binding site. Our results indicated that neither gain nor loss of single binding site caused any change in fluorescence lifetimes (and their relative amplitudes) of mutant lipase-bound bis-ANS in comparison to that bound to wild type; hence, it suggested that nature of bis-ANS binding to each of the sites in lipase was very similar.
Collapse
Affiliation(s)
- Md Zahid Kamal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India.
| | | | | |
Collapse
|
10
|
Lakshmipathy SK, Gupta R, Pinkert S, Etchells SA, Hartl FU. Versatility of trigger factor interactions with ribosome-nascent chain complexes. J Biol Chem 2010; 285:27911-23. [PMID: 20595383 DOI: 10.1074/jbc.m110.134163] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trigger factor (TF) is the first molecular chaperone that interacts with nascent chains emerging from bacterial ribosomes. TF is a modular protein, consisting of an N-terminal ribosome binding domain, a PPIase domain, and a C-terminal domain, all of which participate in polypeptide binding. To directly monitor the interactions of TF with nascent polypeptide chains, TF variants were site-specifically labeled with an environmentally sensitive NBD fluorophore. We found a marked increase in TF-NBD fluorescence during translation of firefly luciferase (Luc) chains, which expose substantial regions of hydrophobicity, but not with nascent chains lacking extensive hydrophobic segments. TF remained associated with Luc nascent chains for 111 +/- 7 s, much longer than it remained bound to the ribosomes (t((1/2)) approximately 10-14 s). Thus, multiple TF molecules can bind per nascent chain during translation. The Escherichia coli cytosolic proteome was classified into predicted weak and strong interactors for TF, based on the occurrence of continuous hydrophobic segments in the primary sequence. The residence time of TF on the nascent chain generally correlated with the presence of hydrophobic regions and the capacity of nascent chains to bury hydrophobicity. Interestingly, TF bound the signal sequence of a secretory protein, pOmpA, but not the hydrophobic signal anchor sequence of the inner membrane protein FtsQ. On the other hand, proteins lacking linear hydrophobic segments also recruited TF, suggesting that TF can recognize hydrophobic surface features discontinuous in sequence. Moreover, TF retained significant affinity for the folded domain of the positively charged, ribosomal protein S7, indicative of an alternative mode of TF action. Thus, unlike other chaperones, TF appears to employ multiple mechanisms to interact with a wide range of substrate proteins.
Collapse
|
11
|
Reinke AA, Seh HY, Gestwicki JE. A chemical screening approach reveals that indole fluorescence is quenched by pre-fibrillar but not fibrillar amyloid-beta. Bioorg Med Chem Lett 2009; 19:4952-7. [PMID: 19640715 PMCID: PMC2730169 DOI: 10.1016/j.bmcl.2009.07.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 07/16/2009] [Indexed: 11/29/2022]
Abstract
Aggregated amyloid-beta (Abeta) peptide is implicated in the pathology of Alzheimer's disease. In vitro and in vivo, these aggregates are found in a variety of morphologies, including globular oligomers and linear fibrils, which possess distinct biological activities. However, known chemical probes, including the dyes thioflavin T and Congo Red, appear to lack selectivity for specific amyloid structures. To identify molecules that might differentiate between these architectures, we employed a fluorescence-based interaction assay to screen a collection of 68 known Abeta ligands against pre-formed oligomers and fibrils. In these studies, we found that the fluorescence of five indole-based compounds was selectively quenched ( approximately 15%) in the presence of oligomers, but remained unchanged after addition of fibrils. These results suggest that indoles might be complementary to existing chemical probes for studying amyloid formation in vitro.
Collapse
Affiliation(s)
- Ashley A. Reinke
- Departments of Biological Chemistry, Pathology and the Life Sciences Institute University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Han Yiau Seh
- Departments of Biological Chemistry, Pathology and the Life Sciences Institute University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Jason E. Gestwicki
- Departments of Biological Chemistry, Pathology and the Life Sciences Institute University of Michigan, Ann Arbor, Michigan 48109-2216
| |
Collapse
|
12
|
Fan DJ, Ding YW, Zhou JM. Structural rearrangements and the unfolding mechanism of a Trigger Factor mutant studied by multiple structural probes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:944-52. [DOI: 10.1016/j.bbapap.2009.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
13
|
Trigger factor from the psychrophilic bacterium Psychrobacter frigidicola is a monomeric chaperone. J Bacteriol 2008; 191:1162-8. [PMID: 19060145 DOI: 10.1128/jb.01137-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eubacteria, trigger factor (TF) is the first chaperone to interact with newly synthesized polypeptides and assist their folding as they emerge from the ribosome. We report the first characterization of a TF from a psychrophilic organism. TF from Psychrobacter frigidicola (TF(Pf)) was cloned, produced in Escherichia coli, and purified. Strikingly, cross-linking and fluorescence anisotropy analyses revealed it to exist in solution as a monomer, unlike the well-characterized, dimeric E. coli TF (TF(Ec)). Moreover, TF(Pf) did not exhibit the downturn in reactivation of unfolded GAPDH (glyceraldehyde-3-phosphate dehydrogenase) that is observed with its E. coli counterpart, even at high TF/GAPDH molar ratios and revealed dramatically reduced retardation of membrane translocation by a model recombinant protein compared to the E. coli chaperone. TF(Pf) was also significantly more effective than TF(Ec) at increasing the yield of soluble and functional recombinant protein in a cell-free protein synthesis system, indicating that it is not dependent on downstream systems for its chaperoning activity. We propose that TF(Pf) differs from TF(Ec) in its quaternary structure and chaperone activity, and we discuss the potential significance of these differences in its native environment.
Collapse
|
14
|
Thermal unfolding of Escherichia coli trigger factor studied by ultra-sensitive differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1728-34. [PMID: 18539163 DOI: 10.1016/j.bbapap.2008.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/22/2008] [Accepted: 05/08/2008] [Indexed: 11/22/2022]
Abstract
Temperature-induced unfolding of Escherichia coli trigger factor (TF) and its domain truncation mutants, NM and MC, were studied by ultra-sensitive differential scanning calorimetry (UC-DSC). Detailed thermodynamic analysis showed that thermal induced unfolding of TF and MC involves population of dimeric intermediates. In contrast, the thermal unfolding of the NM mutant involves population of only monomeric states. Covalent cross-linking experiments confirmed the presence of dimeric intermediates during thermal unfolding of TF and MC. These data not only suggest that the dimeric form of TF is extremely resistant to thermal unfolding, but also provide further evidence that the C-terminal domain of TF plays a vital role in forming and stabilizing the dimeric structure of the TF molecule. Since TF is the first molecular chaperone that nascent polypeptides encounter in eubacteria, the stable dimeric intermediates of TF populated during thermal denaturation might be important in responding to stress damage to the cell, such as heat shock.
Collapse
|
15
|
Latypov RF, Liu D, Gunasekaran K, Harvey TS, Razinkov VI, Raibekas AA. Structural and thermodynamic effects of ANS binding to human interleukin-1 receptor antagonist. Protein Sci 2008; 17:652-63. [PMID: 18305195 DOI: 10.1110/ps.073332408] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although 8-anilinonaphthalene-1-sulfonic acid (ANS) is frequently used in protein folding studies, the structural and thermodynamic effects of its binding to proteins are not well understood. Using high-resolution two-dimensional NMR and human interleukin-1 receptor antagonist (IL-1ra) as a model protein, we obtained detailed information on ANS-protein interactions in the absence and presence of urea. The effects of ambient to elevated temperatures on the affinity and specificity of ANS binding were assessed from experiments performed at 25 degrees C and 37 degrees C. Overall, the affinity of ANS was lower at 37 degrees C compared to 25 degrees C, but no significant change in the site specificity of binding was observed from the chemical shift perturbation data. The same site-specific binding was evident in the presence of 5.2 M urea, well within the unfolding transition region, and resulted in selective stabilization of the folded state. Based on the two-state denaturation mechanism, ANS-dependent changes in the protein stability were estimated from relative intensities of two amide resonances specific to the folded and unfolded states of IL-1ra. No evidence was found for any ANS-induced partially denatured or aggregated forms of IL-1ra throughout the experimental conditions, consistent with a cooperative and reversible denaturation process. The NMR results support earlier observations on the tendency of ANS to interact with solvent-exposed positively charged sites on proteins. Under denaturing conditions, ANS binding appears to be selective to structured states rather than unfolded conformations. Interestingly, the binding occurs within a previously identified aggregation-critical region in IL-1ra, thus providing an insight into ligand-dependent protein aggregation.
Collapse
Affiliation(s)
- Ramil F Latypov
- Department of Pharmaceutics, Amgen Inc., Seattle, Washington 98119-3105, USA.
| | | | | | | | | | | |
Collapse
|