1
|
Huang X, Dai Z, Li Q, Lin X, Huang Q, Zeng T. Roles and regulatory mechanisms of KIN17 in cancers (Review). Oncol Lett 2023; 25:137. [PMID: 36909374 PMCID: PMC9996293 DOI: 10.3892/ol.2023.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
KIN17, which is known as a DNA and RNA binding protein, is highly expressed in numerous types of human cancers and was discovered to participate in several vital cell behaviors, including DNA replication, damage repair, regulation of cell cycle and RNA processing. Furthermore, KIN17 is associated with cancer cell proliferation, migration, invasion and cell cycle regulation by regulating pathways including the p38 MAPK, NF-κB-Snail and TGF-β/Smad2 signaling pathways. In addition, knockdown of KIN17 was found to enhance the sensitivity of tumor cells to chemotherapeutic agents. Immunohistochemical analysis revealed that there were significant differences in the expression of KIN17 between cancer tissues and adjacent tissues. Both the Kaplan-Meier survival analysis and multivariate Cox regression analysis indicated that KIN17 is aberrantly high expressed in various tumor tissues and is also associated with poor prognosis in patients with various tumor types. Taken together, KIN17 has key roles in tumorigenesis and cancer development. Investigating the relationship between KIN17 and neoplasms will provide a vital theoretical basis for KIN17 to serve as a diagnostic and prognostic biomarker for cancer patients and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xueran Huang
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zichang Dai
- Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiuyan Li
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qiyuan Huang
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tao Zeng
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
2
|
A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5' splice site identity. PLoS Genet 2022; 18:e1010028. [PMID: 35143478 PMCID: PMC8865678 DOI: 10.1371/journal.pgen.1010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/23/2022] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
Pre-mRNA splicing is an essential step of eukaryotic gene expression carried out by a series of dynamic macromolecular protein/RNA complexes, known collectively and individually as the spliceosome. This series of spliceosomal complexes define, assemble on, and catalyze the removal of introns. Molecular model snapshots of intermediates in the process have been created from cryo-EM data, however, many aspects of the dynamic changes that occur in the spliceosome are not fully understood. Caenorhabditis elegans follow the GU-AG rule of splicing, with almost all introns beginning with 5’ GU and ending with 3’ AG. These splice sites are identified early in the splicing cycle, but as the cycle progresses and “custody” of the pre-mRNA splice sites is passed from factor to factor as the catalytic site is built, the mechanism by which splice site identity is maintained or re-established through these dynamic changes is unclear. We performed a genetic screen in C. elegans for factors that are capable of changing 5’ splice site choice. We report that KIN17 and PRCC are involved in splice site choice, the first functional splicing role proposed for either of these proteins. Previously identified suppressors of cryptic 5’ splicing promote distal cryptic GU splice sites, however, mutations in KIN17 and PRCC instead promote usage of an unusual proximal 5’ splice site which defines an intron beginning with UU, separated by 1nt from a GU donor. We performed high-throughput mRNA sequencing analysis and found that mutations in PRCC, and to a lesser extent KIN17, changed alternative 5’ splice site usage at native sites genome-wide, often promoting usage of nearby non-consensus sites. Our work has uncovered both fine and coarse mechanisms by which the spliceosome maintains splice site identity during the complex assembly process. Pre-messenger RNA splicing is an important regulator of eukaryotic gene expression, changing the content, frame, and functionality of both coding and non-coding transcripts. Our understanding of how the spliceosome chooses where to cut has focused on the initial identification of splice sites. However, our results suggest that the spliceosome also relies on other components in later steps to maintain the identity of the splice donor sites. We are currently in the midst of a “resolution revolution”, with ever-clearer cryo-EM snapshots of stalled complexes, allowing researchers to visualize moments in time in the splicing cycle. These models are illuminating, but do not always elucidate mechanistic functioning of a highly dynamic ribonucleoprotein complex. Therefore, our lab takes a complementary approach, using the power of genetics in a multicellular animal to gain functional insights into the spliceosome. Using a C.elegans genetic screen, we have found novel functional splicing roles for two proteins, KIN17 and PRCC. Mutations in PRCC in particular promote nearby alternative 5’ splice sites at native loci. This work improves our understanding of how the spliceosome maintains the identity of where to cut the pre-mRNA, and thus how genes are expressed and used in multicellular animals.
Collapse
|
3
|
de Lourenço IO, Seixas FAV, Fernandez MA, Almeida FCL, Fossey MA, de Souza FP, Caruso ÍP. 1H, 15N, and 13C resonance assignments of the SH3-like tandem domain of human KIN protein. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:449-453. [PMID: 34417717 DOI: 10.1007/s12104-021-10044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
KIN is a DNA/RNA-binding protein conserved evolutionarily from yeast to humans and expressed ubiquitously in mammals. It is an essential nuclear protein involved in numerous cellular processes, such as DNA replication, class-switch recombination, cell cycle regulation, and response to UV or ionizing radiation-induced DNA damage. The C-terminal region of the human KIN (hKIN) protein is composed of an SH3-like tandem domain, which is crucial for the anti-proliferation effect of the full-length protein. Herein, we present the 1H, 15N, and 13C resonances assignment of the backbone and side chains for the SH3-like tandem domain of the hKIN protein, as well as the secondary structure prediction based on the assigned chemical shifts using TALOS-N software. This work prepares the ground for future studies of RNA-binding and backbone dynamics.
Collapse
Affiliation(s)
- Isabella Otenio de Lourenço
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Maria Aparecida Fernandez
- Department of Biotechnology, Genetics and Cell Biology, Maringá State University (UEM), Maringá, PR, 87020-900, Brazil
| | - Fabio Ceneviva Lacerda Almeida
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Marcelo Andrés Fossey
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Fátima Pereira de Souza
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Ícaro Putinhon Caruso
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, 15054-000, Brazil.
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
4
|
Interactome Analysis of KIN (Kin17) Shows New Functions of This Protein. Curr Issues Mol Biol 2021; 43:767-781. [PMID: 34449532 PMCID: PMC8929021 DOI: 10.3390/cimb43020056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein-protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.
Collapse
|
5
|
Pattaro Júnior JR, Caruso ÍP, de Lima Neto QA, Duarte Junior FF, dos Santos Rando F, Gerhardt ECM, Fernandez MA, Seixas FAV. Biophysical characterization and molecular phylogeny of human KIN protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:645-657. [DOI: 10.1007/s00249-019-01390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 11/24/2022]
|
6
|
Weisser M, Schäfer T, Leibundgut M, Böhringer D, Aylett CHS, Ban N. Structural and Functional Insights into Human Re-initiation Complexes. Mol Cell 2017; 67:447-456.e7. [PMID: 28732596 DOI: 10.1016/j.molcel.2017.06.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023]
Abstract
After having translated short upstream open reading frames, ribosomes can re-initiate translation on the same mRNA. This process, referred to as re-initiation, controls the translation of a large fraction of mammalian cellular mRNAs, many of which are important in cancer. Key ribosomal binding proteins involved in re-initiation are the eukaryotic translation initiation factor 2D (eIF2D) or the homologous complex of MCT-1/DENR. We determined the structures of these factors bound to the human 40S ribosomal subunit in complex with initiator tRNA positioned on an mRNA start codon in the P-site using a combination of cryoelectron microscopy and X-ray crystallography. The structures, supported by biochemical experiments, reveal how eIF2D emulates the function of several canonical translation initiation factors by using three independent, flexibly connected RNA binding domains to simultaneously monitor codon-anticodon interactions in the ribosomal P-site and position the initiator tRNA.
Collapse
Affiliation(s)
- Melanie Weisser
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Tanja Schäfer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Böhringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
7
|
Conrad KS, Hurley JM, Widom J, Ringelberg CS, Loros JJ, Dunlap JC, Crane BR. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J 2016; 35:1707-19. [PMID: 27340124 PMCID: PMC4969578 DOI: 10.15252/embj.201694327] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022] Open
Abstract
In the Neurospora crassa circadian clock, a protein complex of frequency (FRQ), casein kinase 1a (CK1a), and the FRQ-interacting RNA Helicase (FRH) rhythmically represses gene expression by the white-collar complex (WCC). FRH crystal structures in several conformations and bound to ADP/RNA reveal differences between FRH and the yeast homolog Mtr4 that clarify the distinct role of FRH in the clock. The FRQ-interacting region at the FRH N-terminus has variable structure in the absence of FRQ A known mutation that disrupts circadian rhythms (R806H) resides in a positively charged surface of the KOW domain, far removed from the helicase core. We show that changes to other similarly located residues modulate interactions with the WCC and FRQ A V142G substitution near the N-terminus also alters FRQ and WCC binding to FRH, but produces an unusual short clock period. These data support the assertion that FRH helicase activity does not play an essential role in the clock, but rather FRH acts to mediate contacts among FRQ, CK1a and the WCC through interactions involving its N-terminus and KOW module.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine, Hanover, NH, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Garcia-Molina A, Xing S, Huijser P. The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development. PLANT SIGNALING & BEHAVIOR 2014; 9:e28634. [PMID: 24713636 PMCID: PMC4091612 DOI: 10.4161/psb.28634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-like-protein (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development.
Collapse
|
9
|
Peng D, Kim JH, Kroncke BM, Law CL, Xia Y, Droege KD, Van Horn WD, Vanoye CG, Sanders CR. Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel. Biochemistry 2014; 53:2032-42. [PMID: 24606221 PMCID: PMC3977583 DOI: 10.1021/bi500102w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
KCNQ1 (also known as KV7.1 or KVLQT1) is a voltage-gated potassium channel modulated by members of the KCNE protein family. Among multiple functions, KCNQ1 plays a critical role in the cardiac action potential. This channel is also subject to inherited mutations that cause certain cardiac arrhythmias and deafness. In this study, we report the overexpression, purification, and preliminary structural characterization of the voltage-sensor domain (VSD) of human KCNQ1 (Q1-VSD). Q1-VSD was expressed in Escherichia coli and purified into lyso-palmitoylphosphatidylglycerol micelles, conditions under which this tetraspan membrane protein yields excellent nuclear magnetic resonance (NMR) spectra. NMR studies reveal that Q1-VSD shares a common overall topology with other channel VSDs, with an S0 helix followed by transmembrane helices S1-S4. The exact sequential locations of the helical spans do, however, show significant variations from those of the homologous segments of previously characterized VSDs. The S4 segment of Q1-VSD was seen to be α-helical (with no 310 component) and underwent rapid backbone amide H-D exchange over most of its length. These results lay the foundation for more advanced structural studies and can be used to generate testable hypotheses for future structure-function experiments.
Collapse
Affiliation(s)
- Dungeng Peng
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Garcia-Molina A, Xing S, Huijser P. A conserved KIN17 curved DNA-binding domain protein assembles with SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 to adapt Arabidopsis growth and development to limiting copper availability. PLANT PHYSIOLOGY 2014; 164:828-40. [PMID: 24335506 PMCID: PMC3912109 DOI: 10.1104/pp.113.228239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/07/2013] [Indexed: 05/19/2023]
Abstract
Proper copper (Cu) homeostasis is required by living organisms to maintain essential cellular functions. In the model plant Arabidopsis (Arabidopsis thaliana), the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) transcription factor participates in reprogramming global gene expression during Cu insufficiency in order to improve the metal uptake and prioritize its distribution to Cu proteins of major importance. As a consequence, spl7 null mutants show morphological and physiological disorders during Cu-limited growth, resulting in lower fresh weight, reduced root elongation, and chlorosis. On the other hand, the Arabidopsis KIN17 homolog belongs to a well-conserved family of essential eukaryotic nuclear proteins known to be stress activated and involved in DNA and possibly RNA metabolism in mammals. In the study presented here, we uncovered that Arabidopsis KIN17 participates in promoting the Cu deficiency response by means of a direct interaction with SPL7. Moreover, the double mutant kin17-1 spl7-2 displays an enhanced Cu-dependent phenotype involving growth arrest, oxidative stress, floral bud abortion, and pollen inviability. Taken together, the data presented here provide evidence for SPL7 and KIN17 protein interaction as a point of convergence in response to both Cu deficiency and oxidative stress.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shuping Xing
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
11
|
Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B. Methylation of the DNA/RNA-binding protein Kin17 by METTL22 affects its association with chromatin. J Proteomics 2013; 100:115-24. [PMID: 24140279 DOI: 10.1016/j.jprot.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Kin17 is a protein that was discovered through its immunoreactivity towards an antibody directed against prokaryotic RecA. Further study of Kin17 revealed a function in DNA replication and repair, as well as in pre-mRNA processing. Recently, it was found that Kin17 is methylated on lysine 135 by the newly discovered methyltransferase METTL22. To better understand the function of Kin17 and its regulation by methylation, we used multiple cell compartment protein affinity purification coupled with mass spectrometry (MCC-AP-MS) to identify novel interaction partners of Kin17 and to assess whether these interactions can take place on chromatin. Our results confirm that Kin17 interacts with METTL22 both in the soluble and chromatin fractions. We also show that many RNA-binding proteins, including the previously identified interactor BUD13 as well as spliceosomal and ribosomal subunits, associate with Kin17 in the soluble fraction. Interestingly, overexpression of METTL22 in HEK 293 cells displaces Kin17 from the chromatin to the cytoplasmic fraction, suggesting a role for methylation of lysine 135, a residue that lies within a winged helix domain of Kin17, in regulating association with chromatin. These results are discussed in view of the putative cellular function of Kin17. BIOLOGICAL SIGNIFICANCE The results shown here broaden our understanding of METTL22, a member of a family of newly-discovered non-histone lysine methyltransferases and its substrate, Kin17, a DNA/RNA-binding protein with reported roles in DNA repair and replication and mRNA processing. An innovative method to study protein-protein interactions in multiple cell compartments is employed to outline the interaction network of both proteins. Functional experiments uncover a correlative role between Kin17 lysine methylation and its association with chromatin. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
12
|
|