1
|
Rutherford J, Avad K, Dureja C, Norseeda K, GC B, Wu C, Sun D, Hevener KE, Hurdle JG. Evaluation of Fusobacterium nucleatum Enoyl-ACP Reductase (FabK) as a Narrow-Spectrum Drug Target. ACS Infect Dis 2024; 10:1612-1623. [PMID: 38597503 PMCID: PMC11091888 DOI: 10.1021/acsinfecdis.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 μM (1.0 μg/mL) and a MIC of 0.4 μg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Jacob
T. Rutherford
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Kristiana Avad
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chetna Dureja
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Krissada Norseeda
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Bibek GC
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Chenggang Wu
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Kirk E. Hevener
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Jian X, Pang F, Hobson C, Jenner M, Alkhalaf LM, Challis GL. Antibiotic Skeletal Diversification via Differential Enoylreductase Recruitment and Module Iteration in trans-Acyltransferase Polyketide Synthases. J Am Chem Soc 2024; 146:6114-6124. [PMID: 38389455 PMCID: PMC10921412 DOI: 10.1021/jacs.3c13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Microorganisms are remarkable chemists capable of assembling complex molecular architectures that penetrate cells and bind biomolecular targets with exquisite selectivity. Consequently, microbial natural products have wide-ranging applications in medicine and agriculture. How the "blind watchmaker" of evolution creates skeletal diversity is a key question in natural products research. Comparative analysis of biosynthetic pathways to structurally related metabolites is an insightful approach to addressing this. Here, we report comparative biosynthetic investigations of gladiolin, a polyketide antibiotic from Burkholderia gladioli with promising activity against multidrug-resistant Mycobacterium tuberculosis, and etnangien, a structurally related antibiotic produced by Sorangium cellulosum. Although these metabolites have very similar macrolide cores, their C21 side chains differ significantly in both length and degree of saturation. Surprisingly, the trans-acyltransferase polyketide synthases (PKSs) that assemble these antibiotics are almost identical, raising intriguing questions about mechanisms underlying structural diversification in this important class of biosynthetic assembly line. In vitro reconstitution of key biosynthetic transformations using simplified substrate analogues, combined with gene deletion and complementation experiments, enabled us to elucidate the origin of all the structural differences in the C21 side chains of gladiolin and etnangien. The more saturated gladiolin side chain arises from a cis-acting enoylreductase (ER) domain in module 1 and in trans recruitment of a standalone ER to module 5 of the PKS. Remarkably, module 5 of the gladiolin PKS is intrinsically iterative in the absence of the standalone ER, accounting for the longer side chain in etnangien. These findings have important implications for biosynthetic engineering approaches to the creation of novel polyketide skeletons.
Collapse
Affiliation(s)
- Xinyun Jian
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, U.K.
- Department
of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC
Centre of Excellence for Innovations in Protein and Peptide Science, Monash University, Clayton, VIC 3800, Australia
| | - Fang Pang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Christian Hobson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew Jenner
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, U.K.
| | - Lona M. Alkhalaf
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Gregory L. Challis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, U.K.
- Department
of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC
Centre of Excellence for Innovations in Protein and Peptide Science, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Purakkel U, Praveena G, Madabhushi VY, Jadav SS, Prakasham RS, Dasugari Varakala SG, Sriram D, Blanch EW, Maniam S. Thiazolotriazoles As Anti-infectives: Design, Synthesis, Biological Evaluation and In Silico Studies. ACS OMEGA 2024; 9:8846-8861. [PMID: 38434818 PMCID: PMC10905600 DOI: 10.1021/acsomega.3c06324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
The rational design of novel thiazolo[2,3-c][1,2,4]triazole derivatives was carried out based on previously identified antitubercular hit molecule H127 for discovering potent compounds showing antimicrobial activity. The designed compounds were screened for their binding efficacies against the antibacterial drug target enoyl-[acyl-carrier-protein] reductase, followed by prediction of drug-likeness and ADME properties. The designed analogues were chemically synthesized, characterized by spectroscopic techniques, followed by evaluation of antimicrobial activity against bacterial and fungal strains, as well as antitubercular activity against M. tuberculosis and M. bovis strains. Among the synthesized compounds, five compounds, 10, 11, 35, 37 and 38, revealed antimicrobial activity, albeit with differential potency against various microbial strains. Compounds 10 and 37 were the most active against S. mutans (MIC: 8 μg/mL), while compounds 11 and 37 showed the highest activity against B. subtillis (MIC: 16 μg/mL), whereas compounds 10, 11 and 37 displayed activities against E. coli (MIC: 16 μg/mL). Meanwhile, compounds 10 and 35 depicted activities against S. typhi (MIC: 16 μg/mL) and compound 10 showed antifungal activity against C. albicans (MIC: 32 μg/mL). The current study has identified two broad-spectrum antibacterial hit compounds (10 and 37). Further structural investigation on these molecules is underway to enhance their potency.
Collapse
Affiliation(s)
- Umadevi
Kizhakke Purakkel
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ganji Praveena
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Valli Y. Madabhushi
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reddy Shetty Prakasham
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | | | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
& Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ewan W. Blanch
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Subashani Maniam
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
4
|
Iyer KR, Li SC, Revie NM, Lou JW, Duncan D, Fallah S, Sanchez H, Skulska I, Ušaj MM, Safizadeh H, Larsen B, Wong C, Aman A, Kiyota T, Yoshimura M, Kimura H, Hirano H, Yoshida M, Osada H, Gingras AC, Andes DR, Shapiro RS, Robbins N, Mazhab-Jafari MT, Whitesell L, Yashiroda Y, Boone C, Cowen LE. Identification of triazenyl indoles as inhibitors of fungal fatty acid biosynthesis with broad-spectrum activity. Cell Chem Biol 2023; 30:795-810.e8. [PMID: 37369212 PMCID: PMC11016341 DOI: 10.1016/j.chembiol.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.
Collapse
Affiliation(s)
- Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena C Li
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada; RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer W Lou
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dustin Duncan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mojca Mattiazzi Ušaj
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Hamid Safizadeh
- Department of Computer Science and Engineering and Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Brett Larsen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Cassandra Wong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiromi Kimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | | | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Japan.
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada; RIKEN Center for Sustainable Resource Science, Wako, Japan.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Norseeda K, Bin Aziz Pavel F, Rutherford JT, Meer HN, Dureja C, Hurdle JG, Hevener KE, Sun D. Synthesis and evaluation of phenylimidazole FabK inhibitors as new Anti-C. Difficile agents. Bioorg Med Chem 2023; 88-89:117330. [PMID: 37224699 PMCID: PMC10834300 DOI: 10.1016/j.bmc.2023.117330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Previously, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea bearing a p-bromine substitution was shown to possess selective inhibitory activity against the Clostridioides difficile enoyl-acyl carrier protein (ACP) reductase II enzyme, FabK. Inhibition of CdFabK by this compound translated to promising antibacterial activity in the low micromolar range. In these studies, we sought to expand our knowledge of the SAR of the phenylimidazole CdFabK inhibitor series while improving the potency of the compounds. Three main series of compounds were synthesized and evaluated based on: 1) pyridine head group modifications including the replacement with a benzothiazole moiety, 2) linker explorations, and 3) phenylimidazole tail group modifications. Overall, improvement in the CdFabK inhibition was achieved, while maintaining the whole cell antibacterial activity. Specifically, compounds 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-((3-(trifluoromethyl)pyridin-2-yl)thio)thiazol-2-yl)urea, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-(trifluoromethyl)benzo[d]thiazol-2-yl)urea, and 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-chlorobenzo[d]thiazol-2-yl)urea showed CdFabK inhibition (IC50 = 0.10 to 0.24 μM), a 5 to 10-fold improvement in biochemical activity relative to 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea, with anti-C. difficile activity ranging from 1.56 to 6.25 μg/mL. Detailed analysis of the expanded SAR, supported by computational analysis, is presented.
Collapse
Affiliation(s)
- Krissada Norseeda
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States
| | - Fahad Bin Aziz Pavel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jacob T Rutherford
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, United States
| | - Humna N Meer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, United States
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States.
| |
Collapse
|
6
|
Biasi‐Garbin RP, Fabris M, Morguette AEB, Andriani GM, Cabral WRC, Pereira PML, Brito TO, Macedo F, Da Silva Lima CH, Lancheros CAC, Nakamura CV, Pinge‐Filho P, Tavares ER, Yamauchi LM, Bispo MLF, Yamada‐Ogatta SF. In Vitro Antimicrobial Screening of Benzoylthioureas: Synthesis, Antibacterial Activity toward
Streptococcus agalactiae
and Molecular Docking Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202202117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Renata P. Biasi‐Garbin
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Marciéli Fabris
- Departamento de Química Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Ana Elisa B. Morguette
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Gabriella M. Andriani
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Weslei R. C. Cabral
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Patrícia M. L. Pereira
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Tiago O. Brito
- Departamento de Química Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Fernando Macedo
- Departamento de Química Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Camilo H. Da Silva Lima
- Departamento de Química Orgânica Universidade Federal do Rio de Janeiro Avenida Athos da Silveira Ramos, n° 149, Bloco A, Centro de Tecnologia, Cidade Universitária 21941-909 Rio de Janeiro Rio de Janeiro - RJ Brazil
| | | | - Celso V. Nakamura
- Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Phileno Pinge‐Filho
- Departamento de Ciências Patológicas Universidade Estadual de Londrina Departamento de Ciências Básicas da Saúde Universidade Estadual de Maringá Avenida Colombo, 5790, Campus Universitário 87020-900 Maringá Paraná Brazil
| | - Eliandro R. Tavares
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Lucy M. Yamauchi
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Marcelle L. F. Bispo
- Departamento de Química Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| | - Sueli F. Yamada‐Ogatta
- Programa de Pós-graduação em Microbiologia Departamento de Microbiologia Universidade Estadual de Londrina Rodovia Celso Garcia Cid s/n, Campus Universitário 86057-970 Londrina Paraná Brazil
| |
Collapse
|
7
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
8
|
Hopf FSM, Roth CD, de Souza EV, Galina L, Czeczot AM, Machado P, Basso LA, Bizarro CV. Bacterial Enoyl-Reductases: The Ever-Growing List of Fabs, Their Mechanisms and Inhibition. Front Microbiol 2022; 13:891610. [PMID: 35814645 PMCID: PMC9260719 DOI: 10.3389/fmicb.2022.891610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Enoyl-ACP reductases (ENRs) are enzymes that catalyze the last step of the elongation cycle during fatty acid synthesis. In recent years, new bacterial ENR types were discovered, some of them with structures and mechanisms that differ from the canonical bacterial FabI enzymes. Here, we briefly review the diversity of structural and catalytic properties of the canonical FabI and the new FabK, FabV, FabL, and novel ENRs identified in a soil metagenome study. We also highlight recent efforts to use the newly discovered Fabs as targets for drug development and consider the complex evolutionary history of this diverse set of bacterial ENRs.
Collapse
Affiliation(s)
- Fernanda S. M. Hopf
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Candida D. Roth
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduardo V. de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Galina
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexia M. Czeczot
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano V. Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Cristiano V. Bizarro,
| |
Collapse
|
9
|
Torres-Guzman JC, Padilla-Guerrero IE, Cervantes-Quintero KY, Martinez-Vazquez A, Ibarra-Guzman M, Gonzalez-Hernandez GA. Peculiarities of nitronate monooxygenases and perspectives for in vivo and in vitro applications. Appl Microbiol Biotechnol 2021; 105:8019-8032. [PMID: 34655320 DOI: 10.1007/s00253-021-11623-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Nitroalkanes such as nitromethane, nitroethane, 1-nitropropane (1NP), and 2-nitropropane (2NP), derived from anthropogenic activities, are hazardous environmental pollutants due to their toxicity and carcinogenic activity. In nature, 3-nitropropionate (3NPA) and its derivatives are produced as a defense mechanism by many groups of organisms, including bacteria, fungi, insects, and plants. 3NPA is highly toxic as its conjugate base, propionate-3-nitronate (P3N), is a potent inhibitor of mitochondrial succinate dehydrogenase, essential to the tricarboxylic acid cycle, and can inhibit isocitrate lyase, a critical enzyme of the glyoxylate cycle. In response to these toxic compounds, several organisms on the phylogenetic scale express genes that code for enzymes involved in the catabolism of nitroalkanes: nitroalkane oxidases (NAOs) and nitronate monooxygenases (NMOs) (previously classified as nitropropane dioxygenases, NPDs). Two types of NMOs have been identified: class I and class II, which differ in structure, catalytic efficiency, and preferred substrates. This review focuses on the biochemical properties, structure, classification, and physiological functions of NMOs, and offers perspectives for their in vivo and in vitro applications. KEY POINTS: • Nitronate monooxygenases (NMOs) are key enzymes in nitroalkane catabolism. • NMO enzymes are involved in defense mechanisms in different organisms. • NMO applications include organic synthesis, biocatalysts, and bioremediation.
Collapse
Affiliation(s)
- Juan Carlos Torres-Guzman
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | | | | | - Azul Martinez-Vazquez
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | - Marcos Ibarra-Guzman
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | | |
Collapse
|
10
|
Snowden JS, Alzahrani J, Sherry L, Stacey M, Rowlands DJ, Ranson NA, Stonehouse NJ. Structural insight into Pichia pastoris fatty acid synthase. Sci Rep 2021; 11:9773. [PMID: 33963233 PMCID: PMC8105331 DOI: 10.1038/s41598-021-89196-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Type I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.
Collapse
Affiliation(s)
- Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jehad Alzahrani
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin Stacey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Zhang M, Zhang H, Li Q, Gao Y, Guo L, He L, Zang S, Guo X, Huang J, Li L. Structural Insights into the Trans-Acting Enoyl Reductase in the Biosynthesis of Long-Chain Polyunsaturated Fatty Acids in Shewanella piezotolerans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2316-2324. [PMID: 33587627 DOI: 10.1021/acs.jafc.0c07386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two long-chain polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play vital roles in human health. Similarly, two biosynthetic pathways, based on desaturase/elongase and polyketide synthase, have been implicated in the synthesis of microbial LC-PUFA. Up to now, only several microalgae, no bacteria, have been used in the commercial production of oils rich in DHA and/or EPA. Fully understanding the enzymatic mechanism in the biosynthesis of LC-PUFA would contribute significantly to produce EPA and/or DHA by the bacteria. In this study, we report a 1.998 Å-resolution crystal structure of trans-acting enoyl reductase (ER), SpPfaD, from Shewanella piezotolerans. The SpPfaD model consists of one homodimer in the asymmetric unit, and each subunit contains three domains. These include an N-terminal, a central domain forming a classic TIM barrel with a single FMN cofactor molecule bound atop the barrel, and a C-terminal domain with a lid above the TIM barrel. Furthermore, we docked oxidized nicotinamide adenine dinucleotide phosphate (NADP) and an inhibitor 2-(4-(2-((3-(5-(pyridin-2-ylthio)thiazol-2-yl)ureido)methyl)-1H-imidazole-4-yl)phenoxy)acetic acid (TUI) molecule into the active site and analyzed the inhibition and catalytic mechanisms of the enoyl reductase SpPfaD. To the best of our knowledge, this is the first crystal structure of trans-ER in the biosynthesis of bacterial polyketides.
Collapse
Affiliation(s)
- Mingliang Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan 430071, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
- The State Key Laboratory of Virology, Wuhan 430071, P. R. China
| | - Yangle Gao
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Lijun Guo
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Liu He
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Shanshan Zang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Xing Guo
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Li Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| |
Collapse
|
12
|
Radka CD, Frank MW, Yao J, Seetharaman J, Miller DJ, Rock CO. The genome of a Bacteroidetes inhabitant of the human gut encodes a structurally distinct enoyl-acyl carrier protein reductase (FabI). J Biol Chem 2020; 295:7635-7652. [PMID: 32317282 PMCID: PMC7261799 DOI: 10.1074/jbc.ra120.013336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthew W. Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, To whom correspondence should be addressed:
262 Danny Thomas Place, Memphis, TN 38105. Tel.:
901-595-3491; E-mail:
| |
Collapse
|
13
|
Jones JA, Prior AM, Marreddy RKR, Wahrmund RD, Hurdle JG, Sun D, Hevener KE. Small-Molecule Inhibition of the C. difficile FAS-II Enzyme, FabK, Results in Selective Activity. ACS Chem Biol 2019; 14:1528-1535. [PMID: 31184849 DOI: 10.1021/acschembio.9b00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of significant morbidity, mortality, and healthcare-related costs in the United States. After standard therapy, recurrence rates remain high, and multiple recurrences are not uncommon. Causes include treatments employing broad-spectrum agents that disrupt the normal host microbiota, as well as treatment-resistant spore formation by C. difficile. Thus, novel druggable anti-C. difficile targets that promote narrow-spectrum eradication and inhibition of sporulation are desired. As a critical rate-limiting step within the FAS-II bacterial fatty acid synthesis pathway, which supplies precursory component phospholipids found in bacterial cytoplasmic and spore-mediated membranes, enoyl-acyl carrier protein (ACP) reductase II (FabK) represents such a target. FabK is essential in C. difficile (CdFabK) and is structurally and mechanistically distinct from other isozymes found in gut microbiota species, making CdFabK an attractive narrow-spectrum target. We report here the kinetic evaluation of CdFabK, the biochemical activity of a series of phenylimidazole analogues, and microbiological data suggesting these compounds' selective antibacterial activity against C. difficile versus several other prominent gut organisms. The compounds display promising, selective, low micromolar CdFabK inhibitory activity without significantly affecting the growth of other gut organisms, and the series prototype (1b) is shown to be competitive for the CdFabK cofactor and uncompetitive for the substrate. A series analogue (1g) shows maintained inhibitory activity while also possessing increased solubility. These findings represent the basis for future drug discovery efforts by characterizing the CdFabK enzyme while demonstrating its druggability and potential role as a narrow-spectrum antidifficile target.
Collapse
Affiliation(s)
- Jesse A. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Allan M. Prior
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, 96720, United States
| | - Ravi K. R. Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Rebecca D. Wahrmund
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, 96720, United States
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
14
|
Marreddy RKR, Wu X, Sapkota M, Prior AM, Jones JA, Sun D, Hevener KE, Hurdle JG. The Fatty Acid Synthesis Protein Enoyl-ACP Reductase II (FabK) is a Target for Narrow-Spectrum Antibacterials for Clostridium difficile Infection. ACS Infect Dis 2019; 5:208-217. [PMID: 30501172 DOI: 10.1021/acsinfecdis.8b00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clostridium difficile infection (CDI) is an antibiotic-induced microbiota shift disease of the large bowel. While there is a need for narrow-spectrum CDI antibiotics, it is unclear which cellular proteins are appropriate drug targets to specifically inhibit C. difficile. We evaluated the enoyl-acyl carrier protein (ACP) reductase II (FabK), which catalyzes the final step of bacterial fatty acid biosynthesis. Bioinformatics showed that C. difficile uses FabK as its sole enoyl-ACP reductase, unlike several major microbiota species. The essentiality of fabK for C. difficile growth was confirmed by failure to delete this gene using ClosTron mutagenesis and by growth inhibition upon gene silencing with CRISPR interference antisense to fabK transcription or by blocking protein translation. Inhibition of C. difficile's FASII pathway could not be circumvented by supply of exogenous fatty acids, either during fabK's gene silencing or upon inhibition of the enzyme with a phenylimidazole-derived inhibitor (1). The inability of fatty acids to bypass FASII inhibition is likely due to the function of the transcriptional repressor FapR. Inhibition of FabK also inhibited spore formation, reflecting the enzyme's role in de novo fatty acid biosynthesis for the formation of spore membrane lipids. Compound 1 did not inhibit growth of key microbiota species. These findings suggest that C. difficile FabK is a druggable target for discovering narrow-spectrum anti- C. difficile drugs that treat CDI but avoid collateral damage to the gut microbiota.
Collapse
Affiliation(s)
- Ravi K. R. Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, Texas 77030, United States
| | - Xiaoqian Wu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, Texas 77030, United States
| | - Madhab Sapkota
- Department of Biology, University of Texas Arlington, 701 West Nedderman Drive, Arlington, Texas 76019, United States
| | - Allan M. Prior
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Jesse A. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38105, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38105, United States
| | - Julian G. Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
16
|
Hevener KE, Santarsiero BD, Lee H, Jones JA, Boci T, Johnson ME, Mehboob S. Structural characterization of Porphyromonas gingivalis enoyl-ACP reductase II (FabK). Acta Crystallogr F Struct Biol Commun 2018; 74:105-112. [PMID: 29400320 PMCID: PMC5947681 DOI: 10.1107/s2053230x18000262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023] Open
Abstract
Enoyl-acyl carrier protein (ACP) reductase II (FabK) is a critical rate-limiting enzyme in the bacterial type II fatty-acid synthesis (FAS II) pathway. FAS II pathway enzymes are markedly disparate from their mammalian analogs in the FAS I pathway in both structure and mechanism. Enzymes involved in bacterial fatty-acid synthesis represent viable drug targets for Gram-negative pathogens, and historical precedent exists for targeting them in the treatment of diseases of the oral cavity. The Gram-negative organism Porphyromonas gingivalis represents a key causative agent of the costly and highly prevalent disease known as chronic periodontitis, and exclusively expresses FabK as its enoyl reductase enzyme in the FAS-II pathway. Together, these characteristics distinguish P. gingivalis FabK (PgFabK) as an attractive and novel narrow-spectrum antibacterial target candidate. PgFabK is a flavoenzyme that is dependent on FMN and NADPH as cofactors for the enzymatic reaction, which reduces the enoyl substrate via a ping-pong mechanism. Here, the structure of the PgFabK enzyme as determined using X-ray crystallography is reported to 1.9 Å resolution with endogenous FMN fully resolved and the NADPH cofactor partially resolved. PgFabK possesses a TIM-barrel motif, and all flexible loops are visible. The determined structure has allowed insight into the structural basis for the NADPH dependence observed in PgFabK and the role of a monovalent cation that has been observed in previous studies to be stringently required for FabK activity. The PgFabK structure and the insights gleaned from its analysis will facilitate structure-based drug-discovery efforts towards the prevention and treatment of P. gingivalis infection.
Collapse
Affiliation(s)
- Kirk E. Hevener
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Suite 571, Memphis, TN 38163-2198, USA
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Bernard D. Santarsiero
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Hyun Lee
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Jesse A. Jones
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Suite 571, Memphis, TN 38163-2198, USA
| | - Teuta Boci
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
- Novalex Therapeutics, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Gao B, Tu P, Bian X, Chi L, Ru H, Lu K. Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacol Toxicol 2017; 18:46. [PMID: 28606169 PMCID: PMC5469155 DOI: 10.1186/s40360-017-0150-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/24/2017] [Indexed: 01/21/2023] Open
Abstract
Background Environmental chemical-induced perturbations of gut microbiome are associated with a series of adverse health outcomes. The effects of triclosan on human health have been controversial in recent years. The purpose of this study is to investigate the functional impact of triclosan on the mouse gut microbiome and the link between triclosan exposure and resistomes in gut bacteria. Methods We combined 16S rRNA gene sequencing and shotgun metagenomics sequencing to examine the compositional and functional impact of triclosan exposure on the gut microbiota of C57BL/6 mice. Results 16S rRNA sequencing results revealed that 13-week triclosan exposure in drinking water induced significant perturbations in mouse gut bacterial assemblages with distinct trajectories compared to controls. Metagenomics sequencing results indicated a remarkable enrichment of gut bacterial genes related to triclosan resistance, stress response, antibiotic resistance and heavy metal resistance. Conclusions Triclosan exposure has a profound impact on the mouse gut microbiome by inducing perturbations at both compositional and functional levels. To our best knowledge, this is the first evidence regarding the functional alterations of gut microbiome induced by triclosan exposure, which may provide novel mechanistic insights into triclosan exposure and associated diseases.
Collapse
Affiliation(s)
- Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, 27606, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Abstract
Most mycolic acid-containing actinobacteria and some proteobacteria use steroids as growth substrates, but the catabolism of the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants and has been proposed to be encoded by the KstR2-regulated genes, which include a predicted coenzyme A (CoA) transferase gene (ipdAB) and an acyl-CoA reductase gene (ipdC). In the presence of cholesterol, ΔipdC and ΔipdAB mutants of either M. tuberculosis or Rhodococcus jostii strain RHA1 accumulated previously undescribed metabolites: 3aα-H-4α(carboxyl-CoA)-5-hydroxy-7aβ-methylhexahydro-1-indanone (5-OH HIC-CoA) and (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA), respectively. A ΔfadE32 mutant of Mycobacterium smegmatis accumulated 4-methyl-5-oxo-octanedioic acid (MOODA). Incubation of synthetic 5-OH HIC-CoA with purified IpdF, IpdC, and enoyl-CoA hydratase 20 (EchA20), a crotonase superfamily member, yielded COCHEA-CoA and, upon further incubation with IpdAB and a CoA thiolase, yielded MOODA-CoA. Based on these studies, we propose a pathway for the final steps of steroid catabolism in which the 5-member ring is hydrolyzed by EchA20, followed by hydrolysis of the 6-member ring by IpdAB. Metabolites accumulated by ΔipdF and ΔechA20 mutants support the model. The conservation of these genes in known steroid-degrading bacteria suggests that the pathway is shared. This pathway further predicts that cholesterol catabolism yields four propionyl-CoAs, four acetyl-CoAs, one pyruvate, and one succinyl-CoA. Finally, a ΔipdAB M. tuberculosis mutant did not survive in macrophages and displayed severely depleted CoASH levels that correlated with a cholesterol-dependent toxicity. Our results together with the developed tools provide a basis for further elucidating bacterial steroid catabolism and virulence determinants in M. tuberculosis. Bacteria are the only known steroid degraders, but the pathway responsible for degrading the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants. Using a series of mutants in M. tuberculosis and related bacteria, we identified a number of novel CoA thioesters as pathway intermediates. Analysis of the metabolites combined with enzymological studies establishes how the last two steroid rings are hydrolytically opened by enzymes encoded by the KstR2 regulon. Our results provide experimental evidence for novel ring-degrading enzymes, significantly advance our understanding of bacterial steroid catabolism, and identify a previously uncharacterized cholesterol-dependent toxicity that may facilitate the development of novel tuberculosis therapeutics.
Collapse
|
19
|
Ha BH, Shin SC, Moon JH, Keum G, Kim CW, Kim EE. Structural and biochemical characterization of FabK from Thermotoga maritima. Biochem Biophys Res Commun 2017; 482:968-974. [PMID: 27908729 DOI: 10.1016/j.bbrc.2016.11.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022]
Abstract
TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid. One FMN is bound between the two domains with the phosphate making intricate hydrogen bonds with protein and three tightly bound water molecules, and the isoalloxazine ring packed against the side chains of Met22 and Met276. The structure is almost identical to that of FabK (enoyl-acyl carrier protein (ACP) reductase, ENR II), a key enzyme in bacterial type II fatty-acid biosynthesis that catalyzes the final step in each elongation cycle; and the enzymatic activity confirms that TM0800 is an ENR. Enzymatic activity was almost completely abolished when the helices connecting the barrel and the lid were deleted. Also, the Met276Ala and Ser280Ala mutants showed a significant reduction in enzymatic activity. The crystal structure of Met276Ala mutant at 1.9 Å resolution showed an absence of FMN suggesting that FMN plays a role in catalysis, and Met276 is important in positioning FMN. TmFabK exists as a dimer in both solution and crystal. Together this study provides molecular basis for the catalytic activity of FabK.
Collapse
Affiliation(s)
- Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Ho Moon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chan-Wha Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
20
|
Tallorin L, Finzel K, Nguyen QG, Beld J, La Clair JJ, Burkart MD. Trapping of the Enoyl-Acyl Carrier Protein Reductase-Acyl Carrier Protein Interaction. J Am Chem Soc 2016; 138:3962-5. [PMID: 26938266 DOI: 10.1021/jacs.5b13456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein-protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP-triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes.
Collapse
Affiliation(s)
- Lorillee Tallorin
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Quynh G Nguyen
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
21
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
22
|
Bukhari HST, Jakob RP, Maier T. Evolutionary origins of the multienzyme architecture of giant fungal fatty acid synthase. Structure 2014; 22:1775-1785. [PMID: 25456814 DOI: 10.1016/j.str.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 12/23/2022]
Abstract
Fungal fatty acid synthase (fFAS) is a key paradigm for the evolution of complex multienzymes. Its 48 functional domains are embedded in a matrix of scaffolding elements, which comprises almost 50% of the total sequence and determines the emergent multienzymes properties of fFAS. Catalytic domains of fFAS are derived from monofunctional bacterial enzymes, but the evolutionary origin of the scaffolding elements remains enigmatic. Here, we identify two bacterial protein families of noncanonical fatty acid biosynthesis starter enzymes and trans-acting polyketide enoyl reductases (ERs) as potential ancestors of scaffolding regions in fFAS. The architectures of both protein families are revealed by representative crystal structures of the starter enzyme FabY and DfnA-ER. In both families, a striking structural conservation of insertions to scaffolding elements in fFAS is observed, despite marginal sequence identity. The combined phylogenetic and structural data provide insights into the evolutionary origins of the complex multienzyme architecture of fFAS.
Collapse
Affiliation(s)
- Habib S T Bukhari
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
23
|
Identification of polyunsaturated fatty acid and diterpenoid biosynthesis pathways from draft genome of Aureispira sp. CCB-QB1. Mar Genomics 2014; 19:39-44. [PMID: 25468060 DOI: 10.1016/j.margen.2014.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/18/2014] [Accepted: 10/19/2014] [Indexed: 11/21/2022]
Abstract
The genus Aureispira consisting of two species, Aureispira marina and Aureispira maritima is an arachidonic acid-producing bacterium and produces secondary metabolites. In this study, we isolated a new Aureispira strain, Aureispira sp. CCB-QB1 from coastal area of Penang, Malaysia and the genome sequence of this strain was determined. The draft genome of this strain is composed of 185 contigs for 7,370,077 bases with 35.6% G+C content and contains 5911 protein-coding genes and 76 RNA genes. Linoleoyl-CoA desaturase, the key gene in arachidonic acid biosynthesis, is present in the genome. It was found that this strain uses mevalonate pathway for the synthesis of geranylgeranyl diphosphate (GGPP), which is precursor of diterpenoid, and novel pathway via futalosine for the synthesis of menaquinones. This is the first draft genome sequence of a member of the genus Aureispira.
Collapse
|
24
|
Jiang L, Gao Z, Li Y, Wang S, Dong Y. Crystal structures and kinetic properties of enoyl-acyl carrier protein reductase I from Candidatus Liberibacter asiaticus. Protein Sci 2014; 23:366-77. [PMID: 24407918 PMCID: PMC3970888 DOI: 10.1002/pro.2418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 01/02/2023]
Abstract
Huanglongbing (HLB) is a destructive citrus disease. The leading cause of HLB is Candidatus Liberibacter asiaticus. Fatty acid biosynthesis is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterial agents. Enoyl-acyl carrier protein reductase (also called ENR or FabI and a product of the fabI gene) is an enzyme required in a critical step of bacterial fatty acid biosynthesis and has attracted attention as a target of novel antimicrobial agents. We determined the crystal structures of FabI from Ca. L. asiaticus in its apoform as well as in complex with b-nicotinamide adenine dinucleotide (NAD) at 1.7 and 2.7 Å resolution, respectively, to facilitate the design and screening of small molecule inhibitors of FabI. The monomeric ClFabI is highly similar to other known FabI structures as expected; however, unlike the typical tetramer, ClFabI exists as a hexamer in crystal, whereas as dimer in solution, on the other hand, the substrate binding loop which always disordered in apoform FabI structures is ordered in apo-ClFabI. Interestingly, the structure of ClFabI undergoes remarkable conformational change in the substrate-binding loop in the presence of NAD. We conclude that the signature sequence motif of FabI can be considered as Gly-(Xaa)5-Ser-(Xaa)n-Val-Tyr-(Xaa)6-Lys-(Xaa)n-Thr instead of Tyr-(Xaa)6-Lys. We have further identified isoniazid as a competitive inhibitor with NADH.
Collapse
Affiliation(s)
- Ling Jiang
- Ministry of Education Key Laboratory of Plant Biology, Department of Horticulture and ForestryHuazhong Agricultural University, Wuhan 430070, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of SciencesBeijing, 100049, China
| | - Yanhua Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of SciencesBeijing, 100049, China
| | - Shennan Wang
- Ministry of Education Key Laboratory of Plant Biology, Department of Horticulture and ForestryHuazhong Agricultural University, Wuhan 430070, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of SciencesBeijing, 100049, China
| |
Collapse
|
25
|
Salzano AM, Novi G, Arioli S, Corona S, Mora D, Scaloni A. Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or/SDS-PAGE combined with nLC–ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in Streptococcus thermophilus. J Proteomics 2013; 94:240-61. [DOI: 10.1016/j.jprot.2013.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/04/2013] [Accepted: 09/14/2013] [Indexed: 02/06/2023]
|
26
|
The two functional enoyl-acyl carrier protein reductases of Enterococcus faecalis do not mediate triclosan resistance. mBio 2013; 4:e00613-13. [PMID: 24085780 PMCID: PMC3791895 DOI: 10.1128/mbio.00613-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Enoyl-acyl carrier protein (enoyl-ACP) reductase catalyzes the last step of the elongation cycle in the synthesis of bacterial fatty acids. The Enterococcus faecalis genome contains two genes annotated as enoyl-ACP reductases, a FabI-type enoyl-ACP reductase and a FabK-type enoyl-ACP reductase. We report that expression of either of the two proteins restores growth of an Escherichia coli fabI temperature-sensitive mutant strain under nonpermissive conditions. In vitro assays demonstrated that both proteins support fatty acid synthesis and are active with substrates of all fatty acid chain lengths. Although expression of E. faecalis fabK confers to E. coli high levels of resistance to the antimicrobial triclosan, deletion of fabK from the E. faecalis genome showed that FabK does not play a detectable role in the inherent triclosan resistance of E. faecalis. Indeed, FabK seems to play only a minor role in modulating fatty acid composition. Strains carrying a deletion of fabK grow normally without fatty acid supplementation, whereas fabI deletion mutants make only traces of fatty acids and are unsaturated fatty acid auxotrophs. The finding that exogenous fatty acids support growth of E. faecalis strains defective in fatty acid synthesis indicates that inhibitors of fatty acid synthesis are ineffective in countering E. faecalis infections because host serum fatty acids support growth of the bacterium.
Collapse
|
27
|
Wang Y, Ma S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013; 8:1589-608. [DOI: 10.1002/cmdc.201300209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Indexed: 12/25/2022]
|
28
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
29
|
7.5-Å Cryo-EM Structure of the Mycobacterial Fatty Acid Synthase. J Mol Biol 2013; 425:841-9. [DOI: 10.1016/j.jmb.2012.12.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
|
30
|
Hevener KE, Mehboob S, Boci T, Truong K, Santarsiero BD, Johnson ME. Expression, purification and characterization of enoyl-ACP reductase II, FabK, from Porphyromonas gingivalis. Protein Expr Purif 2012; 85:100-8. [PMID: 22820244 DOI: 10.1016/j.pep.2012.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/01/2022]
Abstract
The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agent of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP(+) during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.
Collapse
Affiliation(s)
- Kirk E Hevener
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607-7173, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Kim TO, Im DW, Jung HY, Kwon SJ, Heo YS. Purification, crystallization and preliminary X-ray diffraction analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus mutans strain UA159. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:292-4. [PMID: 22442225 DOI: 10.1107/s1744309112000115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022]
Abstract
A triclosan-resistant flavoprotein termed FabK is the sole enoyl-acyl carrier protein reductase in Streptococcus pneumoniae and Streptococcus mutans. In this study, FabK from S. mutans strain UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.40 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P6(2), with unit-cell parameters a = b = 105.79, c = 44.15 Å. The asymmetric unit contained one molecule, with a corresponding V(M) of 2.05 Å(3) Da(-1) and a solvent content of 39.9%.
Collapse
Affiliation(s)
- Tae-O Kim
- Department of Chemistry, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Ozawa T, Takahata S, Kitagawa H. Search for the Dual Inhibitors of Bacterial Enoyl-acyl Carrier Protein (ACP) Reductases (FabI and FabK) as Antibacterial Agents. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Li H, Zhang X, Bi L, He J, Jiang T. Determination of the crystal structure and active residues of FabV, the enoyl-ACP reductase from Xanthomonas oryzae. PLoS One 2011; 6:e26743. [PMID: 22039545 PMCID: PMC3198815 DOI: 10.1371/journal.pone.0026743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022] Open
Abstract
Background Enoyl-ACP reductase (ENR) catalyses the last reduction reaction in the fatty acid elongation cycle in bacteria and is a good antimicrobial target candidate. FabV is the most recently discovered class of ENR, but we lack information about the atomic structure and the key residues involved in reductase activity except for the known conserved tyrosine and lysine residues in the Y-X8-K active site motif. Methodology/Principal Findings Here we report the crystal structure of FabV from Xanthomonas oryzae (xoFabV). The crystal structure of this enzyme has been solved to 1.6 Å resolution in space group P212121. The model of xoFabV consists of one monomer in the asymmetric unit which is composed of 13 α-helices and 11 β-strands, representing a canonical Rossmann fold architecture. Structural comparison presents that the locations of the conserved tyrosine (Y236) and lysine (K245) residues in the Y-X8-K active site motif of xoFabV and the Y-X6-K motif of ecFabI are notably similar. However, the conformations of Y236 in xoFabV and Y156 in ecFabI are distinct. Structure-based site-directed mutagenesis and enzymatic activity assays reveal that in addition to the conserved Y236 and K245 in the Y-X8-K motif, Y53, D111 and Y226 are key residues implicated in the reductase activity, and F113 and T276 are also important for enzyme function. Moreover, a proposed active lysine located immediately after the Y-X8-K motif in FabV from Burkholderia mallei (bmFabV) is altered to an inactive V246 in xoFabV. Conclusions/Significance We determine the first crystal structure of the FabV enzyme and identify several residues important for its enzymatic activity. These findings lay a solid foundation for the development of specific antibacterial inhibitors of the pathogenic bacteria, such as Vibrio cholerae, Burkholderia species and Xanthomonas species.
Collapse
Affiliation(s)
- He Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoli Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Lijun Bi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
- * E-mail: (JH); (TJ)
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (JH); (TJ)
| |
Collapse
|
34
|
Escaich S, Prouvensier L, Saccomani M, Durant L, Oxoby M, Gerusz V, Moreau F, Vongsouthi V, Maher K, Morrissey I, Soulama-Mouze C. The MUT056399 inhibitor of FabI is a new antistaphylococcal compound. Antimicrob Agents Chemother 2011; 55:4692-7. [PMID: 21825292 PMCID: PMC3186954 DOI: 10.1128/aac.01248-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/01/2010] [Accepted: 05/31/2011] [Indexed: 12/24/2022] Open
Abstract
MUT056399 is a highly potent new inhibitor of the FabI enzyme of both Staphylococcus aureus and Escherichia coli. In vitro, MUT056399 was very active against S. aureus strains, including methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), linezolid-resistant, and multidrug-resistant strains, with MIC(90)s between 0.03 and 0.12 μg/ml. MUT056399 was also active against coagulase-negative staphylococci, with MIC(90)s between 0.12 and 4 μg/ml. The antibacterial spectrum is consistent with specific FabI inhibition with no activity against bacteria using FabK but activity against FabI-containing Gram-negative bacilli. In vitro, resistant clones of S. aureus were obtained at a low frequency. All of the resistant clones analyzed were found to contain mutations in the fabI gene. In vivo, MUT056399, administered subcutaneously, protected mice from a lethal systemic infection induced by MSSA, MRSA, and vancomycin-intermediate S. aureus strains (50% effective doses ranging from 19.3 mg/kg/day to 49.6 mg/kg/day). In the nonneutropenic murine thigh infection model, the same treatment with MUT056399 reduced the bacterial multiplication of MSSA and MRSA in the thighs of immunocompetent mice. These properties support MUT056399 as a very promising candidate for a novel drug to treat severe staphylococcal infections.
Collapse
Affiliation(s)
- S Escaich
- FAB Pharma, 14, avenue de l'Opéra, 75001 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Isabella VM, Clark VL. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA. Mol Microbiol 2011; 82:489-501. [PMID: 21895795 DOI: 10.1111/j.1365-2958.2011.07826.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamily of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologues, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | |
Collapse
|
36
|
Rational questing for potential novel inhibitors of FabK from Streptococcus pneumoniae by combining FMO calculation, CoMFA 3D-QSAR modeling and virtual screening. J Mol Model 2010; 17:1483-92. [DOI: 10.1007/s00894-010-0847-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/02/2010] [Indexed: 01/04/2023]
|
37
|
Abstract
In all organisms, fatty acid synthesis is achieved in variations of a common cyclic reaction pathway by stepwise, iterative elongation of precursors with two-carbon extender units. In bacteria, all individual reaction steps are carried out by monofunctional dissociated enzymes, whereas in eukaryotes the fatty acid synthases (FASs) have evolved into large multifunctional enzymes that integrate the whole process of fatty acid synthesis. During the last few years, important advances in understanding the structural and functional organization of eukaryotic FASs have been made through a combination of biochemical, electron microscopic and X-ray crystallographic approaches. They have revealed the strikingly different architectures of the two distinct types of eukaryotic FASs, the fungal and the animal enzyme system. Fungal FAS is a 2·6 MDa α₆β₆ heterododecamer with a barrel shape enclosing two large chambers, each containing three sets of active sites separated by a central wheel-like structure. It represents a highly specialized micro-compartment strictly optimized for the production of saturated fatty acids. In contrast, the animal FAS is a 540 kDa X-shaped homodimer with two lateral reaction clefts characterized by a modular domain architecture and large extent of conformational flexibility that appears to contribute to catalytic efficiency.
Collapse
|
38
|
Hiltunen JK, Chen Z, Haapalainen AM, Wierenga RK, Kastaniotis AJ. Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism. Prog Lipid Res 2010; 49:27-45. [DOI: 10.1016/j.plipres.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 2009; 54:689-98. [PMID: 19933806 DOI: 10.1128/aac.01152-09] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Triclosan, a very widely used biocide, specifically inhibits fatty acid synthesis by inhibition of enoyl-acyl carrier protein (ACP) reductase. Escherichia coli FabI is the prototypical triclosan-sensitive enoyl-ACP reductase, and E. coli is extremely sensitive to the biocide. However, other bacteria are resistant to triclosan, because they encode triclosan-resistant enoyl-ACP reductase isozymes. In contrast, the triclosan resistance of Pseudomonas aeruginosa PAO1 has been attributed to active efflux of the compound (R. Chuanchuen, R. R. Karkhoff-Schweizer, and H. P. Schweizer, Am. J. Infect. Control 31:124-127, 2003). We report that P. aeruginosa contains two enoyl-ACP reductase isozymes, the previously characterized FabI homologue plus a homologue of FabV, a triclosan-resistant enoyl-ACP reductase recently demonstrated in Vibrio cholerae. By deletion of the genes encoding P. aeruginosa FabI and FabV, we demonstrated that FabV confers triclosan resistance on P. aeruginosa. Upon deletion of the fabV gene, the mutant strain became extremely sensitive to triclosan (>2,000-fold more sensitive than the wild-type strain), whereas the mutant strain lacking FabI remained completely resistant to the biocide.
Collapse
|
40
|
Abstract
The enoyl-acyl carrier protein reductase (ENR) is the last enzyme in the fatty acid elongation cycle. Unlike most enzymes in this essential pathway, ENR displays an unusual diversity among organisms. The growing interest in ENRs is mainly due to the fact that a variety of both synthetic and natural antibacterial compounds are shown to specifically target their activity. The primary anti-tuberculosis drug, isoniazid, and the broadly used antibacterial compound, triclosan, both target this enzyme. In this review, we discuss the diversity of ENRs, and their inhibitors in the light of current research progress.
Collapse
Affiliation(s)
- R. P. Massengo-Tiassé
- Departments of Microbiology, B103, Chemical and Life Sciences Laboratory, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL 61801 USA
| | - J. E. Cronan
- Departments of Microbiology, B103, Chemical and Life Sciences Laboratory, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
41
|
Leibundgut M, Maier T, Jenni S, Ban N. The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 2008; 18:714-25. [DOI: 10.1016/j.sbi.2008.09.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 11/16/2022]
|
42
|
Abstract
Mammalian fatty acid synthase is a large multienzyme that catalyzes all steps of fatty acid synthesis. We have determined its crystal structure at 3.2 angstrom resolution covering five catalytic domains, whereas the flexibly tethered terminal acyl carrier protein and thioesterase domains remain unresolved. The structure reveals a complex architecture of alternating linkers and enzymatic domains. Substrate shuttling is facilitated by flexible tethering of the acyl carrier protein domain and by the limited contact between the condensing and modifying portions of the multienzyme, which are mainly connected by linkers rather than direct interaction. The structure identifies two additional nonenzymatic domains: (i) a pseudo-ketoreductase and (ii) a peripheral pseudo-methyltransferase that is probably a remnant of an ancestral methyltransferase domain maintained in some related polyketide synthases. The structural comparison of mammalian fatty acid synthase with modular polyketide synthases shows how their segmental construction allows the variation of domain composition to achieve diverse product synthesis.
Collapse
Affiliation(s)
- Timm Maier
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|