1
|
Jamal SB, Hockman D. FGF1. Differentiation 2024; 139:100802. [PMID: 39074995 DOI: 10.1016/j.diff.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths. During development the Fgf1 gene is widely expressed, including in the neural tube, heart and lung. Mouse mutants for this gene are normal under standard laboratory conditions. However, when Fgf1 mutants are exposed to a high fat diet, an aggressive diabetic phenotype has been reported, along with aberrant adipose tissue expansion. Ongoing research on FGF1 and its signalling pathways holds promise for greater understanding of developmental processes as well as the development of novel therapeutic interventions for diseases including diabetes.
Collapse
Affiliation(s)
- Sahar B Jamal
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Kunitz-Type Peptides from the Sea Anemone Heteractis crispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities. Biomedicines 2020; 8:biomedicines8110473. [PMID: 33158163 PMCID: PMC7694175 DOI: 10.3390/biomedicines8110473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels blocking activity. HCRG1 and HCRG2 appear to be the first Kunitz-type peptides from sea anemones blocking Kv1.3 with IC50 of 40.7 and 29.7 nM, respectively. In addition, peptides mainly vary in binding affinity to the Kv1.2 channels. It was established that the single substitution, Ser5Leu, in the TRPV1 channel antagonist, HCRG21, induces weak blocking activity of Kv1.1, Kv1.2, and Kv1.3. Apparently, for the affinity and selectivity of Kunitz-fold toxins to Kv1.x isoforms, the number and distribution along their molecules of charged, hydrophobic, and polar uncharged residues, as well as the nature of the channel residue at position 379 (Tyr, Val or His) are important. Testing the compounds in a model of acute local inflammation induced by the introduction of carrageenan administration into mice paws revealed that HCRG1 at doses of 0.1–1 mg/kg reduced the volume of developing edema during 24 h, similar to the effect of the nonsteroidal anti-inflammatory drug, indomethacin, at a dose of 5 mg/kg. ELISA analysis of the animals blood showed that the peptide reduced the synthesis of TNF-α, a pro-inflammatory mediator playing a leading role in the development of edema in this model.
Collapse
|
3
|
Boros E, Sebák F, Héja D, Szakács D, Zboray K, Schlosser G, Micsonai A, Kardos J, Bodor A, Pál G. Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. J Mol Biol 2019; 431:557-575. [PMID: 30543823 DOI: 10.1016/j.jmb.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Zboray
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
4
|
Naftaly S, Cohen I, Shahar A, Hockla A, Radisky ES, Papo N. Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. Nat Commun 2018; 9:3935. [PMID: 30258049 PMCID: PMC6158287 DOI: 10.1038/s41467-018-06403-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a novel and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of the four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein-protein interactions.
Collapse
Affiliation(s)
- Si Naftaly
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itay Cohen
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shahar
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, 32224, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, 32224, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Abstract
Formation of protein-ligand complexes causes various changes in both the receptor and the ligand. This review focuses on changes in pK and protonation states of ionizable groups that accompany protein-ligand binding. Physical origins of these effects are outlined, followed by a brief overview of the computational methods to predict them and the associated corrections to receptor-ligand binding affinities. Statistical prevalence, magnitude and spatial distribution of the pK and protonation state changes in protein-ligand binding are discussed in detail, based on both experimental and theoretical studies. While there is no doubt that these changes occur, they do not occur all the time; the estimated prevalence varies, both between individual complexes and by method. The changes occur not only in the immediate vicinity of the interface but also sometimes far away. When receptor-ligand binding is associated with protonation state change at particular pH, the binding becomes pH dependent: we review the interplay between sub-cellular characteristic pH and optimum pH of receptor-ligand binding. It is pointed out that there is a tendency for protonation state changes upon binding to be minimal at physiologically relevant pH for each complex (no net proton uptake/release), suggesting that native receptor-ligand interactions have evolved to reduce the energy cost associated with ionization changes. As a result, previously reported statistical prevalence of these changes - typically computed at the same pH for all complexes - may be higher than what may be expected at optimum pH specific to each complex. We also discuss whether proper account of protonation state changes appears to improve practical docking and scoring outcomes relevant to structure-based drug design. An overview of some of the existing challenges in the field is provided in conclusion.
Collapse
Affiliation(s)
- Alexey V Onufriev
- Department of Computer Science and Physics, 2050 Torgersen Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
6
|
Shamaladevi N, Pattabhi V. Secondary Binding Site of Trypsin: Revealed by Crystal Structure of Trypsin-Peptide Complex. J Biomol Struct Dyn 2012; 22:635-42. [PMID: 15842169 DOI: 10.1080/07391102.2005.10507031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Designed synthetic heterochiral peptides, when added to porcine trypsin, resulted in reduction of enzyme activity. The crystal structure of a complex formed between porcine trypsin and a heterochiral hepta peptide Boc-Pro-DAsp-Aib-Leu-Aib-Leu-Ala-NHMe has been determined at 1.9 A resolution. The hepta peptide does not bind at the active site, but is located in the interstitial region, and interacts with the calcium-binding loop (residues 60-80). The bound peptide interacts with the active site residue Ser195 through an acetate ion, and with Lys 60 mediated by water molecules. The structure, when compared with the other trypsin-peptide complexes, suggests that the flexibility of surface loops, concerted movement of the loops towards the active site, and the interaction of the bound peptide with Lys 60, may be responsible for the reduction in enzyme activity. This study provides a structural evidence for the earlier biochemical observation regarding the role of surface loops in the catalysis of the enzyme.
Collapse
Affiliation(s)
- N Shamaladevi
- Dept. of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600025, India
| | | |
Collapse
|
7
|
Peigneur S, Billen B, Derua R, Waelkens E, Debaveye S, Béress L, Tytgat J. A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochem Pharmacol 2011; 82:81-90. [PMID: 21477583 DOI: 10.1016/j.bcp.2011.03.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/17/2022]
Abstract
Sea anemone venom is a known source of interesting bioactive compounds, including peptide toxins which are invaluable tools for studying structure and function of voltage-gated potassium channels. APEKTx1 is a novel peptide isolated from the sea anemone Anthopleura elegantissima, containing 63 amino acids cross-linked by 3 disulfide bridges. Sequence alignment reveals that APEKTx1 is a new member of the type 2 sea anemone peptides targeting voltage-gated potassium channels (K(V)s), which also include the kalicludines from Anemonia sulcata. Similar to the kalicludines, APEKTx1 shares structural homology with both the basic pancreatic trypsin inhibitor (BPTI), a very potent Kunitz-type protease inhibitor, and dendrotoxins which are powerful blockers of voltage-gated potassium channels. In this study, APEKTx1 has been subjected to a screening on a wide range of 23 ion channels expressed in Xenopus laevis oocytes: 13 cloned voltage-gated potassium channels (K(V)1.1-K(V)1.6, K(V)1.1 triple mutant, K(V)2.1, K(V)3.1, K(V)4.2, K(V)4.3, hERG, the insect channel Shaker IR), 2 cloned hyperpolarization-activated cyclic nucleotide-sensitive cation non-selective channels (HCN1 and HCN2) and 8 cloned voltage-gated sodium channels (Na(V)1.2-Na(V)1.8 and the insect channel DmNa(V)1). Our data show that APEKTx1 selectively blocks K(V)1.1 channels in a very potent manner with an IC(50) value of 0.9nM. Furthermore, we compared the trypsin inhibitory activity of this toxin with BPTI. APEKTx1 inhibits trypsin with a dissociation constant of 124nM. In conclusion, this study demonstrates that APEKTx1 has the unique feature to combine the dual functionality of a potent and selective blocker of K(V)1.1 channels with that of a competitive inhibitor of trypsin.
Collapse
Affiliation(s)
- Steve Peigneur
- Laboratory of Toxicology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
9
|
Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci 2009; 18:579-94. [PMID: 19241385 DOI: 10.1002/pro.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin-2 are endogeneous low-molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol-based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin-2 variant, trappin-2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin-2 A62L are tight-binding inhibitors of all three NSPs with subnanomolar K(i)s, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane-bound forms of all three NSPs. The trappin-2 A62L and elafin-SLPI chimeras, like wild-type elafin and trappin-2, can be covalently cross-linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Marie-Louise Zani
- Inserm U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie Fonctionnelle, University of Tours, France
| | | | | | | | | |
Collapse
|
10
|
Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: From Biology Through Engineering to Potential Medical Applications. Crit Rev Clin Lab Sci 2008; 45:91-135. [DOI: 10.1080/10408360701713120] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
He YY, Liu SB, Lee WH, Qian JQ, Zhang Y. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom. Peptides 2008; 29:1692-9. [PMID: 18582511 DOI: 10.1016/j.peptides.2008.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 11/23/2022]
Abstract
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.
Collapse
Affiliation(s)
- Ying-Ying He
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | |
Collapse
|
12
|
Yi Z, Vitek O, Qasim MA, Lu SM, Lu W, Ranjbar M, Li J, Laskowski MC, Bailey-Kellogg C, Laskowski M. Functional evolution within a protein superfamily. Proteins 2006; 63:697-708. [PMID: 16463276 DOI: 10.1002/prot.20871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to predict and characterize distributions of reactivities over families and even superfamilies of proteins opens the door to an array of analyses regarding functional evolution. In this article, insights into functional evolution in the Kazal inhibitor superfamily are gained by analyzing and comparing predicted association free energy distributions against six serine proteinases, over a number of groups of inhibitors: all possible Kazal inhibitors, natural avian ovomucoid first and third domains, and sets of Kazal inhibitors with statistically weighted combinations of residues. The results indicate that, despite the great hypervariability of residues in the 10 proteinase-binding positions, avian ovomucoid third domains evolved to inhibit enzymes similar to the six enzymes selected, whereas the orthologous first domains are not inhibitors of these enzymes on purpose. Hypervariability arises because of similarity in energetic contribution from multiple residue types; conservation is in terms of functionality, with "good" residues, which make positive or less deleterious contributions to the binding, selected more frequently, and yielding overall the same distributional characteristics. Further analysis of the distributions indicates that while nature did optimize inhibitor strength, the objective may not have been the strongest possible inhibitor against one enzyme but rather an inhibitor that is relatively strong against a number of enzymes.
Collapse
Affiliation(s)
- Zhengping Yi
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hobson D, Uhlenbeck OC. Alanine scanning of MS2 coat protein reveals protein-phosphate contacts involved in thermodynamic hot spots. J Mol Biol 2005; 356:613-24. [PMID: 16380130 DOI: 10.1016/j.jmb.2005.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
The co-crystal structure of the MS2 coat protein dimer with its RNA operator reveals eight amino acid side-chains contacting seven of the RNA phosphates. These eight amino acids and five nearby control positions were individually changed to an alanine residue and the binding affinities of the mutant proteins to the RNA were determined. In general, the data agreed well with the crystal structure and previous RNA modification data. Interestingly, amino acid residues that are energetically most important for complex formation cluster in the middle of the RNA binding interface, forming thermodynamic hot spots, and are surrounded by energetically less relevant amino acids. In order to evaluate whether or not a given alanine mutation causes a global change in the RNA-protein interface, the affinities of the mutant proteins to RNAs containing one of 14 backbone modifications spanning the entire interface were determined. In three of six protein mutations tested, thermodynamic coupling between the site of the mutation and RNA groups that can be even more than 16 A away was detected. This suggests that, in some cases, the mutation may subtly alter the entire protein-RNA interface.
Collapse
Affiliation(s)
- Dagmar Hobson
- Department of Biochemistry, Molecular Biology, Cell Biology, Northwestern University 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | | |
Collapse
|
14
|
Zakrzewska M, Krowarsch D, Wiedlocha A, Olsnes S, Otlewski J. Highly stable mutants of human fibroblast growth factor-1 exhibit prolonged biological action. J Mol Biol 2005; 352:860-75. [PMID: 16126225 DOI: 10.1016/j.jmb.2005.07.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/21/2005] [Accepted: 07/27/2005] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 1 (FGF-1) shows strong angiogenic, osteogenic and tissue-injury repair properties that might be relevant to medical applications. Since FGF-1 is partially unfolded at physiological temperature we decided to increase significantly its conformational stability and test how such an improvement will affect its biological function. Using an homology approach and rational strategy we designed two new single FGF-1 mutations: Q40P and S47I that appeared to be the most strongly stabilizing substitutions among those reported so far, increasing the denaturation temperature by 7.8 deg. C and 9.0 deg. C, respectively. As our goal was to produce highly stable variants of the growth factor, we combined these two mutations with five previously described stabilizing substitutions. The multiple mutants showed denaturation temperatures up to 27 deg. C higher than the wild-type and exhibited full additivity of the mutational effects. All those mutants were biologically competent in several cell culture assays, maintaining typical FGF-1 activities, such as binding to specific cell surface receptors and activation of downstream signaling pathways. Thus, we demonstrate that the low denaturation temperature of wild-type FGF-1 is not related to its fundamental cellular functions, and that FGF-1 action is not affected by its stability. A more detailed analysis of the biological behavior of stable FGF-1 mutants revealed that, compared with the wild-type, their mitogenic properties, as probed by the DNA synthesis assay, were significantly increased in the absence of heparin, and that their half-lives were extensively prolonged. We found that the biological action of the mutants was dictated by their susceptibility to proteases, which strongly correlated with the stability. Mutants which were much more resistant to proteolytic degradation always displayed a significant improvement in the half-life and mitogenesis. Our results show that engineered stable growth factor variants exhibit enhanced and prolonged activity, which can be advantageous in terms of the potential therapeutic applications of FGF-1.
Collapse
Affiliation(s)
- Malgorzata Zakrzewska
- Protein Engineering Laboratory, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
15
|
Wang T, Tomic S, Gabdoulline RR, Wade RC. How optimal are the binding energetics of barnase and barstar? Biophys J 2005; 87:1618-30. [PMID: 15345541 PMCID: PMC1304567 DOI: 10.1529/biophysj.104.040964] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular ribonuclease barnase and its intracellular inhibitor barstar bind fast and with high affinity. Although extensive experimental and theoretical studies have been carried out on this system, it is unclear what the relative importance of different contributions to the high affinity is and whether binding can be improved through point mutations. In this work, we first applied Poisson-Boltzmann electrostatic calculations to 65 barnase-barstar complexes with mutations in both barnase and barstar. The continuum electrostatic calculations with a van der Waals surface dielectric boundary definition result in the electrostatic interaction free energy providing the dominant contribution favoring barnase-barstar binding. The results show that the computed electrostatic binding free energy can be improved through mutations at W44/barstar and E73/barnase. Furthermore, the determinants of binding affinity were quantified by applying COMparative BINding Energy (COMBINE) analysis to derive quantitative structure-activity relationships (QSARs) for the 65 complexes. The COMBINE QSAR model highlights approximately 20 interfacial residue pairs as responsible for most of the differences in binding affinity between the mutant complexes, mainly due to electrostatic interactions. Based on the COMBINE model, together with Brownian dynamics simulations to compute diffusional association rate constants, several mutants were designed to have higher binding affinities than the wild-type proteins.
Collapse
Affiliation(s)
- Ting Wang
- Molecular and Cellular Modeling Group, EML Research, 69118 Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Laskowski M, Qasim MA, Yi Z. Additivity-based prediction of equilibrium constants for some protein-protein associations. Curr Opin Struct Biol 2003; 13:130-9. [PMID: 12581670 DOI: 10.1016/s0959-440x(03)00013-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For many protein families, such as serine proteinases or serine proteinase inhibitors, the family assignment predicts reactivity only in general terms. Both detailed specificity and quantitative reactivity are lacking. We believe that, for many such protein families, algorithms can be devised by defining the subset of n functionally important sequence positions, making the 19n possible single mutants and measuring their reactivity. Given the assumption that the contributions of the n positions are additive, the reactivities of the 20(n) variants can be predicted. This is illustrated by an almost complete algorithm for the Kazal family of protein inhibitors of serine proteinases.
Collapse
Affiliation(s)
- Michael Laskowski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
| | | | | |
Collapse
|
17
|
Cierpicki T, Otlewski J. NMR structures of two variants of bovine pancreatic trypsin inhibitor (BPTI) reveal unexpected influence of mutations on protein structure and stability. J Mol Biol 2002; 321:647-58. [PMID: 12206780 DOI: 10.1016/s0022-2836(02)00620-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Here we determined NMR solution structures of two mutants of bovine pancreatic trypsin inhibitor (BPTI) to reveal structural reasons of their decreased thermodynamic stability. A point mutation, A16V, in the solvent-exposed loop destabilizes the protein by 20 degrees C, in contrast to marginal destabilization observed for G, S, R, L or W mutants. In the second mutant introduction of eight alanine residues at proteinase-contacting sites (residues 11, 13, 17, 18, 19, 34, 37 and 39) provides a protein that denatures at a temperature about 30 degrees C higher than expected from additive behavior of individual mutations. In order to efficiently determine structures of these variants, we applied a procedure that allows us to share data between regions unaffected by mutation(s). NOAH/DYANA and CNS programs were used for a rapid assignment of NOESY cross-peaks, structure calculations and refinement. The solution structure of the A16V mutant reveals no conformational change within the molecule, but shows close contacts between V16, I18 and G36/G37. Thus, the observed 4.3kcal/mol decrease of stability results from a strained local conformation of these residues caused by introduction of a beta-branched Val side-chain. Contrary to the A16V mutation, introduction of eight alanine residues produces significant conformational changes, manifested in over a 9A shift of the Y35 side-chain. This structural rearrangement provides about 6kcal/mol non-additive stabilization energy, compared to the mutant in which G37 and R39 are not mutated to alanine residues.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137, Wroclaw, Poland
| | | |
Collapse
|