1
|
Bhakta K, Roy M, Samanta S, Ghosh A. Functional diversity in archaeal Hsp60: a molecular mosaic of Group I and Group II chaperonin. FEBS J 2024; 291:4323-4348. [PMID: 38923213 DOI: 10.1111/febs.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
External stress disrupts the balance of protein homeostasis, necessitating the involvement of heat shock proteins (Hsps) in restoring equilibrium and ensuring cellular survival. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius, lacks the conventional Hsp100, Hsp90, and Hsp70, relying solely on a single ATP-dependent Group II chaperonin, Hsp60, comprising three distinct subunits (α, β, and γ) to refold unfolded substrates and maintain protein homeostasis. Hsp60 forms three different complexes, namely Hsp60αβγ, Hsp60αβ, and Hsp60β, at temperatures of 60 °C, 75 °C, and 90 °C, respectively. This study delves into the intricacies of Hsp60 complexes in S. acidocaldarius, uncovering their ability to form oligomeric structures in the presence of ATP. The recognition of substrates by Hsp60 involves hydrophobic interactions, and the subsequent refolding process occurs in an ATP-dependent manner through charge-driven interactions. Furthermore, the Hsp60β homo-oligomeric complex can protect the archaeal and eukaryotic membrane from stress-induced damage. Hsp60 demonstrates nested cooperativity in ATP hydrolysis activity, where MWC-type cooperativity is nested within KNF-type cooperativity. Remarkably, during ATP hydrolysis, Hsp60β, and Hsp60αβ complexes exhibit a mosaic behavior, aligning with characteristics observed in both Group I and Group II chaperonins, adding a layer of complexity to their functionality.
Collapse
Affiliation(s)
- Koustav Bhakta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Mousam Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Shirsha Samanta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Gisdon FJ, Zunker M, Wolf JN, Prüfer K, Ackermann J, Welsch C, Koch I. Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes. Bioinformatics 2024; 40:btae112. [PMID: 38449296 PMCID: PMC11212496 DOI: 10.1093/bioinformatics/btae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
MOTIVATION The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron microscopy, proteomics, and computational structure prediction. This development results in a strong need for computational approaches to analyse the data of large protein complexes for structural and functional characterization. Here, we aim to provide a suitable approach, which processes the growing number of large protein complexes, to obtain biologically meaningful information on the hierarchical organization of the structures of protein complexes. RESULTS We modelled the quaternary structure of protein complexes as undirected, labelled graphs called complex graphs. In complex graphs, the vertices represent protein chains and the edges spatial chain-chain contacts. We hypothesized that clusters based on the complex graph correspond to functional biological modules. To compute the clusters, we applied the Leiden clustering algorithm. To evaluate our approach, we chose the human respiratory complex I, which has been extensively investigated and exhibits a known biological module structure experimentally validated. Additionally, we characterized a eukaryotic group II chaperonin TRiC/CCT and the head of the bacteriophage Φ29. The analysis of the protein complexes correlated with experimental findings and indicated known functional, biological modules. Using our approach enables not only to predict functional biological modules in large protein complexes with characteristic features but also to investigate the flexibility of specific regions and coformational changes. The predicted modules can aid in the planning and analysis of experiments. AVAILABILITY AND IMPLEMENTATION Jupyter notebooks to reproduce the examples are available on our public GitHub repository: https://github.com/MolBIFFM/PTGLtools/tree/main/PTGLmodulePrediction.
Collapse
Affiliation(s)
- Florian J Gisdon
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Mariella Zunker
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Jan Niclas Wolf
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Kai Prüfer
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Jörg Ackermann
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| | - Christoph Welsch
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, 60590 Frankfurt am Main, Germany
| | - Ina Koch
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, 60325 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Roy M, Fleisher RC, Alexandrov AI, Horovitz A. Reduced ADP off-rate by the yeast CCT2 double mutation T394P/R510H which causes Leber congenital amaurosis in humans. Commun Biol 2023; 6:888. [PMID: 37644231 PMCID: PMC10465592 DOI: 10.1038/s42003-023-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
The CCT/TRiC chaperonin is found in the cytosol of all eukaryotic cells and assists protein folding in an ATP-dependent manner. The heterozygous double mutation T400P and R516H in subunit CCT2 is known to cause Leber congenital amaurosis (LCA), a hereditary congenital retinopathy. This double mutation also renders the function of subunit CCT2, when it is outside of the CCT/TRiC complex, to be defective in promoting autophagy. Here, we show using steady-state and transient kinetic analysis that the corresponding double mutation in subunit CCT2 from Saccharomyces cerevisiae reduces the off-rate of ADP during ATP hydrolysis by CCT/TRiC. We also report that the ATPase activity of CCT/TRiC is stimulated by a non-folded substrate. Our results suggest that the closed state of CCT/TRiC is stabilized by the double mutation owing to the slower off-rate of ADP, thereby impeding the exit of CCT2 from the complex that is required for its function in autophagy.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rachel C Fleisher
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander I Alexandrov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
4
|
Smith TM, Willardson BM. Mechanistic insights into protein folding by the eukaryotic chaperonin complex CCT. Biochem Soc Trans 2022; 50:1403-1414. [PMID: 36196890 PMCID: PMC9704529 DOI: 10.1042/bst20220591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
The cytosolic chaperonin CCT is indispensable to eukaryotic life, folding the cytoskeletal proteins actin and tubulin along with an estimated 10% of the remaining proteome. However, it also participates in human diseases such as cancer and viral infections, rendering it valuable as a potential therapeutic target. CCT consists of two stacked rings, each comprised of eight homologous but distinct subunits, that assists the folding of a remarkable substrate clientele that exhibits both broad diversity and specificity. Much of the work in recent years has been aimed at understanding the mechanisms of CCT substrate recognition and folding. These studies have revealed new binding sites and mechanisms by which CCT uses its distinctive subunit arrangement to fold structurally unrelated substrates. Here, we review recent structural insights into CCT-substrate interactions and place them into the broader context of CCT function and its implications for human health.
Collapse
Affiliation(s)
- Theresa M. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| |
Collapse
|
5
|
Roy M, Horovitz A. Partitioning the Hill coefficient into contributions from ligand-promoted conformational changes and subunit heterogeneity. Protein Sci 2022; 31:e4298. [PMID: 35481656 PMCID: PMC8994510 DOI: 10.1002/pro.4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Abstract
Heterooligomers that undergo ligand-promoted conformational changes are ubiquitous in nature and involved in many essential processes. Conformational switching often leads to positive cooperativity in ligand binding that is reflected in a Hill coefficient with a value greater than one. The subunits comprising heterooligomers can differ, however, in their affinity for the ligand. Such so-called site heterogeneity results in apparent negative cooperativity that is reflected by a Hill coefficient with a value less than one. Consequently, positive cooperativity due to the ligand-promoted allosteric switch can be masked, in cases of such heterooligomers, by apparent negative cooperativity owing to site heterogeneity. Here, we derived expressions for the Hill coefficient, in the case of a heterodimer, in which the contributions from the ligand-promoted allosteric switch and site heterogeneity are separated. Using these equations and simulations for higher order oligomers, we show under which conditions site heterogeneity can significantly mask the extent of observed positive cooperativity.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Amnon Horovitz
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. FRONTIERS IN BIOINFORMATICS 2021; 1:788308. [PMID: 36303748 PMCID: PMC9580929 DOI: 10.3389/fbinf.2021.788308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce “in solution” structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.
Collapse
Affiliation(s)
- Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- *Correspondence: Wei-Hau Chang,
| | | | - Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Chi Chung
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin. Nat Commun 2021; 12:4754. [PMID: 34362932 PMCID: PMC8346469 DOI: 10.1038/s41467-021-25099-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2021] [Indexed: 12/05/2022] Open
Abstract
Chaperonins are homo- or hetero-oligomeric complexes that use ATP binding and hydrolysis to facilitate protein folding. ATP hydrolysis exhibits both positive and negative cooperativity. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here we use cryoEM to study ATP binding in the homo-oligomeric archaeal chaperonin from Methanococcus maripaludis (MmCpn), consisting of two stacked rings composed of eight identical subunits each. Using a series of image classification steps, we obtained different structural snapshots of individual chaperonins undergoing the nucleotide binding process. We identified nucleotide-bound and free states of individual subunits in each chaperonin, allowing us to determine the ATP occupancy state of each MmCpn particle. We observe distinctive tertiary and quaternary structures reflecting variations in nucleotide occupancy and subunit conformations in each chaperonin complex. Detailed analysis of the nucleotide distribution in each MmCpn complex indicates that individual ATP binding events occur in a statistically random manner for MmCpn, both within and across the rings. Our findings illustrate the power of cryoEM to characterize a biochemical property of multi-subunit ligand binding cooperativity at the individual particle level. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here, the authors employ an approach that uses cryo-EM single particle analysis to track the number and distribution of nucleotides bound to each subunit in the homo-oligomeric MmCpn archaeal chaperonin complex and observe that ATP binds in a statistically random manner to MmCpn both within a ring and across the rings, which shows that there is no cooperativity in ATP binding to archaeal group II chaperonins under the conditions used in this study.
Collapse
|
8
|
Lagunes L, Bardwell L, Enciso GA. Effect of magnitude and variability of energy of activation in multisite ultrasensitive biochemical processes. PLoS Comput Biol 2020; 16:e1007966. [PMID: 32760072 PMCID: PMC7444825 DOI: 10.1371/journal.pcbi.1007966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 08/24/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022] Open
Abstract
Protein activity is often regulated by ligand binding or by post-translational modifications such as phosphorylation. Moreover, proteins that are regulated in this way often contain multiple ligand binding sites or modification sites, which can operate to create an ultrasensitive dose response. Here, we consider the contribution of the individual modification/binding sites to the activation process, and how their individual values affect the ultrasensitive behavior of the overall system. We use a generalized Monod-Wyman-Changeux (MWC) model that allows for variable conformational free energy contributions from distinct sites, and associate a so-called activation parameter to each site. Our analysis shows that the ultrasensitivity generally increases as the conformational free energy contribution from one or more sites is strengthened. Furthermore, ultrasensitivity depends on the mean of the activation parameters and not on their variability. In some cases, we find that the best way to maximize ultrasensitivity is to make the contribution from all sites as strong as possible. These results provide insights into the performance objectives of multiple modification/binding sites and thus help gain a greater understanding of signaling and its role in diseases.
Collapse
Affiliation(s)
- Leonila Lagunes
- Developmental and Cell Biology Department, University of California Irvine, California, United States of America
| | - Lee Bardwell
- Developmental and Cell Biology Department, University of California Irvine, California, United States of America
| | - German A. Enciso
- Developmental and Cell Biology Department, University of California Irvine, California, United States of America
- Mathematics Department, University of California Irvine, California, United States of America
| |
Collapse
|
9
|
Gestaut D, Limatola A, Joachimiak L, Frydman J. The ATP-powered gymnastics of TRiC/CCT: an asymmetric protein folding machine with a symmetric origin story. Curr Opin Struct Biol 2019; 55:50-58. [PMID: 30978594 DOI: 10.1016/j.sbi.2019.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
The eukaryotic chaperonin TRiC/CCT is a large hetero-oligomeric complex that plays an essential role assisting cellular protein folding and suppressing protein aggregation. It consists of two rings, and each composed of eight different subunits; non-native polypeptides bind and fold in an ATP-dependent manner within their central chamber. Here, we review recent advances in our understanding of TRiC structure and mechanism enabled by application of hybrid structural methods including the integration of cryo-electron microscopy with distance constraints from crosslinking mass spectrometry. These new insights are revealing how the different TRiC/CCT subunits create asymmetry in its ATP-driven conformational cycle and its interaction with non-native polypeptides, which ultimately underlie its unique ability to fold proteins that cannot be folded by other chaperones.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA
| | - Antonio Limatola
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA
| | - Lukasz Joachimiak
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA.
| |
Collapse
|
10
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
11
|
Mas G, Guan JY, Crublet E, Debled EC, Moriscot C, Gans P, Schoehn G, Macek P, Schanda P, Boisbouvier J. Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle. SCIENCE ADVANCES 2018; 4:eaau4196. [PMID: 30255156 PMCID: PMC6154984 DOI: 10.1126/sciadv.aau4196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/01/2018] [Indexed: 05/03/2023]
Abstract
Chaperonins are ubiquitous protein assemblies present in bacteria, eukaryota, and archaea, facilitating the folding of proteins, preventing protein aggregation, and thus participating in maintaining protein homeostasis in the cell. During their functional cycle, they bind unfolded client proteins inside their double ring structure and promote protein folding by closing the ring chamber in an adenosine 5'-triphosphate (ATP)-dependent manner. Although the static structures of fully open and closed forms of chaperonins were solved by x-ray crystallography or electron microscopy, elucidating the mechanisms of such ATP-driven molecular events requires studying the proteins at the structural level under working conditions. We introduce an approach that combines site-specific nuclear magnetic resonance observation of very large proteins, enabled by advanced isotope labeling methods, with an in situ ATP regeneration system. Using this method, we provide functional insight into the 1-MDa large hsp60 chaperonin while processing client proteins and reveal how nucleotide binding, hydrolysis, and release control switching between closed and open states. While the open conformation stabilizes the unfolded state of client proteins, the internalization of the client protein inside the chaperonin cavity speeds up its functional cycle. This approach opens new perspectives to study structures and mechanisms of various ATP-driven biological machineries in the heat of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pavel Macek
- Corresponding author. (P.M.); (P.S.); (J.B.)
| | | | | |
Collapse
|
12
|
Okamoto T, Yamamoto H, Kudo I, Matsumoto K, Odaka M, Grave E, Itoh H. HSP60 possesses a GTPase activity and mediates protein folding with HSP10. Sci Rep 2017; 7:16931. [PMID: 29208924 PMCID: PMC5717063 DOI: 10.1038/s41598-017-17167-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/22/2017] [Indexed: 12/05/2022] Open
Abstract
The mammalian molecular chaperone, HSP60, plays an essential role in protein homeostasis through mediating protein folding and assembly. The structure and ATP-dependent function of HSP60 has been well established in recent studies. After ATP, GTP is the major cellular nucleotide. In this paper, we have investigated the role of GTP in the activity of HSP60. It was found that HSP60 has different properties with respect to allostery, complex formation and protein folding activity depending on the nucleoside triphosphate present. The presence of GTP slightly affected the ATPase activity of HSP60 during protein folding. These results provide clues as to the functional mechanism of the HSP60-HSP10 complex.
Collapse
Affiliation(s)
- Tomoya Okamoto
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Hiroshi Yamamoto
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Ikuru Kudo
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Kazuya Matsumoto
- Department of Applied Chemistry, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Masafumi Odaka
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Ewa Grave
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Hideaki Itoh
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan.
| |
Collapse
|
13
|
An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. Nat Commun 2017; 8:827. [PMID: 29018216 PMCID: PMC5635000 DOI: 10.1038/s41467-017-00980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches. Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sara E Rowland
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Jung-Hyun Na
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dario Spigolon
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Seung Kon Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA. .,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
14
|
Roh SH, Kasembeli MM, Galaz-Montoya JG, Chiu W, Tweardy DJ. Chaperonin TRiC/CCT Recognizes Fusion Oncoprotein AML1-ETO through Subunit-Specific Interactions. Biophys J 2017; 110:2377-2385. [PMID: 27276256 DOI: 10.1016/j.bpj.2016.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
AML1-ETO is the translational product of a chimeric gene created by the stable chromosome translocation t (8;21)(q22;q22). It causes acute myeloid leukemia (AML) by dysregulating the expression of genes critical for myeloid cell development and differentiation and recently has been reported to bind multiple subunits of the mammalian cytosolic chaperonin TRiC (or CCT), primarily through its DNA binding domain (AML1-175). Through these interactions, TRiC plays an important role in the synthesis, folding, and activity of AML1-ETO. Using single-particle cryo-electron microscopy, we demonstrate here that a folding intermediate of AML1-ETO's DNA-binding domain (AML1-175) forms a stable complex with apo-TRiC. Our structure reveals that AML1-175 associates directly with a specific subset of TRiC subunits in the open conformation.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Moses M Kasembeli
- Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jesús G Galaz-Montoya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - David J Tweardy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas; Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Abstract
The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structural information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.
Collapse
|
16
|
Transient Kinetic Analysis of ATP Hydrolysis by the CCT/TRiC Chaperonin. J Mol Biol 2016; 428:4520-4527. [PMID: 27686496 DOI: 10.1016/j.jmb.2016.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022]
Abstract
The chaperonin-containing t-complex polypeptide 1 (CCT, also known as TRiC) assists protein folding in an ATP-dependent manner. CCT/TRiC was mixed rapidly with different concentrations of ATP, and the amount of phosphate formed upon ATP hydrolysis was measured as a function of time using the coumarin-labeled phosphate-binding protein method. Two burst phases were observed, followed by a lag phase and then a linear steady-state phase of ATP hydrolysis. The phases were assigned by (i) determining their dependence on ATP and K+ concentrations and (ii) by measuring their sensitivity to the mutation Gly345→Asp in subunit CCT4, which decreases cooperativity in ATP binding. The values of the observed rate constants corresponding to the burst phases are found to decrease with increasing ATP and K+ concentrations, thereby indicating that the apo state of CCT/TRiC is in equilibrium between several conformations and that "conformational selection" by ATP takes place before hydrolysis. The amplitude of the lag phase, which follows, decreases with increasing ATP concentrations, thus indicating that it reflects a transition between states with low affinity for ATP and a state with high affinity for ATP that is predominant under steady-state conditions. A kinetic model based on the data is suggested, in which CCT/TRiC is in equilibrium between a relatively large number of states that are distinguished kinetically, in agreement with its proposed sequential allosteric mechanism.
Collapse
|
17
|
Paul DM, Beuron F, Sessions RB, Brancaccio A, Bigotti MG. Internal (His)₆-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield. Sci Rep 2016; 6:20696. [PMID: 26856373 PMCID: PMC4746591 DOI: 10.1038/srep20696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits. A major recurring problem within group II chaperonin research, especially with the hetero-oligomeric forms, is to establish an efficient recombinant system for the expression of large amounts of wild-type as well as mutated variants. Herein we show how we can produce, in E. coli cells, unprecedented amounts of correctly assembled and active αβ-thermosome, the class II chaperonin from Thermoplasma acidophilum, by introducing a (His)6-tag within a loop in the α subunit of the complex. The specific location was identified via a rational approach and proved not to disturb the structure of the chaperonin, as demonstrated by size-exclusion chromatography, native gel electrophoresis and electron microscopy. Likewise, the tagged protein showed an ATP-ase activity and an ability to refold substrates identical to the wild type. This tagging strategy might be employed for the overexpression of other recombinant chaperonins.
Collapse
Affiliation(s)
- Danielle M. Paul
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Istituto di Chimica del Riconoscimento Molecolare, CNR c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | |
Collapse
|
18
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
19
|
Yamamoto YY, Abe Y, Moriya K, Arita M, Noguchi K, Ishii N, Sekiguchi H, Sasaki YC, Yohda M. Inter-ring communication is dispensable in the reaction cycle of group II chaperonins. J Mol Biol 2014; 426:2667-78. [PMID: 24859336 DOI: 10.1016/j.jmb.2014.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Chaperonins are ubiquitous molecular chaperones with the subunit molecular mass of 60kDa. They exist as double-ring oligomers with central cavities. An ATP-dependent conformational change of the cavity induces the folding of an unfolded protein that is captured in the cavity. In the group I chaperonins, which are present in eubacteria and eukaryotic organelles, inter-ring communication takes important role for the reaction cycle. However, there has been limited study on the inter-ring communication in the group II chaperonins that exist in archaea and the eukaryotic cytosol. In this study, we have constructed the asymmetric ring complex of a group II chaperonin using circular permutated covalent mutants. Although one ring of the asymmetric ring complex lacks ATPase or ATP binding activity, the other wild-type ring undergoes an ATP-dependent conformational change and maintains protein-folding activity. The results clearly demonstrate that inter-ring communication is dispensable in the reaction cycle of group II chaperonins.
Collapse
Affiliation(s)
- Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Yuki Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Kazuki Moriya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Noriyuki Ishii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan; CREST Sasaki Team, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Yuji C Sasaki
- CREST Sasaki Team, Japan Science and Technology Agency, Tokyo 102-0076, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
20
|
Dissection of the ATP-dependent conformational change cycle of a group II chaperonin. J Mol Biol 2013; 426:447-59. [PMID: 24120682 DOI: 10.1016/j.jmb.2013.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1-2s after mixing. Only in the presence of K(+) that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K(+). Without K(+), a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K(+), a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.
Collapse
|
21
|
Jayasinghe M, Shrestha P, Wu X, Tehver R, Stan G. Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis. Biophys J 2013; 103:1285-95. [PMID: 22995501 DOI: 10.1016/j.bpj.2012.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022] Open
Abstract
Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL, undergo concerted subunit motions within each ring, whereas archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. We study these distinct mechanisms through a comparative normal mode analysis of monomer and double-ring structures of the archaeal chaperonin thermosome and GroEL. We find that thermosome monomers of each type exhibit common low-frequency behavior of normal modes. The observed distinct higher-frequency modes are attributed to functional specialization of these subunit types. The thermosome double-ring structure has larger contribution from higher-frequency modes, as it is found in the GroEL case. We find that long-range intersubunit correlation of amino-acid pairs is weaker in the thermosome ring than in GroEL. Overall, our results indicate that distinct allosteric behavior of the two chaperonin classes originates from different wiring of individual subunits as well as of the intersubunit communications.
Collapse
Affiliation(s)
- Manori Jayasinghe
- Department of Chemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | | | | | | | | |
Collapse
|
22
|
Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J. A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep 2012; 2:866-77. [PMID: 23041314 DOI: 10.1016/j.celrep.2012.08.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 01/16/2023] Open
Abstract
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.
Collapse
Affiliation(s)
- Stefanie Reissmann
- Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hildenbrand ZL, Bernal RA. Chaperonin-Mediated Folding of Viral Proteins. VIRAL MOLECULAR MACHINES 2012; 726:307-24. [DOI: 10.1007/978-1-4614-0980-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD. Mechanism of nucleotide sensing in group II chaperonins. EMBO J 2011; 31:731-40. [PMID: 22193720 DOI: 10.1038/emboj.2011.468] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/28/2011] [Indexed: 11/09/2022] Open
Abstract
Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.
Collapse
Affiliation(s)
- Jose H Pereira
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cong Y, Schröder GF, Meyer AS, Jakana J, Ma B, Dougherty MT, Schmid MF, Reissmann S, Levitt M, Ludtke SL, Frydman J, Chiu W. Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO J 2011; 31:720-30. [PMID: 22045336 PMCID: PMC3273382 DOI: 10.1038/emboj.2011.366] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/14/2011] [Indexed: 11/30/2022] Open
Abstract
Chaperonins are multisubunit entities that are composed of two stacked rings enclosing a central chamber for ATP-dependent protein folding. A series of cryo-EM structures of the eukaryotic group II chaperonin TRiC/CCT reveal the conformational changes during the ATPase cycle and provide insight into how the subunits cooperate to close the lid. The eukaryotic group II chaperonin TRiC/CCT is a 16-subunit complex with eight distinct but similar subunits arranged in two stacked rings. Substrate folding inside the central chamber is triggered by ATP hydrolysis. We present five cryo-EM structures of TRiC in apo and nucleotide-induced states without imposing symmetry during the 3D reconstruction. These structures reveal the intra- and inter-ring subunit interaction pattern changes during the ATPase cycle. In the apo state, the subunit arrangement in each ring is highly asymmetric, whereas all nucleotide-containing states tend to be more symmetrical. We identify and structurally characterize an one-ring closed intermediate induced by ATP hydrolysis wherein the closed TRiC ring exhibits an observable chamber expansion. This likely represents the physiological substrate folding state. Our structural results suggest mechanisms for inter-ring-negative cooperativity, intra-ring-positive cooperativity, and protein-folding chamber closure of TRiC. Intriguingly, these mechanisms are different from other group I and II chaperonins despite their similar architecture.
Collapse
Affiliation(s)
- Yao Cong
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kabir MA, Uddin W, Narayanan A, Reddy PK, Jairajpuri MA, Sherman F, Ahmad Z. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. JOURNAL OF AMINO ACIDS 2011; 2011:843206. [PMID: 22312474 PMCID: PMC3268035 DOI: 10.4061/2011/843206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
Abstract
Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM. Chaperonins: two rings for folding. Trends Biochem Sci 2011; 36:424-32. [PMID: 21723731 DOI: 10.1016/j.tibs.2011.05.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 01/08/2023]
Abstract
Chaperonins are ubiquitous chaperones found in Eubacteria, eukaryotic organelles (group I), Archaea and the eukaryotic cytosol (group II). They all share a common structure and a basic functional mechanism. Although a large amount of information has been gathered for the simpler group I, much less is known about group II chaperonins. Recent crystallographic and electron microscopy structures have provided new insights into the mechanism of these chaperonins and revealed important differences between group I and II chaperonins, mainly in the molecular rearrangements that take place during the functional cycle. These differences are evident for the most complex chaperonin, the eukaryotic cytosolic CCT, which highlights the uniqueness of this important molecular machine.
Collapse
Affiliation(s)
- Hugo Yébenes
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem 2010; 285:27958-66. [PMID: 20573955 PMCID: PMC2934662 DOI: 10.1074/jbc.m110.125344] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are large protein complexes consisting of two stacked multisubunit rings, which open and close in an ATP-dependent manner to create a protected environment for protein folding. Here, we describe the first crystal structure of a group II chaperonin in an open conformation. We have obtained structures of the archaeal chaperonin from Methanococcus maripaludis in both a peptide acceptor (open) state and a protein folding (closed) state. In contrast with group I chaperonins, in which the equatorial domains share a similar conformation between the open and closed states and the largest motions occurs at the intermediate and apical domains, the three domains of the archaeal chaperonin subunit reorient as a single rigid body. The large rotation observed from the open state to the closed state results in a 65% decrease of the folding chamber volume and creates a highly hydrophilic surface inside the cage. These results suggest a completely distinct closing mechanism in the group II chaperonins as compared with the group I chaperonins.
Collapse
Affiliation(s)
- Jose H. Pereira
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Corie Y. Ralston
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Nicholai R. Douglas
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Daniel Meyer
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Kelly M. Knee
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Daniel R. Goulet
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jonathan A. King
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Judith Frydman
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Paul D. Adams
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- the Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
29
|
Gymnastics of Molecular Chaperones. Mol Cell 2010; 39:321-31. [DOI: 10.1016/j.molcel.2010.07.012] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/14/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022]
|
30
|
Mukherjee K, Conway de Macario E, Macario AJL, Brocchieri L. Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes. BMC Evol Biol 2010; 10:64. [PMID: 20193073 PMCID: PMC2846930 DOI: 10.1186/1471-2148-10-64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 03/01/2010] [Indexed: 11/29/2022] Open
Abstract
Background Chaperonin proteins are well known for the critical role they play in protein folding and in disease. However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl and McKusick-Kaufman Syndromes (BBS and MKKS, respectively) indicates that the eukaryotic chaperonin-gene family is larger and more differentiated than previously thought. The availability of complete genome sequences makes possible a definitive characterization of the complete set of chaperonin sequences in human and other species. Results We identified fifty-four chaperonin-like sequences in the human genome and similar numbers in the genomes of the model organisms mouse and rat. In mammal genomes we identified, besides the well-known CCT chaperonin genes and the three genes associated with the MKKS and BBS pathological conditions, a newly-defined class of chaperonin genes named CCT8L, represented in human by the two sequences CCT8L1 and CCT8L2. Comparative analyses from several vertebrate genomes established the monophyletic origin of chaperonin-like MKKS and BBS genes from the CCT8 lineage. The CCT8L gene originated from a later duplication also in the CCT8 lineage at the onset of mammal evolution and duplicated in primate genomes. The functionality of CCT8L genes in different species was confirmed by evolutionary analyses and in human by expression data. Detailed sequence analysis and structural predictions of MKKS, BBS and CCT8L proteins strongly suggested that they conserve a typical chaperonin-like core structure but that they are unlikely to form a CCT-like oligomeric complex. The characterization of many newly-discovered chaperonin pseudogenes uncovered the intense duplication activity of eukaryotic chaperonin genes. Conclusions In vertebrates, chaperonin genes, driven by intense duplication processes, have diversified into multiple classes and functionalities that extend beyond their well-known protein-folding role as part of the typical oligomeric chaperonin complex, emphasizing previous observations on the involvement of individual CCT monomers in microtubule elongation. The functional characterization of newly identified chaperonin genes will be a challenge for future experimental analyses.
Collapse
Affiliation(s)
- Krishanu Mukherjee
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1660 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
31
|
Kanzaki T, Iizuka R, Takahashi K, Maki K, Masuda R, Sahlan M, Yébenes H, Valpuesta JM, Oka T, Furutani M, Ishii N, Kuwajima K, Yohda M. Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins. J Biol Chem 2008; 283:34773-84. [PMID: 18854314 DOI: 10.1074/jbc.m805303200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP drives the conformational change of the group II chaperonin from the open lid substrate-binding conformation to the closed lid conformation to encapsulate an unfolded protein in the central cavity. The detailed mechanism of this conformational change remains unknown. To elucidate the intra-ring cooperative action of subunits for the conformational change, we constructed Thermococcus chaperonin complexes containing mutant subunits in an ordered manner and examined their folding and conformational change abilities. Chaperonin complexes containing wild-type subunits and mutant subunits with impaired ATP-dependent conformational change ability or ATP hydrolysis activity, one by one, exhibited high protein refolding ability. The effects of the mutant subunits correlate with the number and order in the ring. In contrast, the use of a mutant lacking helical protrusion severely affected the function. Interestingly, these mutant chaperonin complexes also exhibited ATP-dependent conformational changes as demonstrated by small angle x-ray scattering, protease digestion, and changes in fluorescence of the fluorophore attached to the tip of the helical protrusion. However, their conformational change is likely to be transient. They captured denatured proteins even in the presence of ATP, whereas addition of ATP impaired the ability of the wild-type chaperonin to protect citrate synthase from thermal aggregation. These results suggest that ATP binding/hydrolysis causes the independent conformational change of the subunit, and further conformational change for the complete closure of the lid is induced and stabilized by the interaction between helical protrusions.
Collapse
Affiliation(s)
- Taro Kanzaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Booth CR, Meyer AS, Cong Y, Topf M, Sali A, Ludtke SJ, Chiu W, Frydman J. Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat Struct Mol Biol 2008; 15:746-53. [PMID: 18536725 PMCID: PMC2546500 DOI: 10.1038/nsmb.1436] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/28/2008] [Indexed: 01/01/2023]
Abstract
All chaperonins mediate ATP-dependent polypeptide folding by confining substrates within a central chamber. Intriguingly, the eukaryotic chaperonin TRiC (also called CCT) uses a built-in lid to close the chamber, whereas prokaryotic chaperonins use a detachable lid. Here we determine the mechanism of lid closure in TRiC using single-particle cryo-EM and comparative protein modeling. Comparison of TRiC in its open, nucleotide-free, and closed, nucleotide-induced states reveals that the interdomain motions leading to lid closure in TRiC are radically different from those of prokaryotic chaperonins, despite their overall structural similarity. We propose that domain movements in TRiC are coordinated through unique interdomain contacts within each subunit and, further, these contacts are absent in prokaryotic chaperonins. Our findings show how different mechanical switches can evolve from a common structural framework through modification of allosteric networks.
Collapse
Affiliation(s)
- Christopher R Booth
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, One Baylor Plaza, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Clare DK, Stagg S, Quispe J, Farr GW, Horwich AL, Saibil HR. Multiple states of a nucleotide-bound group 2 chaperonin. Structure 2008; 16:528-34. [PMID: 18400175 PMCID: PMC2719814 DOI: 10.1016/j.str.2008.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 11/18/2022]
Abstract
Chaperonin action is controlled by cycles of nucleotide binding and hydrolysis. Here, we examine the effects of nucleotide binding on an archaeal group 2 chaperonin. In contrast to the ordered apo state of the group 1 chaperonin GroEL, the unliganded form of the homo-16-mer Methanococcus maripaludis group 2 chaperonin is very open and flexible, with intersubunit contacts only in the central double belt of equatorial domains. The intermediate and apical domains are free of contacts and deviate significantly from the overall 8-fold symmetry. Nucleotide binding results in three distinct, ordered 8-fold symmetric conformations--open, partially closed, and fully closed. The partially closed ring encloses a 40% larger volume than does the GroEL-GroES folding chamber, enabling it to encapsulate proteins up to 80 kDa, in contrast to the fully closed form, whose cavities are 20% smaller than those of the GroEL-GroES chamber.
Collapse
Affiliation(s)
- Daniel K. Clare
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Scott Stagg
- The National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joel Quispe
- The National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - George W. Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
| | - Arthur L. Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Helen R. Saibil
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
34
|
Bigotti MG, Clarke AR. Chaperonins: The hunt for the Group II mechanism. Arch Biochem Biophys 2008; 474:331-9. [PMID: 18395510 DOI: 10.1016/j.abb.2008.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/27/2022]
Abstract
Chaperonins are multi-subunit complexes that enhance the efficiency of protein-folding reactions by capturing protein substrates in their central cavities. They occur in all prokaryotic and eukaryotic cell types and, alone amongst molecular chaperones, chaperonin knockouts are always lethal. Chaperonins come in two forms; the Group I are found in bacteria, mitochondria and plastids [W.A. Fenton, A.L. Horwich, Q. Rev. Biophys. 36 (2003) 229-256, [1]] and the Group II in the eukaryotic cytoplasm and in archaea [N.J. Cowan, S.A. Lewis, Adv. Protein Chem. 59 (2001) 73-104, [2]]. Both use energy derived from ATP binding and hydrolysis to drive a series of structural rearrangements that enable them to capture, engulf and then release polypeptide chains that have either not yet acquired the native, biologically active state or have been denatured in the cell.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol B58 1TD, UK.
| | | |
Collapse
|
35
|
Shimon L, Hynes GM, McCormack EA, Willison KR, Horovitz A. ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth. J Mol Biol 2008; 377:469-77. [PMID: 18272176 DOI: 10.1016/j.jmb.2008.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 12/28/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
Saccharomyces cerevisiae yeast cells containing the chaperonin CCT (chaperonin-containing t-complex polypeptide 1 (TCP-1)) with the G345D mutation in subunit CCT4 (anc2-1) are temperature-sensitive for growth and display defects in organization of actin structure, budding and cell shape. In this first structure-function analysis of CCT, we show that this mutation abolishes both intra- and inter-ring cooperativity in ATP binding by CCT. The finding that a single mutation in only one subunit in each CCT ring has such drastic effects highlights the importance of allostery for its in vivo function. These results, together with other kinetic data for wild-type CCT reported in this study, provide support for the sequential model for ATP-dependent allosteric transitions in CCT.
Collapse
Affiliation(s)
- Liat Shimon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
36
|
Abstract
Chaperonins are large ring assemblies that assist protein folding to the native state by binding nonnative proteins in their central cavities and then, upon binding ATP, release the substrate protein into a now-encapsulated cavity to fold productively. Two families of such components have been identified: type I in mitochondria, chloroplasts, and the bacterial cytosol, which rely on a detachable "lid" structure for encapsulation, and type II in archaea and the eukaryotic cytosol, which contain a built-in protrusion structure. We discuss here a number of issues under current study. What is the range of substrates acted on by the two classes of chaperonin, in particular by GroEL in the bacterial cytoplasm and CCT in the eukaryotic cytosol, and are all these substrates subject to encapsulation? What are the determinants for substrate binding by the type II chaperonins? And is the encapsulated chaperonin cavity a passive container that prevents aggregation, or could it be playing an active role in polypeptide folding?
Collapse
Affiliation(s)
- Arthur L Horwich
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
37
|
Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 2007; 14:432-40. [PMID: 17460696 PMCID: PMC3339572 DOI: 10.1038/nsmb1236] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/20/2007] [Indexed: 11/09/2022]
Abstract
Chaperonins are allosteric double-ring ATPases that mediate cellular protein folding. ATP binding and hydrolysis control opening and closing of the central chaperonin chamber, which transiently provides a protected environment for protein folding. During evolution, two strategies to close the chaperonin chamber have emerged. Archaeal and eukaryotic group II chaperonins contain a built-in lid, whereas bacterial chaperonins use a ring-shaped cofactor as a detachable lid. Here we show that the built-in lid is an allosteric regulator of group II chaperonins, which helps synchronize the subunits within one ring and, to our surprise, also influences inter-ring communication. The lid is dispensable for substrate binding and ATP hydrolysis, but is required for productive substrate folding. These regulatory functions of the lid may serve to allow the symmetrical chaperonins to function as 'two-stroke' motors and may also provide a timer for substrate encapsulation within the closed chamber.
Collapse
Affiliation(s)
- Stefanie Reissmann
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Chen HY, Chu ZM, Ma YH, Zhang Y, Yang SL. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeonPyrococcus furiosus. J Basic Microbiol 2007; 47:132-7. [PMID: 17440915 DOI: 10.1002/jobm.200610215] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chaperonin molecular machine from hyperthermophilic archaeon Pyrococcus furiosus was studied in this paper. The Pyrococcus furiosus chaperonin gene (PfCPN) was amplified by PCR from the Pyrococcus furiosus genomic DNA, and expressed in Escherichia coli BL21-Codonplus(DE)(3)-RIL. The recombinant PfCPN was purified to homogeneity by using ion-exchange and size-exclusion chromatography. It was found that the ATPase activity of the PfCPN was highest at 88 degrees C, and there existed a nested cooperativity of the ATPase activity of the PfCPN. This result suggested that nested allosteric behavior may be common to chaperonin molecular machines from archaea. The half-life (t(1/2)) of the ATPase activity of the PfCPN at 100 degrees C was about 60 min. The PfCPN displayed chaperone activity in preventing lysozyme from thermal inactivation. This chaperone activity was in an ATP-dependent manner.
Collapse
Affiliation(s)
- Hua-You Chen
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
39
|
Kipnis Y, Papo N, Haran G, Horovitz A. Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proc Natl Acad Sci U S A 2007; 104:3119-24. [PMID: 17360617 PMCID: PMC1805612 DOI: 10.1073/pnas.0700070104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The double-ring chaperonin GroEL mediates protein folding, in conjunction with its helper protein GroES, by undergoing ATP-induced conformational changes that are concerted within each heptameric ring. Here we have examined whether the concerted nature of these transitions is responsible for protein substrate release in an all-or-none manner. Two chimeric substrates were designed, each with two different reporter activities that were recovered after denaturation in GroES-dependent and independent fashions, respectively. The refolding of the chimeras was monitored in the presence of GroEL variants that undergo ATP-induced intraring conformational changes that are either sequential (F44W/D155A) or concerted (F44W). Our results show that release of a protein substrate from GroEL in a domain-by-domain fashion is favored when the intraring allosteric transitions of GroEL are sequential and not concerted.
Collapse
Affiliation(s)
| | - Niv Papo
- Departments of Structural Biology and
| | - Gilad Haran
- Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amnon Horovitz
- Departments of Structural Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Bigotti MG, Bellamy SRW, Clarke AR. The asymmetric ATPase cycle of the thermosome: elucidation of the binding, hydrolysis and product-release steps. J Mol Biol 2006; 362:835-43. [PMID: 16942780 DOI: 10.1016/j.jmb.2006.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 11/15/2022]
Abstract
Using a combination of intrinsic fluorescence to report ATP-induced rearrangements, quenched-flow to measure ATP hydrolysis "on-enzyme" and optical methods to probe the kinetics of product release, we have begun to dissect the process of energy transduction in the thermosome, a type II chaperonin from Thermoplasma acidophilum. Stoichiometric measurements of ATP binding reveal the tight association of eight nucleotide molecules per hexa-decamer, implying the filling of only one ring owing to strong negative cooperativity. After binding, we show that these eight ATP molecules are hydrolysed over the next 50 s, after which hydrolysis slows down markedly during the establishment of the steady state in the ATPase reaction, demonstrating that the kinetic system is off-rate limited. Looking in more detail, this rapid first-turnover can be dissected into two phases; the first occurring with a half-time of 0.8 s, the second with a half-time of 14 s, possibly reflecting the differential behaviour of the four alpha and four beta subunits in a single thermosome ring. To investigate the post-hydrolytic events, we used two heat-stable enzyme-linked optical assays to measure the rate of evolution of ADP and of phosphate from the thermosome active site. Neither product showed a rapid dissociation phase prior to the establishment of the steady state, showing that both are released slowly at a rate that limits the cycle. These data highlight the importance of the highly populated thermosome/ADP/Pi complex in the molecular mechanism.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
41
|
Miller EJ, Meyer AS, Frydman J. Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC. Protein Sci 2006; 15:1522-6. [PMID: 16672233 PMCID: PMC2265097 DOI: 10.1110/ps.052001606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The eukaryotic cytosolic chaperonin TRiC (TCP-1 Ring Complex), also known as CCT (Cytosolic Chaperonin containing TCP-1), is a hetero-oligomeric complex consisting of two back-to-back rings of eight different subunits each. The general architecture of the complex has been determined, but the arrangement of the subunits within the complex remains an open question. By assuming that the subunits have a defined arrangement within each ring, we constructed a simple model of TRiC that analyzes the possible arrangements of individual subunits in the complex. By applying the model to existing data, we find that there are only four subunit arrangements consistent with previous observations. Our analysis provides a framework for the interpretation and design of experiments to elucidate the quaternary structure of TRiC/CCT. This in turn will aid in the understanding of substrate binding and allosteric properties of this chaperonin.
Collapse
Affiliation(s)
- Erik J Miller
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
42
|
Danziger O, Shimon L, Horovitz A. Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis. Protein Sci 2006; 15:1270-6. [PMID: 16672234 PMCID: PMC2242535 DOI: 10.1110/ps.062100606] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ATPase activity of many types of molecular chaperones is stimulated by polypeptide substrate binding via molecular mechanisms that are, for the most part, unknown. Here, we report that such stimulation of the ATPase activity of GroEL is abolished when its conserved apical domain residue Glu257 is replaced by alanine. This mutation is also found to convert the ATPase profile of GroEL, a group I chaperonin, into one that is characteristic of group II chaperonins. Steady-state and transient kinetic analysis indicate that both effects are due, at least in part, to a reduction of the affinity of GroEL for ADP. This finding indicates that nonfolded proteins stimulate ATP hydrolysis by accelerating the off-rate of the ADP formed, thereby allowing more rapid cycles of ATP binding and hydrolysis.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Structural Biology, Wietzmann Institute of Science, Rehovot 76100, Isreal
| | | | | |
Collapse
|
43
|
Horovitz A, Willison KR. Allosteric regulation of chaperonins. Curr Opin Struct Biol 2005; 15:646-51. [PMID: 16249079 DOI: 10.1016/j.sbi.2005.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/28/2005] [Accepted: 10/14/2005] [Indexed: 12/31/2022]
Abstract
Chaperonins are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space by complex allosteric regulation. Recently, progress has been made in describing the various functional (allosteric) states of these machines, the pathways by which they interconvert, and the coupling between allosteric transitions and protein folding reactions. However, various mechanistic issues remain to be resolved.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
44
|
Bigotti MG, Clarke AR. Cooperativity in the thermosome. J Mol Biol 2005; 348:13-26. [PMID: 15808850 DOI: 10.1016/j.jmb.2005.01.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/25/2005] [Accepted: 01/27/2005] [Indexed: 01/16/2023]
Abstract
The thermosome from Thermoplasma acidophilum is a type II chaperonin composed of eight alpha and eight beta subunits. The genes encoding the two types of subunit were co-expressed in Escherichia coli and the alpha8/beta8 complex purified from the cell extract. The isolated complex showed steady-state ATPase properties characteristic of the thermosome purified from the native organism and was capable of enhancing the folding yield of a thermostable enzyme at elevated temperature (55 degrees C). To compare the nucleotide response of this double-ring structure with the type I and more compositionally heterogeneous type II chaperonins, the tryptophan residue within the alpha subunit was used as a fluorescence reporter of the conformational changes within the thermosome induced by the binding of nucleotides. Stopped-flow measurements of indole fluorescence at 55 degrees C showed that there is a fast (approximately 350 s(-1)) and a slow (approximately 0.6 s(-1)) structural rearrangement when ATP binds to the thermosome. Further examination of the fast rearrangement showed that the associated rate constant followed a two-phase saturation profile, as it does for GroEL and for the type II chaperonin from the eukaryotic cytoplasm. This result, in keeping with these precedents, reveals that the thermosome is also a negatively cooperative system with respect to inter-ring communications, i.e. the first ring loads with higher affinity than the second. As in the case of GroEL, the loading of the second ring is weakened by ADP, implying that asymmetric ATP/ADP complexes are favoured over symmetric ones. Despite the difference in co-protein involvement in the type I and II chaperonins, these observations show that negative cooperativity is a common feature of all chaperonins thus far examined. This property results in a strong preference for asymmetry in nucleotide occupancy and implies at least some commonality with the reciprocating encapsulation mechanism shown for the GroE chaperonins.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
45
|
Spiess C, Meyer AS, Reissmann S, Frydman J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 2005; 14:598-604. [PMID: 15519848 PMCID: PMC2812437 DOI: 10.1016/j.tcb.2004.09.015] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber.
Collapse
Affiliation(s)
- Christoph Spiess
- Department of Biological Sciences and BioX Program, E200 Clark Center, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
46
|
Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A. Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Mol Biol 2005; 12:233-7. [PMID: 15696173 DOI: 10.1038/nsmb901] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 01/20/2005] [Indexed: 11/08/2022]
Abstract
The eukaryotic cytoplasmic chaperonin containing TCP-1 (CCT) is a hetero-oligomeric complex that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. To understand the allosteric transitions that occur during the functional cycle of CCT, we imaged the chaperonin complex in the presence of different ATP concentrations. Labeling by monoclonal antibodies that bind specifically to the CCTalpha and CCTdelta subunits enabled alignment of all the CCT subunits of a given type in different particles. The analysis shows that the apo state of CCT has considerable apparent conformational heterogeneity that decreases with increasing ATP concentration. In contrast with the concerted allosteric switch of GroEL, ATP-induced conformational changes in CCT are found to spread around the ring in a sequential fashion that may facilitate domain-by-domain substrate folding. The approach described here can be used to unravel the allosteric mechanisms of other ring-shaped molecular machines.
Collapse
Affiliation(s)
- Dalia Rivenzon-Segal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
47
|
Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J Mol Biol 2004; 335:1265-78. [PMID: 14729342 DOI: 10.1016/j.jmb.2003.11.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structures of the group II chaperonins consisting of the alpha subunit with amino acid substitutions of G65C and/or I125T from the hyperthermophilic archaeum Thermococcus strain KS-1 were determined. These mutants have been shown to be active in ATP hydrolysis but inactive in protein folding. The structures were shown to be double-ring hexadecamers in an extremely closed form, which was consistent with the crystal structure of native alpha8beta8-chaperonin from Thermoplasma acidophilum. Comparisons of the present structures with the atomic structures of the GroEL14-GroES7-(ADP)7 complex revealed that the deficiency in protein-folding activity with the G65C amino acid substitution is caused by the steric hindrance of the local conformational change in an equatorial domain. We concluded that this mutant chaperonin with G65C substitution is deprived of the smooth conformational change in the refolding-reaction cycle. We obtained a new form of crystal with a distinct space group at a lower concentration of sulfate ion in the presence of nucleotide. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion. Such subunit rotation has never been characterized in group II chaperonins. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion.
Collapse
Affiliation(s)
- Yasuhito Shomura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Danziger O, Rivenzon-Segal D, Wolf SG, Horovitz A. Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 -> Ala. Proc Natl Acad Sci U S A 2003; 100:13797-802. [PMID: 14615587 PMCID: PMC283501 DOI: 10.1073/pnas.2333925100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction cycle of the double-ring chaperonin GroEL is driven by ATP binding that takes place with positive cooperativity within each seven-membered ring and negative cooperativity between rings. The positive cooperativity within rings is due to ATP binding-induced conformational changes that are fully concerted. Herein, it is shown that the mutation Asp-155 --> Ala leads to an ATP-induced break in intra-ring and inter-ring symmetry. Electron microscopy analysis of single-ring GroEL particles containing the Asp-155 --> Ala mutation shows that the break in intra-ring symmetry is due to stabilization of allosteric intermediates such as one in which three subunits have switched their conformation while the other four have not. Our results show that eliminating an intra-subunit interaction between Asp-155 and Arg-395 results in conversion of the allosteric switch of GroEL from concerted to sequential, thus demonstrating that its allosteric behavior arises from coupled tertiary conformational changes.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
49
|
Kusmierczyk AR, Martin J. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Lett 2003; 547:201-4. [PMID: 12860414 DOI: 10.1016/s0014-5793(03)00722-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The properties of the ATPase activity of the type II chaperonin from Methanococcus maripaludis (Mm-cpn) were examined. Mm-cpn can hydrolyze not only ATP, but also CTP, UTP, and GTP, albeit with different effectiveness. The ATPase activity is dependent on magnesium and potassium ions, and is effectively inhibited by sodium ions. Maximal rates of ATP hydrolysis are achieved at 600 mM potassium. Initial rates of ATP hydrolysis by Mm-cpn were determined at various ATP concentrations, revealing for the first time the presence of both positive intra-ring and negative inter-ring cooperativity in the archaeal chaperonin.
Collapse
Affiliation(s)
- Andrew R Kusmierczyk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J2, Providence, RI 02912, USA
| | | |
Collapse
|
50
|
Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 2003; 113:369-81. [PMID: 12732144 DOI: 10.1016/s0092-8674(03)00307-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chaperonins use ATPase cycling to promote conformational changes leading to protein folding. The prokaryotic chaperonin GroEL requires a cofactor, GroES, which serves as a "lid" enclosing substrates in the central cavity and confers an asymmetry on GroEL required for cooperative transitions driving the reaction. The eukaryotic chaperonin TRiC/CCT does not have such a cofactor but appears to have a "built-in" lid. Whether this seemingly symmetric chaperonin also operates through an asymmetric cycle is unclear. We show that unlike GroEL, TRiC does not close its lid upon nucleotide binding, but instead responds to the trigonal-bipyramidal transition state of ATP hydrolysis. Further, nucleotide analogs inducing this transition state confer an asymmetric conformation on TRiC. Similar to GroEL, lid closure in TRiC confines the substrates in the cavity and is essential for folding. Understanding the distinct mechanisms governing eukaryotic and bacterial chaperonin function may reveal how TRiC has evolved to fold specific eukaryotic proteins.
Collapse
Affiliation(s)
- Anne S Meyer
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|