1
|
Najafi K, Haghnazari N, Davari K, Keshavarzi F. Optimal Conditions for Extraction and Purification of Penicillinase Enzyme. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2021; 15:684-691. [DOI: 10.30699/ijmm.15.6.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
2
|
Wei WM, Xu YL, Zheng RH, Zhao T, Fang W, Qin YD. Theoretical Study on the Mechanism of the Acylate Reaction of β-Lactamase. ACS OMEGA 2021; 6:12598-12604. [PMID: 34056410 PMCID: PMC8154126 DOI: 10.1021/acsomega.1c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 05/25/2023]
Abstract
Using density functional theory and a cluster approach, we study the reaction potential surface and compute Gibbs free energies for the acylate reaction of β-lactamase with penicillin G, where the solvent effect is important and taken into consideration. Two reaction paths are investigated: one is a multi-step process with a rate-limit energy barrier of 19.1 kcal/mol, which is relatively small, and the reaction can easily occur; the other is a one-step process with a barrier of 45.0 kcal/mol, which is large and thus makes the reaction hard to occur. The reason why the two paths have different barriers is explained.
Collapse
Affiliation(s)
- Wen-Mei Wei
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Yan-Li Xu
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Ren-Hui Zheng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| | - Tingting Zhao
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Weijun Fang
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Yi-De Qin
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| |
Collapse
|
3
|
Wang F, Shen L, Zhou H, Wang S, Wang X, Tao P. Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase. Front Mol Biosci 2019; 6:47. [PMID: 31355207 PMCID: PMC6629954 DOI: 10.3389/fmolb.2019.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
TEM family of enzymes is one of the most commonly encountered β-lactamases groups with different catalytic capabilities against various antibiotics. Despite the studies investigating the catalytic mechanism of TEM β-lactamases, the binding modes of these enzymes against ligands in different functional catalytic states have been largely overlooked. But the binding modes may play a critical role in the function and even the evolution of these proteins. In this work, a newly developed machine learning analysis approach to the recognition of protein dynamics states was applied to compare the binding modes of TEM-1 β-lactamase with regard to penicillin in different catalytic states. While conventional analysis methods, including principal components analysis (PCA), could not differentiate TEM-1 in different binding modes, the application of a machine learning method led to excellent classification models differentiating these states. It was also revealed that both reactant/product states and apo/product states are more differentiable than the apo/reactant states. The feature importance generated by the training procedure of the machine learning model was utilized to evaluate the contribution from residues at active sites and in different secondary structures. Key active site residues, Ser70 and Ser130, play a critical role in differentiating reactant/product states, while other active site residues are more important for differentiating apo/product states. Overall, this study provides new insights into the different dynamical function states of TEM-1 and may open a new venue for β-lactamases functional and evolutional studies in general.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Li Shen
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, United States
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
4
|
Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM. Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme. Chem Sci 2017; 8:6484-6492. [PMID: 28989673 PMCID: PMC5628580 DOI: 10.1039/c7sc02676e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Allosteric mutations increasing kcat in a beta lactamase act by changing conformational ensembles of active-site residues identified by machine learning.
The CTX-M family of beta lactamases mediate broad-spectrum antibiotic resistance and are present in the majority of drug-resistant Gram-negative bacterial infections worldwide. Allosteric mutations that increase catalytic rates of these drug resistance enzymes have been identified in clinical isolates but are challenging to predict prospectively. We have used molecular dynamics simulations to predict allosteric mutants increasing CTX-M9 drug resistance, experimentally testing top mutants using multiple antibiotics. Purified enzymes show an increase in catalytic rate and efficiency, while mutant crystal structures show no detectable changes from wild-type CTX-M9. We hypothesize that increased drug resistance results from changes in the conformational ensemble of an acyl intermediate in hydrolysis. Machine-learning analyses on the three top mutants identify changes to the binding-pocket conformational ensemble by which these allosteric mutations transmit their effect. These findings show how molecular simulation can predict how allosteric mutations alter active-site conformational equilibria to increase catalytic rates and thus resistance against common clinically used antibiotics.
Collapse
Affiliation(s)
- M J Latallo
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - G A Cortina
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA
| | - S Faham
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - R K Nakamoto
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - P M Kasson
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA.,Science for Life Laboratory , Department of Cell and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|
5
|
Leo N, Liu J, Archbold I, Tang Y, Zeng X. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2050-2058. [PMID: 28135097 DOI: 10.1021/acs.langmuir.6b04038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 107 M-1 in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 1015 M-2 and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and water equilibrium.
Collapse
Affiliation(s)
- Norman Leo
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Juan Liu
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Ian Archbold
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Yongan Tang
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
6
|
Jain R, Kumar R, Kumar S, Chhabra R, Agarwal MC, Kumar R. Analysis of the pH-dependent stability and millisecond folding kinetics of horse cytochrome c. Arch Biochem Biophys 2015; 585:52-63. [DOI: 10.1016/j.abb.2015.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
7
|
Rodkey EA, Drawz SM, Sampson JM, Bethel CR, Bonomo RA, van den Akker F. Crystal structure of a preacylation complex of the β-lactamase inhibitor sulbactam bound to a sulfenamide bond-containing thiol-β-lactamase. J Am Chem Soc 2012; 134:16798-804. [PMID: 22974281 DOI: 10.1021/ja3073676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rise of inhibitor-resistant and other β-lactamase variants is generating an interest in developing new β-lactamase inhibitors to complement currently available antibiotics. To gain insight into the chemistry of inhibitor recognition, we determined the crystal structure of the inhibitor preacylation complex of sulbactam, a clinical β-lactamase inhibitor, bound in the active site of the S70C variant of SHV-1 β-lactamase, a resistance enzyme that is normally present in Klebsiella pneumoniae. The S70C mutation was designed to affect the reactivity of that catalytic residue to allow for capture of the preacylation complex. Unexpectedly, the 1.45 Å resolution inhibitor complex structure revealed that residue C70 is involved in a sulfenamide bond with K73. Such a covalent bond is not present in the wild-type SHV-1 or in an apo S70C structure also determined in this study. This bond likely contributed significantly to obtaining the preacylation complex with sulbactam due to further decreased reactivity toward substrates. The intact sulbactam is positioned in the active site such that its carboxyl moiety interacts with R244, S130, and T235 and its carbonyl moiety is situated in the oxyanion hole. To our knowledge, in addition to being the first preacylation inhibitor β-lactamase complex, this is also the first observation of a sulfenamide bond between a cysteine and lysine in an active site. Not only could our results aid, therefore, structure-based inhibitor design efforts in class A β-lactamases, but the sulfenamide-bond forming approach to yield preacylation complexes could also be applied to other classes of β-lactamases and penicillin-binding proteins with the SXXK motif.
Collapse
Affiliation(s)
- Elizabeth A Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chakraborty S, Minda R, Salaye L, Bhattacharjee SK, Rao BJ. Active site detection by spatial conformity and electrostatic analysis--unravelling a proteolytic function in shrimp alkaline phosphatase. PLoS One 2011; 6:e28470. [PMID: 22174814 PMCID: PMC3234256 DOI: 10.1371/journal.pone.0028470] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/08/2011] [Indexed: 11/30/2022] Open
Abstract
Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | |
Collapse
|
9
|
Li R, Liao JM, Gu CR, Wang YT, Chen CL. Theoretical investigation on reaction of sulbactam with wild-type SHV-1 β-lactamase: acylation, tautomerization, and deacylation. J Phys Chem B 2011; 115:10298-310. [PMID: 21797222 DOI: 10.1021/jp111572v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulation and quantum mechanical (QM) calculations were used to investigate the reaction mechanism of sulbactam with class A wild-type SHV-1 β-lactamase including acylation, tautomerization, and deacylation. Five different sulbactam-enzyme configurations were investigated by MD simulations. In the acylation step, we found that Glu166 cannot activate Ser70 directly for attacking on the carbonyl carbon, and Lys73 would participate in the reaction acting as a relay. Additionally, we found that sulbactam carboxyl can also act as a general base. QM calculations were performed on the formation mechanism of linear intermediates. We suggest that both imine and trans-enamine intermediates can be obtained in the opening of a five-membered thiazolidine ring. By MD simulation, we found that imine intermediate can exist in two conformations, which can generate subsequent trans- and cis-enamine intermediates, respectively. The QM calculations revealed that trans-enamine intermediate is much more stable than other intermediates. The deacylation mechanism of three linear intermediates (imine, trans-enamine, cis-enamine) was investigated separately. It is remarkably noted that, in cis-enamine intermediate, Glu166 cannot activate water for attacking on the carbonyl carbon directly. This leads to a decreasing of the deacylation rate of cis-enamine. These findings will be potentially useful in the development of new inhibitors.
Collapse
Affiliation(s)
- Rui Li
- The Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Søndergaard CR, Olsson MHM, Rostkowski M, Jensen JH. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J Chem Theory Comput 2011; 7:2284-95. [DOI: 10.1021/ct200133y] [Citation(s) in RCA: 1072] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chresten R. Søndergaard
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Mats H. M. Olsson
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Michał Rostkowski
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jan H. Jensen
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Identification of the Catalytic Residues of Carboxylesterase from Arthrobacter globiformisby Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis. Biosci Biotechnol Biochem 2011; 75:89-94. [DOI: 10.1271/bbb.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput 2011; 7:525-37. [PMID: 26596171 DOI: 10.1021/ct100578z] [Citation(s) in RCA: 3136] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we have revised the rules and parameters for one of the most commonly used empirical pKa predictors, PROPKA, based on better physical description of the desolvation and dielectric response for the protein. We have introduced a new and consistent approach to interpolate the description between the previously distinct classifications into internal and surface residues, which otherwise is found to give rise to an erratic and discontinuous behavior. Since the goal of this study is to lay out the framework and validate the concept, it focuses on Asp and Glu residues where the protein pKa values and structures are assumed to be more reliable. The new and improved implementation is evaluated and discussed; it is found to agree better with experiment than the previous implementation (in parentheses): rmsd = 0.79 (0.91) for Asp and Glu, 0.75 (0.97) for Tyr, 0.65 (0.72) for Lys, and 1.00 (1.37) for His residues. The most significant advance, however, is in reducing the number of outliers and removing unreasonable sensitivity to small structural changes that arise from classifying residues as either internal or surface.
Collapse
Affiliation(s)
- Mats H M Olsson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Chresten R Søndergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Michal Rostkowski
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Jan H Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| |
Collapse
|
13
|
Fisette O, Morin S, Savard PY, Lagüe P, Gagné SM. TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance. Biophys J 2010; 98:637-45. [PMID: 20159160 DOI: 10.1016/j.bpj.2009.08.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/28/2022] Open
Abstract
Dynamic properties of class A beta-lactamase TEM-1 are investigated from molecular dynamics (MD) simulations. Comparison of MD-derived order parameters with those obtained from model-free analysis of nuclear magnetic resonance (NMR) relaxation data shows high agreement for N-H moieties within alpha- and beta-secondary structures, but significant deviation for those in loops. This was expected, because motions slower than the protein global tumbling often take place in loop regions. As previously shown using NMR, TEM-1 is a highly ordered protein. Motions are observed within the Omega loop that could, upon substrate binding, stabilize E166 in a catalytically efficient position as the cavity between the protein core and the Omega loop is partially filled. The rigidity of active site residues is consistent with the enzyme high turnover number. MD data are also shown to be useful during the model selection step of model-free analysis: local N-H motions observed over the course of the trajectories help assess whether a peptide plan undergoes low or high amplitude motions on one or more timescales. This joint use of MD and NMR provides a better description of protein dynamics than would be possible using either technique alone.
Collapse
Affiliation(s)
- Olivier Fisette
- Département de Biochimie et de Microbiologie, Université Laval and PROTEO, Québec, Canada
| | | | | | | | | |
Collapse
|
14
|
Kalp M, Buynak JD, Carey PR. Role of E166 in the imine to enamine tautomerization of the clinical beta-lactamase inhibitor sulbactam. Biochemistry 2009; 48:10196-8. [PMID: 19791797 DOI: 10.1021/bi901416t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inhibitors of class A beta-lactamases, such as sulbactam, undergo a complex series of chemical reactions in the enzyme active site. Formation of a trans-enamine acyl-enzyme via a hydrolysis-prone imine is responsible for transient inhibition of the enzyme. Although the imine to enamine tautomerization is crucial to inhibition of the enzyme, there are no experimental data to suggest how this chemical transformation is catalyzed in the active site. In this report, we show that E166 acts as a general base to promote the imine to enamine tautomerization.
Collapse
Affiliation(s)
- Matthew Kalp
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
15
|
Hermann JC, Pradon J, Harvey JN, Mulholland AJ. High Level QM/MM Modeling of the Formation of the Tetrahedral Intermediate in the Acylation of Wild Type and K73A Mutant TEM-1 Class A β-Lactamase. J Phys Chem A 2009; 113:11984-94. [DOI: 10.1021/jp9037254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes C. Hermann
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| | - Juliette Pradon
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| |
Collapse
|
16
|
Fenollar-Ferrer C, Frau J, Donoso J, Muñoz F. Evolution of class C β-lactamases: factors influencing their hydrolysis and recognition mechanisms. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0463-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Abstract
The pKa values in proteins govern the pH-dependence of protein stability and enzymatic activity. A large number of mutagenesis experiments have been carried out in the last three decades to re-engineer the pH-activity and pH-stability profile of enzymes and proteins. We have developed the pKD webserver (), which predicts sets of point mutations that will change the pKa values of a set of target residues in a given direction, thus allowing for targeted re-design of the pH-dependent characteristics of proteins. The server provides the user with an interactive experience for re-designing pKa values by pre-calculating ΔpKa values from all feasible point mutations. Design solutions are found in less than 10 min for a typical design job for a medium-sized protein. Mutant ΔpKa values calculated by the pKD web server are in close agreement with those produced by comparing results from full-fledged pKa calculation methods.
Collapse
Affiliation(s)
| | - Jens Erik Nielsen
- To whom correspondence should be addressed. Tel: +353 1 716 6724; Fax: +353 1 716 6898;
| |
Collapse
|
18
|
Davies MN, Toseland CP, Moss DS, Flower DR. Benchmarking pK(a) prediction. BMC BIOCHEMISTRY 2006; 7:18. [PMID: 16749919 PMCID: PMC1513386 DOI: 10.1186/1471-2091-7-18] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 06/02/2006] [Indexed: 11/23/2022]
Abstract
Background pKa values are a measure of the protonation of ionizable groups in proteins. Ionizable groups are involved in intra-protein, protein-solvent and protein-ligand interactions as well as solubility, protein folding and catalytic activity. The pKa shift of a group from its intrinsic value is determined by the perturbation of the residue by the environment and can be calculated from three-dimensional structural data. Results Here we use a large dataset of experimentally-determined pKas to analyse the performance of different prediction techniques. Our work provides a benchmark of available software implementations: MCCE, MEAD, PROPKA and UHBD. Combinatorial and regression analysis is also used in an attempt to find a consensus approach towards pKa prediction. The tendency of individual programs to over- or underpredict the pKa value is related to the underlying methodology of the individual programs. Conclusion Overall, PROPKA is more accurate than the other three programs. Key to developing accurate predictive software will be a complete sampling of conformations accessible to protein structures.
Collapse
Affiliation(s)
- Matthew N Davies
- Edward Jenner Institute for Vaccine Research, Compton, Berkshire, RG20 7NN, UK
| | | | - David S Moss
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Darren R Flower
- Edward Jenner Institute for Vaccine Research, Compton, Berkshire, RG20 7NN, UK
| |
Collapse
|
19
|
Hermann JC, Ridder L, Höltje HD, Mulholland AJ. Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase. Org Biomol Chem 2005; 4:206-10. [PMID: 16391762 DOI: 10.1039/b512969a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modelling of the first step of the deacylation reaction of benzylpenicillin in the E. coli TEM1 beta-lactamase (with B3LYP/6-31G + (d)//AM1-CHARMM22 quantum mechanics/molecular mechanics methods) shows that a mechanism in which Glu166 acts as the base to deprotonate a conserved water molecule is both energetically and structurally consistent with experimental data; the results may assist the design of new antibiotics and beta-lactamase inhibitors.
Collapse
|
20
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 692] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
21
|
Ke YY, Lin TH. A theoretical study on the activation of Ser70 in the acylation mechanism of cephalosporin antibiotics. Biophys Chem 2005; 114:103-13. [PMID: 15829343 DOI: 10.1016/j.bpc.2004.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 11/28/2022]
Abstract
A computational study using some molecular modeling and quantum mechanical methods has been performed for determining the most favor activation process for Ser70 in the acylation mechanism for the cephalosporin antibiotics among the three proposed ones given in the literature. The computation is based on an X-ray structure of the B chain of the Bacillus licheniformis BS3 beta-lactamase-cefoxitin complex. The position of a catalytic water involved in one of the reaction mechanism is defined using the Grid20 and InsightII programs, while that of the truncated ligand is defined using the InsightII and FirstDiscovery programs. The geometry of structures of each reaction scheme is optimized at the HF/3-21 G level of theory, and then the single point energy for each reactive species in each reaction scheme is computed at the levels of HF/6-31 + G (3df, 2p) and B3LYP/6-31 + G (3df, 2p). The effect of solvent on each reaction scheme is also studied by comparing the calculation results for each reaction scheme either in gas phase or in solution using the HF/6-31 + G (3df, 2p) level of theory. A computation using the B3LYP/6-31 + G (3df, 2p) level of theory and the Polarized Continuum Model (PCM) and by treating water as a solvent is also conducted for each activation process. It is found that, energetically, the most favor activation process for Ser70 in the acylation mechanism is the one where a proton transfer is mediated by the catalytic water and the catalytic residues Glu166 and Ser70. This agrees with those observed in an ultrahigh resolution X-ray structure and a QM/MM theoretical study published recently on the same acylation process.
Collapse
Affiliation(s)
- Yi-Yu Ke
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
22
|
Golemi-Kotra D, Meroueh SO, Kim C, Vakulenko SB, Bulychev A, Stemmler AJ, Stemmler TL, Mobashery S. The importance of a critical protonation state and the fate of the catalytic steps in class A beta-lactamases and penicillin-binding proteins. J Biol Chem 2004; 279:34665-73. [PMID: 15152012 PMCID: PMC3371256 DOI: 10.1074/jbc.m313143200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-lactamases and penicillin-binding proteins are bacterial enzymes involved in antibiotic resistance to beta-lactam antibiotics and biosynthetic assembly of cell wall, respectively. Members of these large families of enzymes all experience acylation by their respective substrates at an active site serine as the first step in their catalytic activities. A Ser-X-X-Lys sequence motif is seen in all these proteins, and crystal structures demonstrate that the side-chain functions of the serine and lysine are in contact with one another. Three independent methods were used in this report to address the question of the protonation state of this important lysine (Lys-73) in the TEM-1 beta-lactamase from Escherichia coli. These techniques included perturbation of the pK(a) of Lys-73 by the study of the gamma-thialysine-73 variant and the attendant kinetic analyses, investigation of the protonation state by titration of specifically labeled proteins by nuclear magnetic resonance, and by computational treatment using the thermodynamic integration method. All three methods indicated that the pK(a) of Lys-73 of this enzyme is attenuated to 8.0-8.5. It is argued herein that the unique ground-state ion pair of Glu-166 and Lys-73 of class A beta-lactamases has actually raised the pK(a) of the active site lysine to 8.0-8.5 from that of the parental penicillin-binding protein. Whereas we cannot rule out that Glu-166 might activate the active site water, which in turn promotes Ser-70 for the acylation event, such as proposed earlier, we would like to propose as a plausible alternative for the acylation step the possibility that the ion pair would reconfigure to the protonated Glu-166 and unprotonated Lys-73. As such, unprotonated Lys-73 could promote serine for acylation, a process that should be shared among all active-site serine beta-lactamases and penicillin-binding proteins.
Collapse
Affiliation(s)
- Dasantila Golemi-Kotra
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Samy O. Meroueh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Choonkeun Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Alexey Bulychev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ann J. Stemmler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Timothy L. Stemmler
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan 48202
- To whom correspondence may be addressed: Dept. of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48202. Tel.: 313-577-5712; Fax: 313-577-2765;
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
- To whom correspondence may be addressed: Dept. of Chemistry and Biochemistry, University of Notre Dame, 423 Nieuwland Science Hall, Notre Dame, IN 46556. Tel.: 574-631-2933; Fax: 574-631-6652;
| |
Collapse
|
23
|
Oliva M, Dideberg O, Field MJ. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Proteins 2003; 53:88-100. [PMID: 12945052 DOI: 10.1002/prot.10450] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beta-lactam antibiotics inhibit enzymes involved in the last step of peptidoglycan synthesis. These enzymes, also identified as penicillin-binding proteins (PBPs), form a long-lived acyl-enzyme complex with beta-lactams. Antibiotic resistance is mainly due to the production of beta-lactamases, which are enzymes that hydrolyze the antibiotics and so prevent them reaching and inactivating their targets, and to mutations of the PBPs that decrease their affinity for the antibiotics. In this study, we present a theoretical study of several penicillin-recognizing proteins complexed with various beta-lactam antibiotics. Hybrid quantum mechanical/molecular mechanical potentials in conjunction with molecular dynamics simulations have been performed to understand the role of several residues, and pK(a) calculations have also been done to determine their protonation state. We analyze the differences between the beta-lactamase TEM-1, the membrane-bound PBP2x of Streptococcus pneumoniae, and the soluble DD-transpeptidase of Streptomyces K15.
Collapse
Affiliation(s)
- Mónica Oliva
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, CEA/CNRS Grenoble, France
| | | | | |
Collapse
|
24
|
Abstract
The ionization properties of the active-site residues in enzymes are of considerable interest in the study of the catalytic mechanisms of enzymes. Knowledge of these ionization constants (pKa values) often allows the researcher to identify the proton donor and the catalytic nucleophile in the reaction mechanism of the enzyme. Estimates of protein residue pKa values can be obtained by applying pKa calculation algorithms to protein X-ray structures. We show that pKa values accurate enough for identifying the proton donor in an enzyme active site can be calculated by considering in detail only the active-site residues and their immediate electrostatic interaction partners, thus allowing for a large decrease in calculation time. More specifically we omit the calculation of site-site interaction energies, and the calculation of desolvation and background interaction energies for a large number of pairs of titratable groups. The method presented here is well suited to be applied on a genomic scale, and can be implemented in most pKa calculation algorithms to give significant reductions in calculation time with little or no impact on the accuracy of the results. The work presented here has implications for the understanding of enzymes in general and for the design of novel biocatalysts.
Collapse
Affiliation(s)
- Jens Erik Nielsen
- Departments of Pharmacology, Chemistry, and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
25
|
Nukaga M, Mayama K, Hujer AM, Bonomo RA, Knox JR. Ultrahigh resolution structure of a class A beta-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. J Mol Biol 2003; 328:289-301. [PMID: 12684014 DOI: 10.1016/s0022-2836(03)00210-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial beta-lactamases hydrolyze beta-lactam antibiotics such as penicillins and cephalosporins. The TEM-type class A beta-lactamase SHV-2 is a natural variant that exhibits activity against third-generation cephalosporins normally resistant to hydrolysis by class A enzymes. SHV-2 contains a single Gly238Ser change relative to the wild-type enzyme SHV-1. Crystallographic refinement of a model including hydrogen atoms gave R and R(free) of 12.4% and 15.0% for data to 0.91 A resolution. The hydrogen atom on the O(gamma) atom of the reactive Ser70 is clearly seen for the first time, bridging to the water molecule activated by Glu166. Though hydrogen atoms on the nearby Lys73 are not seen, this observation of the Ser70 hydrogen atom and the hydrogen bonding pattern around Lys73 indicate that Lys73 is protonated. These findings support a role for the Glu166-water couple, rather than Lys73, as the general base in the deprotonation of Ser70 in the acylation process of class A beta-lactamases. Overlay of SHV-2 with SHV-1 shows a significant 1-3 A displacement in the 238-242 beta-strand-turn segment, making the beta-lactam binding site more open to newer cephalosporins with large C7 substituents and thereby expanding the substrate spectrum of the variant enzyme. The OH group of the buried Ser238 side-chain hydrogen bonds to the main-chain CO of Asn170 on the Omega loop, that is unaltered in position relative to SHV-1. This structural role for Ser238 in protein-protein binding makes less likely its hydrogen bonding to oximino cephalosporins such as cefotaxime or ceftazidime.
Collapse
Affiliation(s)
- Michiyoshi Nukaga
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | | | |
Collapse
|
26
|
Boggio SB, Roveri OA. Catalytic properties of an endogenous beta-lactamase responsible for the resistance of Azospirillum lipoferum to beta-lactam antibiotics. MICROBIOLOGY (READING, ENGLAND) 2003; 149:445-450. [PMID: 12624206 DOI: 10.1099/mic.0.25926-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azospirillum lipoferum RG20, a nitrogen-fixing bacterium found in all kind of soils, was found to be naturally resistant to penicillins and cephalosporins. 6-beta-Bromopenicillanic acid, an irreversible inhibitor of serine-beta-lactamases, completely abolished this resistance. A beta-lactamase was purified 518-fold from a cell-free extract of A. lipoferum RG20. A single band on SDS-PAGE (apparent molecular mass 31000 Da) and on isoelectric focussing (pI9.35) was observed with the purified protein. The enzyme hydrolysed benzylpenicillin, ampicillin, cephalothin and cephaloridine with comparable k(cat) values and catalytic efficiencies. However, carbenicillin and cefotaxime were hydrolysed with significantly lower kinetic parameters and oxacillin was hydrolysed at a rate 100 times slower. The purified beta-lactamase was inhibited by clavulanic acid and sulbactam but not by EDTA or aztreonam. Its substrate and inhibitor profiles are consistent with those of the broad-spectrum beta-lactamases inhibited by clavulanic acid (group 2b of the Bush-Jacoby-Medeiros scheme). The effect of pH on k(cat) and K(m) values for benzylpenicillin hydrolysis was studied. The dependence of k(cat) on pH suggests that the enzyme-substrate (ES) complex must be in at least three protonation states: two with k(cat) values equal to 2800 and 1450 s(-1) and a third inactive one [pK(1(ES)) 4.7 and pK(2(ES)) 7.9]. Similarly, the dependence of k(cat)/K(m) on pH can be explained by postulating that the enzyme free form can be at least in three different protonation states: two of them with k(cat)/K(m) values equal to 2.7 x 10(6) and 3.7 x 10(8) M(-1) s(-1) and a third one unable to productively bind substrate. Interestingly, the dependence of k(cat)/K(m) on pH is consistent with positive cooperativity for proton binding to the enzyme free form [pK(1(E)) 8.5 and pK(2(E)) 7.2].
Collapse
Affiliation(s)
- Silvana B Boggio
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Oscar A Roveri
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| |
Collapse
|
27
|
Nielsen JE, McCammon JA. On the evaluation and optimization of protein X-ray structures for pKa calculations. Protein Sci 2003; 12:313-26. [PMID: 12538895 PMCID: PMC2312414 DOI: 10.1110/ps.0229903] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The calculation of the physical properties of a protein from its X-ray structure is of importance in virtually every aspect of modern biology. Although computational algorithms have been developed for calculating everything from the dynamics of a protein to its binding specificity, only limited information is available on the ability of these methods to give accurate results when used with a particular X-ray structure. We examine the ability of a pKa calculation algorithm to predict the proton-donating residue in the catalytic mechanism of hen egg white lysozyme. We examine the correlation between the ability of the pKa calculation method to obtain the correct result and the overall characteristics of 41 X-ray structures such as crystallization conditions, resolution, and the output of structure validation software. We furthermore examine the ability of energy minimizations (EM), molecular dynamics (MD) simulations, and structure-perturbation methods to optimize the X-ray structures such that these give correct results with the pKa calculation algorithm. We propose a set of criteria for identifying the proton donor in a catalytic mechanism, and demonstrate that the application of these criteria give highly accurate prediction results when using unmodified X-ray structures. More specifically, we are able to successfully identify the proton donor in 85% of the X-ray structures when excluding structures with crystal contacts near the active site. Neither the use of the overall characteristics of the X-ray structures nor the optimization of the structure by EM, MD, or other methods improves the results of the pKa calculation algorithm. We discuss these results and their implications for the design of structure-based energy calculation algorithms in general.
Collapse
Affiliation(s)
- Jens Erik Nielsen
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093, USA.
| | | |
Collapse
|
28
|
Massova I, Kollman PA. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step. J Comput Chem 2002; 23:1559-76. [PMID: 12395425 DOI: 10.1002/jcc.10129] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The acylation step of the catalytic mechanism of beta-lactamases and penicillin-binding proteins (PBPs) has been studied with various approaches. The methods applied range from molecular dynamics (MD) simulations to multiple titration calculations using the Poisson-Boltzmann approach to quantum mechanical (QM) methods. The mechanism of class A beta-lactamases was investigated in the greatest detail. Most approaches support the critical role of Glu-166 and hydrolytic water in the acylation step of the enzymatic catalysis in class A beta-lactamases. The details of the catalytic mechanism have been revealed by the QM approach, which clearly pointed out the critical role of Glu-166 acting as a general base in the acylation step with preferred substrates. Lys-73 shuffles a proton abstracted by Glu-166 O(epsilon ) to the beta-lactam nitrogen through Ser-130 hydroxyl. This proton is transferred from O(gamma) of the catalytic Ser-70 through the bridging hydrolytic water to Glu-166 O(epsilon ). Then the hydrogen is simultaneously passed through S(N)2 inversion mechanism at Lys-73 N(zeta) to Ser-130 O(gamma), which loses its proton to the beta-lactam nitrogen. The protonation of beta-lactam nitrogen proceeds with an immediate ring opening and collapse of the first tetrahedral species into an acyl-enzyme intermediate. However, the studies that considered the effect of solvation lower the barrier for the pathway, which utilizes Lys-73 as a general base, thus creating a possibility of multiple mechanisms for the acylation step in the class A beta-lactamases. These findings help explain the exceptional efficiency of these enzymes. They emphasize an important role of Glu-166, Lys-73, and Ser-130 for enzymatic catalysis and shed light on details of the acylation step of class A beta-lactamase mechanism. The acylation step for class C beta-lactamases and six classes of PBPs were also considered with continuum solvent models and MD simulations.
Collapse
Affiliation(s)
- Irina Massova
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143-0446, USA.
| | | |
Collapse
|
29
|
Wagner UG, Petersen EI, Schwab H, Kratky C. EstB from Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric factors to discriminate between esterolytic and beta-lactam cleaving activity. Protein Sci 2002; 11:467-78. [PMID: 11847270 PMCID: PMC2373480 DOI: 10.1110/ps.33002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Esterases form a diverse class of enzymes of largely unknown physiological role. Because many drugs and pesticides carry ester functions, the hydrolysis of such compounds forms at least one potential biological function. Carboxylesterases catalyze the hydrolysis of short chain aliphatic and aromatic carboxylic ester compounds. Esterases, D-alanyl-D-alanine-peptidases (DD-peptidases) and beta-lactamases can be grouped into two distinct classes of hydrolases with different folds and topologically unrelated catalytic residues, the one class comprising of esterases, the other one of beta-lactamases and DD-peptidases. The chemical reactivities of esters and beta-lactams towards hydrolysis are quite similar, which raises the question of which factors prevent esterases from displaying beta-lactamase activity and vice versa. Here we describe the crystal structure of EstB, an esterase isolated from Burkholderia gladioli. It shows the protein to belong to a novel class of esterases with homology to Penicillin binding proteins, notably DD-peptidase and class C beta-lactamases. Site-directed mutagenesis and the crystal structure of the complex with diisopropyl-fluorophosphate suggest Ser75 within the "beta-lactamase" Ser-x-x-Lys motif to act as catalytic nucleophile. Despite its structural homology to beta-lactamases, EstB shows no beta-lactamase activity. Although the nature and arrangement of active-site residues is very similar between EstB and homologous beta-lactamases, there are considerable differences in the shape of the active site tunnel. Modeling studies suggest steric factors to account for the enzyme's selectivity for ester hydrolysis versus beta-lactam cleavage.
Collapse
Affiliation(s)
- Ulrike G Wagner
- Institut für Chemie, Strukturbiologie, Karl-Franzens-Universität, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
30
|
Castillo R, Silla E, Tuñón I. Role of protein flexibility in enzymatic catalysis: quantum mechanical-molecular mechanical study of the deacylation reaction in class A beta-lactamases. J Am Chem Soc 2002; 124:1809-16. [PMID: 11853460 DOI: 10.1021/ja017156z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a theoretical study of a mechanism for the hydrolysis of the acyl-enzyme complex formed by a class A beta-lactamase (TEM1) and an antibiotic (penicillanate), as a part of the process of antibiotic's inactivation by this type of enzymes. In the presented mechanism the carboxylate group of a particular residue (Glu166) activates a water molecule, accepting one of its protons, and afterward transfers this proton directly to the acylated serine residue (Ser70). In our study we employed a quantum mechanics (AM1)-molecular mechanics partition scheme (QM/MM) where all the atoms of the system were allowed to relax. For this purpose we used the GRACE procedure in which part of the system is used to define the Hessian matrix while the rest is relaxed at each step of the stationary structures search. By use of this computational scheme, the hydrolysis of the acyl-enzyme is described as a three-step process: The first step corresponds to the proton transfer from the hydrolytic water molecule to the carboxylate group of Glu166 and the subsequent formation of a tetrahedral adduct as a consequence of the attack of this activated water molecule to the carbonyl carbon atom of the beta-lactam. In the second step, the acyl-enzyme bond is broken, obtaining a negatively charged Ser70. In the last step this residue is protonated by means of a direct proton transfer from Glu166. The large mobility of Glu166, a residue that is placed in a Ohms-loop, is essential to facilitate this mechanism. The geometry of the acyl-enzyme complex shows a large distance between Glu166 and Ser70 and thus, if protein coordinates were kept frozen during the reaction path, it would be difficult to get a direct proton transfer between these two residues. This computational study shows how a flexible treatment suggests the feasibility of a mechanism that could have been discounted on the basis of crystallographic positions.
Collapse
Affiliation(s)
- Raquel Castillo
- Departament de Ciències Experimentals, Universitat Jaume I, 12080 Castelló, Spain
| | | | | |
Collapse
|
31
|
Lejeune A, Vanhove M, Lamotte-Brasseur J, Pain RH, Frère JM, Matagne A. Quantitative analysis of the stabilization by substrate of Staphylococcus aureus PC1 beta-lactamase. CHEMISTRY & BIOLOGY 2001; 8:831-42. [PMID: 11514231 DOI: 10.1016/s1074-5521(01)00053-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The stabilization of enzymes in the presence of substrates has been recognized for a long time. Quantitative information regarding this phenomenon is, however, rather scarce since the enzyme destroys the potential stabilizing agent during the course of the experiments. In this work, enzyme unfolding was followed by monitoring the progressive decrease of the rate of substrate utilization by the Staphylococcus aureus PC1 beta-lactamase, at temperatures above the melting point of the enzyme. RESULTS Enzyme inactivation was directly followed by spectrophotometric measurements. In the presence of substrate concentrations above the K(m) values, significant stabilization was observed with all tested compounds. A combination of unfolding kinetic measurements and enzymatic studies, both under steady-state and non-steady-state regimes, allowed most of the parameters characteristic of the two concurrent phenomena (i.e. substrate hydrolysis and enzyme denaturation) to be evaluated. In addition, molecular modelling studies show a good correlation between the extent of stabilization, and the magnitude of the energies of interaction with the enzyme. CONCLUSIONS Our analysis indicates that the enzyme is substantially stabilized towards heat-induced denaturation, independently of the relative proportions of non-covalent Henri-Michaelis complex (ES) and acyl-enzyme adduct (ES*). Thus, for those substrates with which the two catalytic intermediates are expected to be significantly populated, both species (ES and ES*) appear to be similarly stabilized. This analysis contributes a new quantitative approach to the problem.
Collapse
Affiliation(s)
- A Lejeune
- Laboratoire d' Enzymologie, Centre d' Ingénierie des Protéines, Institut de Chimie, Université de Liège, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Nielsen JE, Vriend G. Optimizing the hydrogen-bond network in Poisson-Boltzmann equation-based pK(a) calculations. Proteins 2001; 43:403-12. [PMID: 11340657 DOI: 10.1002/prot.1053] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
pK(a) calculation methods that are based on finite difference solutions to the Poisson-Boltzmann equation (FDPB) require that energy calculations be performed for a large number of different protonation states of the protein. Normally, the differences between these protonation states are modeled by changing the charges on a few atoms, sometimes the differences are modeled by adding or removing hydrogens, and in a few cases the positions of these hydrogens are optimized locally. We present an FDPB-based pK(a) calculation method in which the hydrogen-bond network is globally optimized for every single protonation state used. This global optimization gives a significant improvement in the accuracy of calculated pK(a) values, especially for buried residues. It is also shown that large errors in calculated pK(a) values are often due to structural artifacts induced by crystal packing. Optimization of the force fields and parameters used in pK(a) calculations should therefore be performed with X-ray structures that are corrected for crystal artifacts.
Collapse
Affiliation(s)
- J E Nielsen
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
33
|
Abstract
Theoretical understanding of macromolecular electrostatics has advanced substantially over the past year. Continuum models have given promising results for calculating protein-ligand binding free energy differences, as well as pK(a)s and redox properties, particularly with explicit treatment of multiple conformers. Generalized Born and other techniques have led to the first molecular dynamics simulations of proteins and RNA with continuum solvent. Continuum and microscopic descriptions of dielectric relaxation have been critically compared.
Collapse
Affiliation(s)
- T Simonson
- Laboratory for Structural Biology and Genomics, CNRS, IGBMC, 1 rue Laurent Fries, 67404 Strasbourg-Illkirch, France.
| |
Collapse
|
34
|
Abstract
The Poisson-Boltzmann method was used to compute the pK(a) values of titratable residues in a set of class C beta-lactamases. In these calculations, the pK(a) of the phenolic group of residue Tyr150 is the only one to stand out with an abnormally low value of 8.3, more than one pK(a) unit lower than the measured reference value for tyrosine in solution. Other important residues of the catalytic pocket, such as the conserved Lys67, Lys315, His314, and Glu272 (hydrogen-bonded to the ammonium group of Lys315), display normal protonation states at neutral pH. pK(a) values were also computed in catalytically impaired beta-lactamase mutants. Comparisons between the relative k(cat) values and the Tyr150 pK(a) value in these mutants revealed a striking correlation. In active enzymes, this pK(a) value is always lower than the solution reference value while it is close to normal in inactive enzymes. These results thus support the hypothesis that the phenolate form of Tyr150 is responsible for the activation of the nucleophilic serine. The possible roles of Lys67 and Lys315 during catalysis are also discussed.
Collapse
Affiliation(s)
- J Lamotte-Brasseur
- Centre d'Ingénierie des Protéines, University of Liège, Sart-Tilman, Belgium.
| | | | | |
Collapse
|
35
|
|
36
|
Gordon E, Mouz N, Duée E, Dideberg O. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 2000; 299:477-85. [PMID: 10860753 DOI: 10.1006/jmbi.2000.3740] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Penicillin-binding proteins (PBPs), the primary targets for beta-lactam antibiotics, are periplasmic membrane-attached proteins responsible for the construction and maintenance of the bacterial cell wall. Bacteria have developed several mechanisms of resistance, one of which is the mutation of the target enzymes to reduce their affinity for beta-lactam antibiotics. Here, we describe the structure of PBP2x from Streptococcus pneumoniae determined to 2.4 A. In addition, we also describe the PBP2x structure in complex with cefuroxime, a therapeutically relevant antibiotic, at 2.8 A. Surprisingly, two antibiotic molecules are observed: one as a covalent complex with the active-site serine residue, and a second one between the C-terminal and the transpeptidase domains. The structure of PBP2x reveals an active site similar to those of the class A beta-lactamases, albeit with an absence of unambiguous deacylation machinery. The structure highlights a few amino acid residues, namely Thr338, Thr550 and Gln552, which are directly related to the resistance phenomenon.
Collapse
Affiliation(s)
- E Gordon
- Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale Jean-Pierre Ebel (CNRS-CEA), 41, rue Jules Horowitz, Grenoble, Cedex 1, 38027, France
| | | | | | | |
Collapse
|
37
|
Atanasov BP, Mustafi D, Makinen MW. Protonation of the -lactam nitrogen is the trigger event in the catalytic action of class A -lactamases. Proc Natl Acad Sci U S A 2000; 97:3160-5. [PMID: 10716727 PMCID: PMC16209 DOI: 10.1073/pnas.97.7.3160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pH dependence of the pK(a) values of all ionizable groups and of the electrostatic potential at grid points corresponding to catalytically important atoms in the active site of TEM-1 beta-lactamase has been calculated by a mean-field approach for reaction intermediates modeled on the basis of energy minimized x-ray crystallographic coordinates. By estimating electrostatic contributions to the free energy changes accompanying the conversion of the free enzyme into the acylenzyme reaction intermediate, we found that acid-catalyzed protonation of the beta-lactam nitrogen is energetically favored as the initiating event, followed by base-catalyzed nucleophilic attack on the carbonyl carbon of the beta-lactam group. N-protonation is catalyzed through a hydrogen-bonded cluster involving the 2-carboxylate group of the substrate, the side chains of S130 and K234, and a solvent molecule. Nucleophilic attack on the carbonyl carbon is carried out by the side chain of S70 with proton abstraction catalyzed by a water molecule hydrogen-bonded to the side chain of E166. Stabilization of ion pairs in the active site through interactions with distant clusters of charged residues in the enzyme was concluded to be an important driving force of the catalytic mechanism.
Collapse
Affiliation(s)
- B P Atanasov
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Academician G. Bonchev Street, BG-1113 Sofia, Bulgaria
| | | | | |
Collapse
|
38
|
Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10716727 PMCID: PMC16209 DOI: 10.1073/pnas.060027897] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pH dependence of the pK(a) values of all ionizable groups and of the electrostatic potential at grid points corresponding to catalytically important atoms in the active site of TEM-1 beta-lactamase has been calculated by a mean-field approach for reaction intermediates modeled on the basis of energy minimized x-ray crystallographic coordinates. By estimating electrostatic contributions to the free energy changes accompanying the conversion of the free enzyme into the acylenzyme reaction intermediate, we found that acid-catalyzed protonation of the beta-lactam nitrogen is energetically favored as the initiating event, followed by base-catalyzed nucleophilic attack on the carbonyl carbon of the beta-lactam group. N-protonation is catalyzed through a hydrogen-bonded cluster involving the 2-carboxylate group of the substrate, the side chains of S130 and K234, and a solvent molecule. Nucleophilic attack on the carbonyl carbon is carried out by the side chain of S70 with proton abstraction catalyzed by a water molecule hydrogen-bonded to the side chain of E166. Stabilization of ion pairs in the active site through interactions with distant clusters of charged residues in the enzyme was concluded to be an important driving force of the catalytic mechanism.
Collapse
|