1
|
Sharma P, Malhotra L, Dhamija RK. Comprehensive amino acid composition analysis of seed storage proteins of cereals and legumes: identification and understanding of intrinsically disordered and allergenic peptides. J Biomol Struct Dyn 2025; 43:3715-3727. [PMID: 38178552 DOI: 10.1080/07391102.2023.2300126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The seed storage proteins of cereal and legumes are the primary source of amino acids which are required for sustaining the nitrogen and carbon demands during germination and growth. Humans derive most of their dietary proteins from storage proteins in form of a wide variety of foods, for consumption. The amino acid content of most of these proteins is biased and the need for this biasness is not understood. The high abundance of proline, glutamine, and cysteine in cereals makes the gluten fraction viscoelastic. The cereal proteins have less charge and legume proteins have more charge on them. Their non-polar amino acid distribution has large variations. These characteristics are strongly responsible for the partial and complete unfolding of several domains of the storage proteins. Many of the storage proteins share a highly conserved structural feature within the cupin superfamily spread across all kingdoms of life. The intrinsically disordered viscoelastic proteins help in making dough which is vital for the quality of bread. Unfolded regions harbor more immunogenic sequences and cause food-related allergies and intolerance. We have discussed these properties in terms of comparison of cereal and legume storage protein sequences and allergy. Our study supports the findings that large disordered regions contain allergen-representative peptides. Interestingly, a high number of allergen-representative peptides were cleavable by digestive enzymes. Furthermore, unfolded storage proteins mimic microbial immunogens to induce a memory immune response. Results findings can be used to guide the understanding of immunological characteristics of storage proteins and may assist in treatment decisions for food allergy.
Collapse
Affiliation(s)
- Pratibha Sharma
- Human Behaviour Department, Institute of Human Behaviour and Allied Sciences, New Delhi, India
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | | |
Collapse
|
2
|
Kasahara A, Yamada R, Hyodo T, Yamaguchi K, Otani Y, Sumimoto S, Okada M, Ohwada T. Generation and Application of All Possible Conformations of Cyclic Tryptophan within and beyond Post-translational Modification. J Org Chem 2025; 90:623-635. [PMID: 39704694 DOI: 10.1021/acs.joc.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Isoprenylation of the indole C3-position of tryptophan accompanied by cyclization (c-Trp) is one of the most attractive post-translational modifications because of C-C bond formation and drastic conformational alteration. As the modification generates two stereoisomers of the 6/5/5-fused ring system and consequently, a mixture of four possible conformations as considered in proline, it is expected to influence the biological activity in Bacillus quorum sensing pheromone ComX containing the c-Trp residue. In this study, the simultaneous control of the amide cis-trans equilibrium and pyrrolidine ring puckering was achieved by utilizing an N-carbamoylated and α-methylated 6/5/5-fused ring system. Furthermore, the conformationally defined tripeptides containing the c-Trp residue were utilized to examine the relationship between the biological activity and the conformation of the ComX pheromone. Several mimics showed high bioactivity, and more biologically active ComX mimics were created to reinforce the CH-π interaction of the c-Trp and the adjacent aromatic residue.
Collapse
Affiliation(s)
- Akitomo Kasahara
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Yamada
- Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shimpei Sumimoto
- Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Masahiro Okada
- Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
4
|
Bhatt MR, Zondlo NJ. Electronic Control of Polyproline II Helix Stability via the Identity of Acyl Capping Groups: the Pivaloyl Group Particularly Promotes PPII. Chemistry 2024; 30:e202401454. [PMID: 38661017 DOI: 10.1002/chem.202401454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
The type II polyproline helix (PPII) is a fundamental secondary structure of proteins, important in globular proteins, in intrinsically disordered proteins, and at protein-protein interfaces. PPII is stabilized in part by n→π* interactions between consecutive carbonyls, via electron delocalization between an electron-donor carbonyl lone pair (n) and an electron-acceptor carbonyl (π*) on the subsequent residue. We previously demonstrated that changes to the electronic properties of the acyl donor can predictably modulate the strength of n→π* interactions, with data from model compounds, in solution in chloroform, in the solid state, and computationally. Herein, we examined whether the electronic properties of acyl capping groups could modulate the stability of PPII in peptides in water. In X-PPGY-NH2 peptides (X=10 acyl capping groups), the effect of acyl group identity on PPII was quantified by circular dichroism and NMR spectroscopy. Electron-rich acyl groups promoted PPII relative to the standard acetyl (Ac-) group, with the pivaloyl and iso-butyryl groups most significantly increasing PPII. In contrast, acyl derivatives with electron-withdrawing substituents and the formyl group relatively disfavored PPII. Similar results, though lesser in magnitude, were also observed in X-APPGY-NH2 peptides, indicating that the capping group can impact PPII conformation at both proline and non-proline residues. The pivaloyl group was particularly favorable in promoting PPII. The effects of acyl capping groups were further analyzed in X-DfpPGY-NH2 and X-ADfpPGY-NH2 peptides, Dfp=4,4-difluoroproline. Data on these peptides indicated that acyl groups induced order Piv- > Ac- > For-. These results suggest that greater consideration should be given to the identity of acyl capping groups in inducing structure in peptides.
Collapse
Affiliation(s)
- Megh R Bhatt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| |
Collapse
|
5
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Huang J, Tao H, Chen J, Shen Y, Lei J, Pan J, Yan C, Yan N. Structure-guided discovery of protein and glycan components in native mastigonemes. Cell 2024; 187:1733-1744.e12. [PMID: 38552612 DOI: 10.1016/j.cell.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.
Collapse
Affiliation(s)
- Junhao Huang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jikun Chen
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Shen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong 518107, China.
| |
Collapse
|
7
|
Potok P, Kola A, Valensin D, Capdevila M, Potocki S. Copper Forms a PPII Helix-Like Structure with the Catalytic Domains of Bacterial Zinc Metalloproteases. Inorg Chem 2023; 62:18425-18439. [PMID: 37909295 PMCID: PMC10647932 DOI: 10.1021/acs.inorgchem.3c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
The rapid spread of antibiotic-resistant bacteria continuously raises concerns about the future ineffectiveness of current antimicrobial treatments against infectious diseases. To address this problem, new therapeutic strategies and antimicrobial drugs with unique modes of action are urgently needed. Inhibition of metalloproteases, bacterial virulence factors, is a promising target for the development of antibacterial treatments. In this study, the interaction among Zn(II), Cu(II), and the metal-binding domains of two metalloproteases, AprA (Pseudomonas aureginosa) and CpaA (Acinetobacter baumanii), was investigated. The objective was to determine the coordination sphere of Zn(II) with a peptide model of two zinc-dependent metalloproteases. Additionally, the study explored the formation of Cu(II) complexes with the domains, as Cu(II) has been shown to inhibit metalloproteases. The third aim was to understand the role of nonbinding amino acids in stabilizing the metal complexes formed by these proteases. This work identified specific coordination patterns (HExxHxxxxxH) for both Zn(II) and Cu(II) complexes, with AprA and CpaA exhibiting a higher affinity for Cu(II) compared to Zn(II). The study also found that the CpaA domain has greater stability for both Zn(II) and Cu(II) complexes compared to AprA. The nonbinding amino acids of CpaA surrounding the metal ion contribute to the increased thermodynamic stability of the metal-peptide complex through various intramolecular interactions. These interactions can also influence the secondary structures of the peptides. The presence of certain amino acids, such as tyrosine, arginine, and glutamic acid, and their interactions contribute to the stability and, only in the case of Cu(II) complexes, the formation of a rare protein structure called a left-handed polyproline II helix (PPII), which is known to play a role in the stability and function of various proteins. These findings provide valuable insights into the coordination chemistry of bacterial metalloproteases and expand our understanding of potential mechanisms for inhibiting these enzymes.
Collapse
Affiliation(s)
- Paulina Potok
- Faculty
of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Arian Kola
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Merce Capdevila
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Sławomir Potocki
- Faculty
of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
8
|
Hazra MK, Gilron Y, Levy Y. Not Only Expansion: Proline Content and Density Also Induce Disordered Protein Conformation Compaction. J Mol Biol 2023; 435:168196. [PMID: 37442414 DOI: 10.1016/j.jmb.2023.168196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Intrinsically disordered proteins (IDPs) adopt a wide array of different conformations that can be constrained by the presence of proline residues, which are frequently found in IDPs. To assess the effects of proline, we designed a series of peptides that differ with respect to the number of prolines in the sequence and their organization. Using high-resolution atomistic molecular dynamics simulations, we found that accounting for whether the proline residues are clustered or isolated contributed significantly to explaining deviations in the experimentally-determined gyration radii of IDPs from the values expected based on the Flory scaling-law. By contrast, total proline content makes smaller contribution to explaining the effect of prolines on IDP conformation. Proline residues exhibit opposing effects depending on their organizational pattern in the IDP sequence. Clustered prolines (i.e., prolines with ≤2 intervening non-proline residues) result in expanded peptide conformations whereas isolated prolines (i.e., prolines with >2 intervening non-proline residues) impose compacted conformations. Clustered prolines were estimated to induce an expansion of ∼20% in IDP dimension (via formation of PPII structural elements) whereas isolated prolines were estimated to induce a compaction of ∼10% in IDP dimension (via the formation of backbone turns). This dual role of prolines provides a mechanism for conformational switching that does not rely on the kinetically much slower isomerization of cis proline to the trans form. Bioinformatic analysis demonstrates high populations of both isolated and clustered prolines and implementing them in coarse-grained molecular dynamics models illustrates that they improve the characterization of the conformational ensembles of IDPs.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Gilron
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Meirson T, Bomze D, Schueler-Furman O, Stemmer SM, Markel G. Systemic structural analysis of alterations reveals a common structural basis of driver mutations in cancer. NAR Cancer 2023; 5:zcac040. [PMID: 36683915 PMCID: PMC9846427 DOI: 10.1093/narcan/zcac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 12/04/2022] [Indexed: 01/19/2023] Open
Abstract
A major effort in cancer research is to organize the complexities of the disease into fundamental traits. Despite conceptual progress in the last decades and the synthesis of hallmark features, no organizing principles governing cancer beyond cellular features exist. We analyzed experimentally determined structures harboring the most significant and prevalent driver missense mutations in human cancer, covering 73% (n = 168178) of the Catalog of Somatic Mutation in Cancer tumor samples (COSMIC). The results reveal that a single structural element-κ-helix (polyproline II helix)-lies at the core of driver point mutations, with significant enrichment in all major anatomical sites, suggesting that a small number of molecular traits are shared by most and perhaps all types of cancer. Thus, we uncovered the lowest possible level of organization at which carcinogenesis takes place at the protein level. This framework provides an initial scheme for a mechanistic understanding underlying the development of tumors and pinpoints key vulnerabilities.
Collapse
Affiliation(s)
- Tomer Meirson
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, 49100, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Salomon M Stemmer
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Markel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, 49100, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, 6997801, Israel
| |
Collapse
|
10
|
Patarroyo ME, Bermudez A, Alba MP, Patarroyo MA, Suarez C, Aza-Conde J, Moreno-Vranich A, Vanegas M. Stereo electronic principles for selecting fully-protective, chemically-synthesised malaria vaccines. Front Immunol 2022; 13:926680. [DOI: 10.3389/fimmu.2022.926680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility class II molecule-peptide-T-cell receptor (MHCII-p-TCR) complex-mediated antigen presentation for a minimal subunit-based, multi-epitope, multistage, chemically-synthesised antimalarial vaccine is essential for inducing an appropriate immune response. Deep understanding of this MHCII-p-TCR complex’s stereo-electronic characteristics is fundamental for vaccine development. This review encapsulates the main principles for achieving such epitopes’ perfect fit into MHC-II human (HLADRβ̞1*) or Aotus (Aona DR) molecules. The enormous relevance of several amino acids’ physico-chemical characteristics is analysed in-depth, as is data regarding a 26.5 ± 2.5Å distance between the farthest atoms fitting into HLA-DRβ1* structures’ Pockets 1 to 9, the role of polyproline II-like (PPIIL) structures having their O and N backbone atoms orientated for establishing H-bonds with specific HLA-DRβ1*-peptide binding region (PBR) residues. The importance of residues having specific charge and orientation towards the TCR for inducing appropriate immune activation, amino acids’ role and that of structures interfering with PPIIL formation and other principles are demonstrated which have to be taken into account when designing immune, protection-inducing peptide structures (IMPIPS) against diseases scourging humankind, malaria being one of them.
Collapse
|
11
|
O‧‧‧C═O interaction, its occurrence and implications for protein structure and folding. Proteins 2022; 90:1159-1169. [DOI: 10.1002/prot.26298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
|
12
|
Kubyshkin V, Bürck J, Babii O, Budisa N, Ulrich AS. Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities? Phys Chem Chem Phys 2021; 23:26931-26939. [PMID: 34825904 DOI: 10.1039/d1cp04551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism is a conventional method for studying the secondary structures of peptides and proteins and their transitions. While certain circular dichroism features are characteristic of α-helices and β-strands, the third most abundant secondary structure, the polyproline-II helix, does not exhibit a strictly conserved spectroscopic appearance. Due to its extended nature, the polyproline-II helix is highly accessible to the surrounding solvent; thus, the environment has a critical influence on the lineshape of the circular dichroism spectra of this structure. To showcase possible effects due to the medium, in this work, we report an experimental spectroscopic study of polyproline-II-forming oligomeric peptides in various environments: solvents, detergent micelles, and liposomes. Strikingly, the examination of an oligomeric peptide in a solvent series showed a remarkable 7 nm solvatochromic shift in the main negative band starting with hexafluoropropan-2-ol and moving to hexane. Furthermore, a previously predicted positive band below 200 nm was discovered in the spectra in nonpolar environments. In isotropic liposomes, the expected transition to the transmembrane state correlated with the appearance of a positive band at 228 nm. Our results demonstrate that changes in solvation should be taken into consideration when assessing the circular dichroism spectra of peptides expected to adopt the polyproline-II conformation. Although this precaution may complicate spectral analysis, characterization of solvent-induced spectral changes can generate new opportunities for testing the location of peptides in complex systems such as micelles or lipid bilayers.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada. .,Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| |
Collapse
|
13
|
Mompeán M, Oroz J, Laurents DV. Do polyproline II helix associations modulate biomolecular condensates? FEBS Open Bio 2021; 11:2390-2399. [PMID: 33934561 PMCID: PMC8409303 DOI: 10.1002/2211-5463.13163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Biomolecular condensates are microdroplets that form inside cells and serve to selectively concentrate proteins, RNAs and other molecules for a variety of physiological functions, but can contribute to cancer, neurodegenerative diseases and viral infections. The formation of these condensates is driven by weak, transient interactions between molecules. These weak associations can operate at the level of whole protein domains, elements of secondary structure or even moieties composed of just a few atoms. Different types of condensates do not generally combine to form larger microdroplets, suggesting that each uses a distinct class of attractive interactions. Here, we address whether polyproline II (PPII) helices mediate condensate formation. By combining with PPII-binding elements such as GYF, WW, profilin, SH3 or OCRE domains, PPII helices help form lipid rafts, nuclear speckles, P-body-like neuronal granules, enhancer complexes and other condensates. The number of PPII helical tracts or tandem PPII-binding domains can strongly influence condensate stability. Many PPII helices have a low content of proline residues, which hinders their identification. Recently, we characterized the NMR spectral properties of a Gly-rich, Pro-poor protein composed of six PPII helices. Based on those results, we predicted that many Gly-rich segments may form PPII helices and interact with PPII-binding domains. This prediction is being tested and could join the palette of verified interactions contributing to biomolecular condensate formation.
Collapse
Affiliation(s)
- Miguel Mompeán
- Departamento de Química Física BiológicaInstituto de Química Física RocasolanoCSICMadridEspaña
| | - Javier Oroz
- Departamento de Química Física BiológicaInstituto de Química Física RocasolanoCSICMadridEspaña
| | - Douglas V. Laurents
- Departamento de Química Física BiológicaInstituto de Química Física RocasolanoCSICMadridEspaña
| |
Collapse
|
14
|
Meirson T, Bomze D, Markel G. Structural basis of SARS-CoV-2 spike protein induced by ACE2. Bioinformatics 2021; 37:929-936. [PMID: 32818261 PMCID: PMC7558967 DOI: 10.1093/bioinformatics/btaa744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Motivation The recent emergence of the novel SARS-coronavirus 2 (SARS-CoV-2) and its international
spread pose a global health emergency. The spike (S) glycoprotein binds ACE2 and
promotes SARS-CoV-2 entry into host cells. The trimeric S protein binds the receptor
using the receptor-binding domain (RBD) causing conformational changes in S protein that
allow priming by host cell proteases. Unraveling the dynamic structural features used by
SARS-CoV-2 for entry might provide insights into viral transmission and reveal novel
therapeutic targets. Using structures determined by X-ray crystallography and cryo-EM,
we performed structural analysis and atomic comparisons of the different conformational
states adopted by the SARS-CoV-2-RBD. Results Here, we determined the key structural components induced by the receptor and
characterized their intramolecular interactions. We show that κ-helix (polyproline-II)
is a predominant structure in the binding interface and in facilitating the conversion
to the active form of the S protein. We demonstrate a series of conversions between
switch-like κ-helix and β-strand, and conformational variations in a set of short
α-helices which affect the hinge region. These conformational changes lead to an
alternating pattern in conserved disulfide bond configurations positioned at the hinge,
indicating a possible disulfide exchange, an important allosteric switch implicated in
viral entry of various viruses, including HIV and murine coronavirus. The structural
information presented herein enables to inspect and understand the important dynamic
features of SARS-CoV-2-RBD and propose a novel potential therapeutic strategy to block
viral entry. Overall, this study provides guidance for the design and optimization of
structure-based intervention strategies that target SARS-CoV-2. Availability We have implemented the proposed methods in an R package freely available at https://github.com/Grantlab/bio3d Supplementary information Supplementary data are
available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | | | - Gal Markel
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Lamers B, Herdlitschka A, Schnitzer T, Mabesoone MF, Schoenmakers SM, de Waal BF, Palmans AR, Wennemers H, Meijer E. Oligodimethylsiloxane-Oligoproline Block Co-Oligomers: the Interplay between Aggregation and Phase Segregation in Bulk and Solution. J Am Chem Soc 2021; 143:4032-4042. [PMID: 33660998 PMCID: PMC8041288 DOI: 10.1021/jacs.1c01076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Discrete block co-oligomers (BCOs) assemble into highly ordered nanostructures, which adopt a variety of morphologies depending on their environment. Here, we present a series of discrete oligodimethylsiloxane-oligoproline (oDMS-oPro) BCOs with varying oligomer lengths and proline end-groups, and study the nanostructures formed in both bulk and solution. The conjugation of oligoprolines to apolar siloxanes permits a study of the aggregation behavior of oligoproline moieties in a variety of solvents, including a highly apolar solvent like methylcyclohexane. The apolar solvent is more reminiscent of the polarity of the siloxane bulk, which gives insights into the supramolecular interactions that govern both bulk and solution assembly processes of the oligoproline. This extensive structural characterization allows the bridging of the gap between solution and bulk assembly. The interplay between the aggregation of the oligoproline block and the phase segregation induced by the siloxane drives the assembly. This gives rise to disordered, micellar microstructures in apolar solution and crystallization-driven lamellar nanostructures in the bulk. While most di- and triblock co-oligomers adopt predictable morphological features, one of them, oDMS15-oPro6-NH2, exhibits pathway complexity leading to gel formation. The pathway selection in the complex interplay between aggregation and phase segregation gives rise to interesting material properties.
Collapse
Affiliation(s)
- Brigitte
A.G. Lamers
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andreas Herdlitschka
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Tobias Schnitzer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mathijs F.J. Mabesoone
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sandra M.C. Schoenmakers
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas F.M. de Waal
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R.A. Palmans
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Helma Wennemers
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - E.W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
16
|
Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins. Molecules 2021; 26:molecules26030634. [PMID: 33530506 PMCID: PMC7865441 DOI: 10.3390/molecules26030634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023] Open
Abstract
The α and polyproline II (PPII) basins are the two most populated regions of the Ramachandran map when constructed from the protein coil library, a widely used denatured state model built from the segments of irregular structure found in the Protein Data Bank. This indicates the α and PPII conformations are dominant components of the ensembles of denatured structures that exist in solution for biological proteins, an observation supported in part by structural studies of short, and thus unfolded, peptides. Although intrinsic conformational propensities have been determined experimentally for the common amino acids in short peptides, and estimated from surveys of the protein coil library, the ability of these intrinsic conformational propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs), an increasingly important class of proteins in cell function, has thus far proven elusive to establish. Recently, we demonstrated that the sequence dependence of the mean hydrodynamic size of IDPs in water and the impact of heat on the coil dimensions, provide access to both the sequence dependence and thermodynamic energies that are associated with biases for the α and PPII backbone conformations. Here, we compare results from peptide-based studies of intrinsic conformational propensities and surveys of the protein coil library to those of the sequence-based analysis of heat effects on IDP hydrodynamic size, showing that a common structural and thermodynamic description of the protein denatured state is obtained.
Collapse
|
17
|
Myosin XVI in the Nervous System. Cells 2020; 9:cells9081903. [PMID: 32824179 PMCID: PMC7464383 DOI: 10.3390/cells9081903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
The myosin family is a large inventory of actin-associated motor proteins that participate in a diverse array of cellular functions. Several myosin classes are expressed in neural cells and play important roles in neural functioning. A recently discovered member of the myosin superfamily, the vertebrate-specific myosin XVI (Myo16) class is expressed predominantly in neural tissues and appears to be involved in the development and proper functioning of the nervous system. Accordingly, the alterations of MYO16 has been linked to neurological disorders. Although the role of Myo16 as a generic actin-associated motor is still enigmatic, the N-, and C-terminal extensions that flank the motor domain seem to confer unique structural features and versatile interactions to the protein. Recent biochemical and physiological examinations portray Myo16 as a signal transduction element that integrates cell signaling pathways to actin cytoskeleton reorganization. This review discusses the current knowledge of the structure-function relation of Myo16. In light of its prevalent localization, the emphasis is laid on the neural aspects.
Collapse
|
18
|
Chiongson JBV, Sabido EM, Lin KG, Alea GV, Dalisay DS, Wu SH, Saludes JP. Multimeric TAT peptides are effective in vitro inhibitors of Staphylococcus saprophyticus. Chem Biol Drug Des 2020; 96:1348-1354. [PMID: 32562357 DOI: 10.1111/cbdd.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022]
Abstract
TAT (48-60) is a tridecapeptide from the envelope protein of HIV that was previously shown to possess cell-penetrating properties and antibacterial activity, making it a potential drug delivery agent for anticancer drugs and as antibacterial compound. Previous reports indicated that dimerization enhances the desired bioactivity of TAT; hence, we sought to synthesize multimeric TAT peptides. Herein, we describe the effects of multimerization on the antibacterial activity and secondary structure of the peptide. Terminal modifications such as N-acetylation and C-amidation were employed in the design. TATp monomer, dimer, and tetramer were synthesized using solid-phase peptide synthesis, purified by reversed-phase HPLC, and then characterized by mass spectrometry. Multimerization of the peptide did not change the secondary structure conformation. The CD analysis revealed a polyproline-II conformation for all peptide designs. Thus, this study provides a method of increasing the biological activity of the peptide by multimerization while retaining the secondary conformation of its monomeric unit. Furthermore, the bacteria Staphylococcus saprophyticus was found to be susceptible to the dimer and tetramer, with MIC50 of 12.50 μm and <1.56 μm, respectively. This suggests a structure-activity relationship whereby the antibacterial activity increases with increase in valency.
Collapse
Affiliation(s)
- Justin Brian V Chiongson
- Department of Chemistry, College of Science, De La Salle University, Manila, Philippines.,Department of Chemistry and Physics, College of Liberal Arts, Sciences and Education, University of San Agustin, Iloilo City, Philippines
| | - Edna M Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| | - Kuo-Ging Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Glenn V Alea
- Department of Chemistry, College of Science, De La Salle University, Manila, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jonel P Saludes
- Department of Chemistry and Physics, College of Liberal Arts, Sciences and Education, University of San Agustin, Iloilo City, Philippines.,Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
19
|
Shida T, Kamatari YO, Yoda T, Yamaguchi Y, Feig M, Ohhashi Y, Sugita Y, Kuwata K, Tanaka M. Short disordered protein segment regulates cross-species transmission of a yeast prion. Nat Chem Biol 2020; 16:756-765. [PMID: 32284601 DOI: 10.1038/s41589-020-0516-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Soluble prion proteins contingently encounter foreign prion aggregates, leading to cross-species prion transmission. However, how its efficiency is regulated by structural fluctuation of the host soluble prion protein remains unsolved. In the present study, through the use of two distantly related yeast prion Sup35 proteins, we found that a specific conformation of a short disordered segment governs interspecies prion transmissibility. Using a multidisciplinary approach including high-resolution NMR and molecular dynamics simulation, we identified critical residues within this segment that allow interspecies prion transmission in vitro and in vivo, by locally altering dynamics and conformation of soluble prion proteins. Remarkably, subtle conformational differences caused by a methylene group between asparagine and glutamine sufficed to change the short segment structure and substantially modulate the cross-seeding activity. Thus, our findings uncover how conformational dynamics of the short segment in the host prion protein impacts cross-species prion transmission. More broadly, our study provides mechanistic insights into cross-seeding between heterologous proteins.
Collapse
Affiliation(s)
- Toshinobu Shida
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takao Yoda
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.,Computational Biophysics Research Team, RIKEN Research Center for Computational Science, Kobe, Japan
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,RIKEN-Max Planck Joint Research Center, Wako, Japan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yumiko Ohhashi
- Graduate School of Science, Kobe University, Kobe, Japan.,Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Research Center for Computational Science, Kobe, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Motomasa Tanaka
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan. .,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
20
|
Meirson T, Bomze D, Markel G, Samson AO. κ-helix and the helical lock and key model: a pivotal way of looking at polyproline II. Bioinformatics 2020; 36:3726-3732. [DOI: 10.1093/bioinformatics/btaa186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Polyproline II (PPII) is a common conformation, comparable to α-helix and β-sheet. PPII, recently termed with a more generic name—κ-helix, adopts a left-handed structure with 3-fold rotational symmetry. Lately, a new type of binding mechanism—the helical lock and key model was introduced in SH3-domain complexes, where the interaction is characterized by a sliding helical pattern. However, whether this binding mechanism is unique only to SH3 domains is unreported.
Results
Here, we show that the helical binding pattern is a universal feature of the κ-helix conformation, present within all the major target families—SH3, WW, profilin, MHC-II, EVH1 and GYF domains. Based on a geometric analysis of 255 experimentally solved structures, we found that they are characterized by a distinctive rotational angle along the helical axis. Furthermore, we found that the range of helical pitch varies between different protein domains or peptide orientations and that the interaction is also represented by a rotational displacement mimicking helical motion. The discovery of rotational interactions as a mechanism, reveals a new dimension in the realm of protein–protein interactions, which introduces a new layer of information encoded by the helical conformation. Due to the extensive involvement of the conformation in functional interactions, we anticipate our model to expand the current molecular understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Markel
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
21
|
Urmey AR, Zondlo NJ. Structural preferences of cysteine sulfinic acid: The sulfinate engages in multiple local interactions with the peptide backbone. Free Radic Biol Med 2020; 148:96-107. [PMID: 31883974 DOI: 10.1016/j.freeradbiomed.2019.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cysteine sulfinic acid (Cys-SO2-) is a non-enzymatic oxidative post-translational modification (PTM) that has been identified in hundreds of proteins. However, the effects of cysteine sulfination are in most cases poorly understood. Cys-SO2- is structurally distinctive, with long sulfur-carbon and sulfur-oxygen bonds, and with tetrahedral geometry around sulfur due to its lone pair. Cys-SO2- thus has a unique range of potential interactions with the protein backbone which could facilitate protein structural changes. Herein, the structural effects of cysteine oxidation to the sulfinic acid were investigated in model peptides and folded proteins using NMR spectroscopy, circular dichroism, bioinformatics, and computational studies. In the PDB, Cys-SO2- shows a greater preference for α-helix than Cys. In addition, Cys-SO2- is more commonly found in structures with φ > 0, including in multiple types of β-turn. Sulfinate oxygens engage in hydrogen bonds with adjacent (i or i + 1) amide hydrogens. Over half of sulfinates have at least one hydrogen bond with an adjacent amide, and several structures have hydrogen bonds with both adjacent amides. Alternately, sulfur or either oxygen can act as an electron donor for n→π* interactions with the backbone carbonyl of the same residue, as indicated by frequent S⋯CO or O⋯CO distances below the sums of their van der Waals radii in protein structures. In peptides, Cys-SO2- favored α-helical structure at the N-terminus, consistent with helix dipole effects and backbone hydrogen bonds with the sulfinate promoting α-helix. Cys-SO2- has only modestly greater polyproline II helix propensity than Cys-SH, likely due to competition from multiple side chain-backbone interactions. Cys-SO2- stabilizes the i+1 position of a β-turn relative to Cys-SH. Within proteins, the range of side chain-main chain interactions available to Cys-SO2- compared to Cys-SH provides a basis for potential changes in protein structure and function due to cysteine oxidation to the sulfinic acid.
Collapse
Affiliation(s)
- Andrew R Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
22
|
O’Brien KT, Mooney C, Lopez C, Pollastri G, Shields DC. Prediction of polyproline II secondary structure propensity in proteins. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191239. [PMID: 32218953 PMCID: PMC7029904 DOI: 10.1098/rsos.191239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Background: The polyproline II helix (PPIIH) is an extended protein left-handed secondary structure that usually but not necessarily involves prolines. Short PPIIHs are frequently, but not exclusively, found in disordered protein regions, where they may interact with peptide-binding domains. However, no readily usable software is available to predict this state. Results: We developed PPIIPRED to predict polyproline II helix secondary structure from protein sequences, using bidirectional recurrent neural networks trained on known three-dimensional structures with dihedral angle filtering. The performance of the method was evaluated in an external validation set. In addition to proline, PPIIPRED favours amino acids whose side chains extend from the backbone (Leu, Met, Lys, Arg, Glu, Gln), as well as Ala and Val. Utility for individual residue predictions is restricted by the rarity of the PPIIH feature compared to structurally common features. Conclusion: The software, available at http://bioware.ucd.ie/PPIIPRED, is useful in large-scale studies, such as evolutionary analyses of PPIIH, or computationally reducing large datasets of candidate binding peptides for further experimental validation.
Collapse
Affiliation(s)
- Kevin T. O’Brien
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Catherine Mooney
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Cyril Lopez
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Gianluca Pollastri
- School of Computer Science, University College Dublin, Dublin, Ireland
- Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Huang MC, Chen WH, Huang CW, Huang KY, Horng JC, Hayashi M, Chen IC. Investigation of the cis– trans structures and isomerization of oligoprolines by using Raman spectroscopy and density functional theory calculations: solute–solvent interactions and effects of terminal positively charged amino acid residues. RSC Adv 2020; 10:34493-34500. [PMID: 35514408 PMCID: PMC9056779 DOI: 10.1039/d0ra05746k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Using low-wavenumber Raman spectroscopy in combination with theoretical calculations via solid-state density functional theory (DFT)-D3, we studied the vibrational structures and interaction with solvent of poly-l-proline and the oligoproline P12 series. The P12 series includes P12, the positively charged amino acid residue (arginine and lysine) N-terminus proline oligomers RP11 and KP11, and the C-terminus P11R and P11K. We assigned the spring-type phonon mode to 74–76 cm−1 bands for the PPI and PPII conformers and the carbonyl group ring-opening mode 122 cm−1 in the PPI conformer of poly-l-proline. Amide I and II were assigned based on the results of mode analysis for O, N, and C atom displacements. The broad band feature of the H-bond transverse mode in the Raman spectra indicates that the positively charged proline oligomers PPII form H-bonds with water in the solid phase, whereas P12 is relatively more hydrophobic. In propanol, the PPI conformer of the P12 series forms less H-bond network with the solvent. The PPII conformer exhibits a distinct Raman band at 310 cm−1, whereas the PPI has bands at 365, 660, and 960 cm−1 with reasonable intensity that can be used to quantitatively determine these two conformational forms. The 365 cm−1 mode comprising the motion of a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O group turning to the helix axis was used to monitor the isomerization reaction PPI ↔ PPII. In pure propanol, RP11 and KP11 were found to have mostly PPI present, but P11R and P11K preferred PPII. After adding 20% water, the PPI in P11R and P11K was completely converted to PPII, whereas a small fraction of PPI remained in RP11 and KP11. The substituted positively charged amino acid affected the balance of the PPI/PPII population ratio. The low-wavenumber Raman spectra in combination with theoretical calculations via solid-state density functional theory (DFT)-D3 are displayed. The vibrational structures and interaction with solvent of poly-l-proline and the oligoproline P12 series are identified.![]()
Collapse
Affiliation(s)
- Mei-Chun Huang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Wei-Hao Chen
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Chen-Wei Huang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Kuei-Yen Huang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Jia-Cherng Horng
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences
- National Taiwan University
- Taipei
- Republic of China
| | - I.-Chia Chen
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| |
Collapse
|
24
|
Sethuraman S, Rajendran K. Is Gum Arabic a Good Emulsifier Due to CH...π Interactions? How Urea Effectively Destabilizes the Hydrophobic CH...π Interactions in the Proteins of Gum Arabic than Amides and GuHCl? ACS OMEGA 2019; 4:16418-16428. [PMID: 31616820 PMCID: PMC6787882 DOI: 10.1021/acsomega.9b01980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 05/13/2023]
Abstract
The photophysical studies of gum arabic (GA) in the presence of urea, 1,3-dimethylurea (DMU), tetramethylurea (TMU), guanidine hydrochloride (GuHCl), formamide (FA), acetamide (AA), and dimethyl formamide (DMF) were carried out by monitoring the emission, three-dimensional emission contour, and time-correlated fluorescence lifetime techniques. On addition of only 1 × 10-3 M urea, 75.0% of the fluorescence of GA is quenched, while the same occurs in GuHCl at 3.0 M. FA quenched 50% of the fluorescence of GA at 5.0 M. However, DMU, TMU, AA, and DMF resulted in a fluorescence enhancement. The unusual fluorescence trends reveal the existence of CH...π interactions in the proteins of GA. The experimental results and the structural aspects of proteins in GA led us to propose that the aggregation of polyproline helices in GA, through several CH...π interactions, would have a major role to play in the emulsification mechanism of GA.
Collapse
Affiliation(s)
- Sowmiya Sethuraman
- Department of Chemistry, D.G. Vaishnav College, Autonomous (affiliated to the
University of Madras (Chennai)), 833, Periyar EVR Salai, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Kumaran Rajendran
- Department of Chemistry, D.G. Vaishnav College, Autonomous (affiliated to the
University of Madras (Chennai)), 833, Periyar EVR Salai, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| |
Collapse
|
25
|
Batkhishig D, Bilguun K, Enkhbayar P, Miyashita H, Kretsinger RH, Matsushima N. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors. Protein J 2019; 37:223-236. [PMID: 29651716 PMCID: PMC5976695 DOI: 10.1007/s10930-018-9767-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 210648, Mongolia
| | - Khurelbaatar Bilguun
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Institute of Physics and Technology, Mongolian Academy of Sciences, Enkhtaivan avenue 54B, Ulaanbaatar, 210651, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.
| | - Hiroki Miyashita
- Hokubu Rinsho Co., Ltd, Sapporo, 060-0061, Japan.,Institute of Tandem Repeats, Sapporo, 004-0882, Japan
| | | | - Norio Matsushima
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia. .,Institute of Tandem Repeats, Sapporo, 004-0882, Japan. .,Sapporo Medical University, Sapporo, 060-8556, Japan.
| |
Collapse
|
26
|
Meirson T, Bomze D, Kahlon L, Gil-Henn H, Samson AO. A helical lock and key model of polyproline II conformation with SH3. Bioinformatics 2019; 36:154-159. [DOI: 10.1093/bioinformatics/btz527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Results
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0–120°), β (120–240°) and γ (240–360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Liron Kahlon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
| |
Collapse
|
27
|
Qin H, Gao X, Yang X, Cao W, Liu S. A label-free and signal-on electrochemiluminescence strategy for sensitive amyloid-beta assay. Biosens Bioelectron 2019; 141:111438. [PMID: 31254862 DOI: 10.1016/j.bios.2019.111438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022]
Abstract
Development of a simple, cost-effective and sensitive biosensing strategy is highly desirable to advance the applications in Alzheimer's disease diagnosis. In this paper, we present a simple, label-free and signal-on electrochemiluminescence (ECL) aptasensor for the detection of amyloid-beta (Aβ) peptide using luminol as ECL emitter and in-situ generated reactive oxygen species (ROS) as coreactant via catalytic reaction between Cu2+-Aβ and the dissolved O2 in the presence of ascorbic acid (AA). Aβ16, the binding site of Cu2+ in the monomeric full-length Aβ, was used as a model in present study. As a result, this signal-on ECL aptasensor has exhibited favorable analytical performance for Aβ16 monomer with a linear range of 1.0 × 10-13 mol/L-1.0 × 10-8 mol/L and a limit of detection of 3.5 × 10-14 mol/L (S/N=3). Furthermore, the proposed biosensor was also able to detect the full length Aβ40 not only in the phosphate buffer saline (PBS) solution but also in human serum. The presented biosensor represents a promising, simple, turn-on and label-free diagnostic tool for blood analysis.
Collapse
Affiliation(s)
- Haixin Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xue Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Wei Cao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shufeng Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
28
|
Loney CN, Perez Bakovic SI, Xu C, Graybill A, Greenlee LF, Renner JN. Interactions of Polyproline II Helix Peptides with Iron(III) Oxide. ChemistrySelect 2019. [DOI: 10.1002/slct.201901817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Charles N. Loney
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| | - Sergio I. Perez Bakovic
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas 4183 Bell Engineering Center Fayetteville, AR 72701
| | - Cheyan Xu
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| | - Ashley Graybill
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| | - Lauren F. Greenlee
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas 4183 Bell Engineering Center Fayetteville, AR 72701
| | - Julie N. Renner
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University 10900 Euclid Ave. Cleveland, OH 44106
| |
Collapse
|
29
|
Jakubek RS, White SE, Asher SA. UV Resonance Raman Structural Characterization of an (In)soluble Polyglutamine Peptide. J Phys Chem B 2019; 123:1749-1763. [PMID: 30717595 DOI: 10.1021/acs.jpcb.8b10783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibrillization of polyglutamine (polyQ) tracts in proteins is implicated in at least 10 neurodegenerative diseases. This generates great interest in the structure and the aggregation mechanism(s) of polyQ peptides. The fibrillization of polyQ is thought to result from the peptide's insolubility in aqueous solutions; longer polyQ tracts show decreased aqueous solution solubility, which is thought to lead to faster fibrillization kinetics. However, few studies have characterized the structure(s) of polyQ peptides with low solubility. In the work here, we use UV resonance Raman spectroscopy to examine the secondary structures, backbone hydrogen bonding, and side chain hydrogen bonding for a variety of solution-state, solid, and fibril forms of D2Q20K2 (Q20). Q20 is insoluble in water and has a β-strand-like conformation with extensive inter- and intrapeptide hydrogen bonding in both dry and aqueous environments. We find that Q20 has weaker backbone-backbone and backbone-side chain hydrogen bonding and is less ordered compared to that of polyQ fibrils. Interestingly, we find that the insoluble Q20 will form fibrils when incubated in water at room temperature for ∼5 h. Also, Q20 can be prepared using a well-known disaggregation procedure to produce a water-soluble PPII-like conformation with negligible inter- and intrapeptide hydrogen bonding and a resistance to aggregation.
Collapse
|
30
|
Amundarain MJ, Herrera MG, Zamarreño F, Viso JF, Costabel MD, Dodero VI. Molecular mechanisms of 33-mer gliadin peptide oligomerisation. Phys Chem Chem Phys 2019; 21:22539-22552. [DOI: 10.1039/c9cp02338k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 33-mer gliadin peptide oligomerizes driven by its non-ionic polar character, flexible PPII secondary structure and stable glutamine H-bonds.
Collapse
Affiliation(s)
- María Julia Amundarain
- Grupo de Biofísica
- Instituto de Física del Sur
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | | | - Fernando Zamarreño
- Grupo de Biofísica
- Instituto de Física del Sur
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - Juan Francisco Viso
- Grupo de Biofísica
- Instituto de Física del Sur
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - Marcelo D. Costabel
- Grupo de Biofísica
- Instituto de Física del Sur
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - Verónica I. Dodero
- Universität Bielefeld
- Fakultät für Chemie
- Organische Chemie
- 33615 Bielefeld
- Germany
| |
Collapse
|
31
|
Dutta N, Dutta Chowdhury S, Lahiri A. Probing the functional conformations of an atypical proline-rich fusion peptide. Phys Chem Chem Phys 2019; 21:20727-20742. [DOI: 10.1039/c9cp02216c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simulations confirm a propensity for extended and solvent exposed conformations of the p15 fusion peptide capable of membrane targeting.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | - Saikat Dutta Chowdhury
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | - Ansuman Lahiri
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
32
|
Cook EC, Sahu D, Bastidas M, Showalter SA. Solution Ensemble of the C-Terminal Domain from the Transcription Factor Pdx1 Resembles an Excluded Volume Polymer. J Phys Chem B 2018; 123:106-116. [PMID: 30525611 DOI: 10.1021/acs.jpcb.8b10051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic and duodenal homeobox 1 (Pdx1) is an essential pancreatic transcription factor. The C-terminal intrinsically disordered domain of Pdx1 (Pdx1-C) has a heavily biased amino acid composition; most notably, 18 of 83 residues are proline, including a hexaproline cluster near the middle of the chain. For these reasons, Pdx1-C is an attractive target for structure characterization, given the availability of suitable methods. To determine the solution ensembles of disordered proteins, we have developed a suite of 13C direct-detect NMR experiments that provide high spectral quality, even in the presence of strong proline enrichment. Here, we have extended our suite of NMR experiments to include four new pulse programs designed to record backbone residual dipolar couplings in a 13C,15N-CON detection format. Using our NMR strategy, in combination with small-angle X-ray scattering measurements and Monte Carlo simulations, we have determined that Pdx1-C is extended in solution, with a radius of gyration and internal scaling similar to that of an excluded volume polymer, and a subtle tendency toward a collapsed structure to the N-terminal side of the hexaproline sequence. This structure leaves Pdx1-C exposed for interactions with trans-regulatory co-factors that contribute with Pdx1 to transcription control in the cell.
Collapse
|
33
|
Huang KY, Horng JC. Impacts of the Terminal Charged Residues on Polyproline Conformation. J Phys Chem B 2018; 123:138-147. [DOI: 10.1021/acs.jpcb.8b10864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Treviño MÁ, Pantoja-Uceda D, Menéndez M, Gomez MV, Mompeán M, Laurents DV. The Singular NMR Fingerprint of a Polyproline II Helical Bundle. J Am Chem Soc 2018; 140:16988-17000. [PMID: 30430829 DOI: 10.1021/jacs.8b05261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyproline II (PPII) helices play vital roles in biochemical recognition events and structures like collagen and form part of the conformational landscapes of intrinsically disordered proteins (IDPs). Nevertheless, this structure is generally hard to detect and quantify. Here, we report the first thorough NMR characterization of a PPII helical bundle protein, the Hypogastrura harveyi "snow flea" antifreeze protein (sfAFP). J-couplings and nuclear Overhauser enhancement spectroscopy confirm a natively folded structure consisting of six PPII helices. NMR spectral analyses reveal quite distinct Hα2 versus Hα3 chemical shifts for 28 Gly residues as well as 13Cα, 15N, and 1HN conformational chemical shifts (Δδ) unique to PPII helical bundles. The 15N Δδ and 1HN Δδ values and small negative 1HN temperature coefficients evince hydrogen-bond formation. 1H-15N relaxation measurements reveal that the backbone structure is generally highly rigid on ps-ns time scales. NMR relaxation parameters and biophysical characterization reveal that sfAFP is chiefly a dimer. For it, a structural model featuring the packing of long, flat hydrophobic faces at the dimer interface is advanced. The conformational stability, measured by amide H/D exchange to be 6.24 ± 0.2 kcal·mol-1, is elevated. These are extraordinary findings considering the great entropic cost of fixing Gly residues and, together with the remarkable upfield chemical shifts of 28 Gly 1Hα, evidence significant stabilizing contributions from CαHα ||| O═C hydrogen bonds. These stabilizing interactions are corroborated by density functional theory calculations and natural bonding orbital analysis. The singular conformational chemical shifts, J-couplings, high hNOE ratios, small negative temperature coefficients, and slowed H/D exchange constitute a unique set of fingerprints to identify PPII helical bundles, which may be formed by hundreds of Gly-rich motifs detected in sequence databases. These results should aid the quantification of PPII helices in IDPs, the development of improved antifreeze proteins, and the incorporation of PPII helices into novel designed proteins.
Collapse
Affiliation(s)
- Miguel Ángel Treviño
- "Rocasolano" Institute for Physical Chemistry , Spanish National Research Council , Serrano 119 , 28006 Madrid , Spain
| | - David Pantoja-Uceda
- "Rocasolano" Institute for Physical Chemistry , Spanish National Research Council , Serrano 119 , 28006 Madrid , Spain
| | - Margarita Menéndez
- "Rocasolano" Institute for Physical Chemistry , Spanish National Research Council , Serrano 119 , 28006 Madrid , Spain.,Ciber of Respiratory Diseases (CIBERES) , Melchor Fernández de Almargo 3 , 28029 Madrid , Spain
| | - M Victoria Gomez
- University of Castile-La Mancha, Instituto Regional de Investigación Científica Aplicada (IRICA) , 13071 Ciudad Real , Spain
| | - Miguel Mompeán
- University of Castile-La Mancha, Instituto Regional de Investigación Científica Aplicada (IRICA) , 13071 Ciudad Real , Spain
| | - Douglas V Laurents
- "Rocasolano" Institute for Physical Chemistry , Spanish National Research Council , Serrano 119 , 28006 Madrid , Spain
| |
Collapse
|
35
|
Furuta M, Fujisawa T, Urago H, Eguchi T, Shingae T, Takahashi S, Blanch EW, Unno M. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation. Phys Chem Chem Phys 2018; 19:2078-2086. [PMID: 28045149 DOI: 10.1039/c6cp07828a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poly(l-proline) II (PPII) helix is considered to be a major conformation in disordered polypeptides and unfolded proteins in aqueous solution. The PPII conformation can be identified by using Raman optical activity (ROA), which measures the different intensities of right- and left-circularly polarized Raman scattered light from chiral molecules and provides information on stereochemistry associated with vibrational motions. In the present study, we used tetra-alanine (Ala4) as a model system, since its central amide bond adopts the PPII conformation. The predominance of the PPII conformation was supported by 11 ns molecular dynamics (MD) simulations at 300 K. The MD snapshots were used for subsequent quantum mechanical/molecular mechanical (QM/MM) calculations to compute the Raman and ROA spectra. The present MD + QM/MM analysis leads to a good agreement between the observed and simulated spectra, allowing us to assign most of the spectral features including the ROA band near 1320 cm-1, which has been used as a marker for the PPII conformation. This positive ROA band has three components. The lower frequency component near 1310 cm-1 arises from an internal peptide bond, whereas the higher frequency components around 1320-1335 cm-1 appear due to N- and C-terminal peptide groups. The MD + QM/MM calculations also reproduced the electronic circular dichroism spectra of Ala4. The present results provide a satisfactory framework for future investigations of unfolded/disordered proteins as well as peptides in solutions by chiral spectroscopic methods.
Collapse
Affiliation(s)
- Masakazu Furuta
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Hiroyasu Urago
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahiro Eguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Ewan W Blanch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
36
|
Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk. Nat Commun 2018; 9:2121. [PMID: 29844575 PMCID: PMC5974136 DOI: 10.1038/s41467-018-04570-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/08/2018] [Indexed: 01/24/2023] Open
Abstract
The β-sheet is the key structure underlying the excellent mechanical properties of spider silk. However, the comprehensive mechanism underlying β-sheet formation from soluble silk proteins during the transition into insoluble stable fibers has not been elucidated. Notably, the assembly of repetitive domains that dominate the length of the protein chains and structural features within the spun fibers has not been clarified. Here we determine the conformation and dynamics of the soluble precursor of the repetitive domain of spider silk using solution-state NMR, far-UV circular dichroism and vibrational circular dichroism. The soluble repetitive domain contains two major populations: ~65% random coil and ~24% polyproline type II helix (PPII helix). The PPII helix conformation in the glycine-rich region is proposed as a soluble prefibrillar region that subsequently undergoes intramolecular interactions. These findings unravel the mechanism underlying the initial step of β-sheet formation, which is an extremely rapid process during spider silk assembly. β-sheet structure underlies the mechanical properties of spider silk but the mechanism to form β-sheet from soluble silk protein during transition into insoluble fibers has not been elucidated. Here the authors unravel the mechanism of β-sheet formation using NMR and circular dichroism spectroscopy.
Collapse
|
37
|
Bermudez A, Alba MP, Vanegas M, Patarroyo MA, Patarroyo ME. Specific β-Turns Precede PPII L Structures Binding to Allele-Specific HLA-DRβ1 * PBRs in Fully-Protective Malaria Vaccine Components. Front Chem 2018; 6:106. [PMID: 29682500 PMCID: PMC5898157 DOI: 10.3389/fchem.2018.00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.
Collapse
Affiliation(s)
- Adriana Bermudez
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences Faculty, Universidad del Rosario, Bogotá, Colombia
| | - Martha P Alba
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Medicine Faculty, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Magnolia Vanegas
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences Faculty, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A Patarroyo
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences Faculty, Universidad del Rosario, Bogotá, Colombia
| | - Manuel E Patarroyo
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Medicine Faculty, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
38
|
Kubyshkin V, Budisa N. Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindole-2-carboxylic acid. J Pept Sci 2018; 24:e3076. [PMID: 29582506 DOI: 10.1002/psc.3076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The polyproline-II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and "unstructured" denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline-II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan-1-ol/water partitioning and inclusion in detergent micelles of the oligo-Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo-Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline-II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| |
Collapse
|
39
|
Lee J, Shim J, Kang P, Choi MG, Choi SH. Side chain-specific 11/9-helix propensity of α/β-peptides with alternating residue types. Org Biomol Chem 2018; 16:433-438. [DOI: 10.1039/c7ob02816d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 11/9-helix propensity of α/β-peptides is dependent on a specific side chain group of α- or β3-residue.
Collapse
Affiliation(s)
- Jaeyeon Lee
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Jihyun Shim
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Philjae Kang
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Moon-Gun Choi
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Soo Hyuk Choi
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| |
Collapse
|
40
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
41
|
Dobitz S, Aronoff MR, Wennemers H. Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Acc Chem Res 2017; 50:2420-2428. [PMID: 28885830 DOI: 10.1021/acs.accounts.7b00340] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nature utilizes large biomolecules to fulfill tasks that require spatially well-defined arrangements at the molecular level such as electron transfer, ligand-receptor interactions, or catalysis. The creation of synthetic molecules that enable precise control over spacing and functionalization provides opportunities across diverse disciplines. Key requirements of functionalizable oligomeric scaffolds include the specific control of their molecular properties where the correct balance of flexibility and rigidity must be maintained in addition to the prerequisite of defined length. These molecules must ideally be equally applicable in aqueous and organic environments, they must be easy to synthesize in a controlled stepwise fashion, and they must be easily modified with a palette of chemical appendages having diverse functionalities. Oligoproline, a peptidic polymer comprised of repeating units of the amino acid proline, is an ideal platform to meet such challenges. Oligoproline derives its characteristic rigidity and well-defined secondary structure from the innate features of proline. It is the only naturally occurring amino acid that has its side-chain cyclized to its α-amino group, generating often-populated trans and cis conformers around the tertiary amide bonds formed in proline oligomers. Oligoprolines are widely applied to define distance on the molecular level as they are capable of serving as both a "molecular ruler" with a defined length and as a "molecular scaffold" with precisely located and predictably oriented substitutions along the polymeric backbone. Our investigations focus on the use of oligoproline as a molecular scaffold. Toward this end, we have investigated the role of solvent upon helical structure of oligoproline, and the effect that substituents on the pyrrolidine ring and the oligomer termini have on the stability of the helix. We have also further explored the molecular characteristics of oligoproline through spectroscopic and crystallographic methods. All of these structural insights laid the basis for implementation of oligoproline in materials science and chemical biology. Within this Account, we highlight the value of oligoprolines for applications in distinctly different research areas. Toward materials chemistry, we have utilized oligoprolines for the size-controlled generation of noble metal nanoparticles, and to probe the role of spatial preorganization of π-systems for molecular self-assembly. Within the biological realm, we have applied oligoprolines to probe the role of distance on G-protein coupled receptor-mediated ligand uptake by cancerous cells and to investigate the effects of charge preorganization on the efficacy of cationic cell-penetrating peptides.
Collapse
Affiliation(s)
- Stefanie Dobitz
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Matthew R. Aronoff
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Helma Wennemers
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
42
|
Morgan JL, Jensen MR, Ozenne V, Blackledge M, Barbar E. The LC8 Recognition Motif Preferentially Samples Polyproline II Structure in Its Free State. Biochemistry 2017; 56:4656-4666. [DOI: 10.1021/acs.biochem.7b00552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jessica L. Morgan
- Department
of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Valéry Ozenne
- Institut de Biologie
Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Martin Blackledge
- Institut de Biologie
Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Elisar Barbar
- Department
of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
43
|
Warkentin E, Weidenweber S, Schühle K, Demmer U, Heider J, Ermler U. A rare polyglycine type II-like helix motif in naturally occurring proteins. Proteins 2017; 85:2017-2023. [DOI: 10.1002/prot.25355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/03/2017] [Accepted: 07/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Eberhard Warkentin
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| | - Sina Weidenweber
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| | - Karola Schühle
- Laboratorium für Mikrobiologie; Fachbereich Biologie and SYNMIKRO, Philipps-Universität; Marburg 35032 Germany
| | - Ulrike Demmer
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| | - Johann Heider
- Laboratorium für Mikrobiologie; Fachbereich Biologie and SYNMIKRO, Philipps-Universität; Marburg 35032 Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| |
Collapse
|
44
|
Kang H, Vázquez FX, Zhang L, Das P, Toledo-Sherman L, Luan B, Levitt M, Zhou R. Emerging β-Sheet Rich Conformations in Supercompact Huntingtin Exon-1 Mutant Structures. J Am Chem Soc 2017; 139:8820-8827. [PMID: 28609090 PMCID: PMC5835228 DOI: 10.1021/jacs.7b00838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There exists strong correlation between the extended polyglutamines (polyQ) within exon-1 of Huntingtin protein (Htt) and age onset of Huntington's disease (HD); however, the underlying molecular mechanism is still poorly understood. Here we apply extensive molecular dynamics simulations to study the folding of Htt-exon-1 across five different polyQ-lengths. We find an increase in secondary structure motifs at longer Q-lengths, including β-sheet content that seems to contribute to the formation of increasingly compact structures. More strikingly, these longer Q-lengths adopt supercompact structures as evidenced by a surprisingly small power-law scaling exponent (0.22) between the radius-of-gyration and Q-length that is substantially below expected values for compact globule structures (∼0.33) and unstructured proteins (∼0.50). Hydrogen bond analyses further revealed that the supercompact behavior of polyQ is mainly due to the "glue-like" behavior of glutamine's side chains with significantly more side chain-side chain H-bonds than regular proteins in the Protein Data Bank (PDB). The orientation of the glutamine side chains also tend to be "buried" inside, explaining why polyQ domains are insoluble on their own.
Collapse
Affiliation(s)
- Hongsuk Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Francisco X Vázquez
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Leili Zhang
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Payel Das
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | | | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| |
Collapse
|
45
|
Spectrophotometric study of kinetics and associated thermodynamics for the complexation of Pr(III) with l-proline in presence of Zn(II). ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
|
47
|
Lella M, Mahalakshmi R. Solvation driven conformational transitions in the second transmembrane domain of mycobacteriophage holin. Biopolymers 2017; 108. [DOI: 10.1002/bip.22894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Muralikrishna Lella
- Molecular Biophysics Laboratory, Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal 462023 India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal 462023 India
| |
Collapse
|
48
|
Otani Y, Watanabe S, Ohwada T, Kitao A. Molecular Dynamics Study of Nitrogen-Pyramidalized Bicyclic β-Proline Oligomers: Length-Dependent Convergence to Organized Structures. J Phys Chem B 2017; 121:100-109. [PMID: 27995801 DOI: 10.1021/acs.jpcb.6b10668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, the solution structures of the homooligomers of a conformationally constrained bicyclic proline-type β-amino acid were studied by means of molecular dynamics (MD) calculations in explicit methanol and water using the umbrella sampling method. The ratio of trans-amide and cis-amide was estimated by NMR and the rotational barrier of the amide of acetylated bicyclic amino acid monomer was estimated by two-dimensional (2D) exchange spectroscopy (EXSY) or line-shape analysis. A bias potential was introduced with respect to the amide torsion angle ω to enhance conformational exchange including isomerization of amide bonds by lowering the rotation energy barrier. After determination of reweighting parameters to best reproduce the experimental results of the monomer amide, the free energy profile around the amide torsion angle ω was obtained from the MD trajectory by reweighting of the biased probability density. The MD simulation results support the existence of invertomers of nitrogen-pyramidalized amide. Furthermore, extended structures with a high fraction of trans-amide conformation appear to be increasingly stabilized as the oligomer is elongated, both in methanol and in water. Our conformational analysis of natural and non-natural tertiary-amide-based peptide oligomers indicates that these oligomers preferentially adopt a limited number of conformations.
Collapse
Affiliation(s)
- Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,National Center of Neurology and Psychiatry , 4-1-1 Ogawa-Higashimachi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
49
|
Colangelo E, Chen Q, Davidson AM, Paramelle D, Sullivan MB, Volk M, Lévy R. Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:438-449. [PMID: 27982599 DOI: 10.1021/acs.langmuir.6b04383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The self-assembly and self-organization of small molecules on the surface of nanoparticles constitute a potential route toward the preparation of advanced proteinlike nanosystems. However, their structural characterization, critical to the design of bionanomaterials with well-defined biophysical and biochemical properties, remains highly challenging. Here, a computational model for peptide-capped gold nanoparticles (GNPs) is developed using experimentally characterized Cys-Ala-Leu-Asn-Asn (CALNN)- and Cys-Phe-Gly-Ala-Ile-Leu-Ser-Ser (CFGAILSS)-capped GNPs as a benchmark. The structure of CALNN and CFGAILSS monolayers is investigated using both structural biology techniques and molecular dynamics simulations. The calculations reproduce the experimentally observed dependence of the monolayer secondary structure on the peptide capping density and on the nanoparticle size, thus giving us confidence in the model. Furthermore, the computational results reveal a number of new features of peptide-capped monolayers, including the importance of sulfur movement for the formation of secondary structure motifs, the presence of water close to the gold surface even in tightly packed peptide monolayers, and the existence of extended 2D parallel β-sheet domains in CFGAILSS monolayers. The model developed here provides a predictive tool that may assist in the design of further bionanomaterials.
Collapse
Affiliation(s)
- Elena Colangelo
- Institute of Integrative Biology, University of Liverpool , Crown Street, L69 7ZB Liverpool, U.K
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research) , 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Qiubo Chen
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research) , 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Adam M Davidson
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, U.K
| | - David Paramelle
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Michael B Sullivan
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research) , 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Martin Volk
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, U.K
- Department of Chemistry, Surface Science Research Centre, University of Liverpool , Abercromby Square, Liverpool L69 3BX, U.K
| | - Raphaël Lévy
- Institute of Integrative Biology, University of Liverpool , Crown Street, L69 7ZB Liverpool, U.K
| |
Collapse
|
50
|
Yugay D, Goronzy DP, Kawakami LM, Claridge SA, Song TB, Yan Z, Xie YH, Gilles J, Yang Y, Weiss PS. Copper Ion Binding Site in β-Amyloid Peptide. NANO LETTERS 2016; 16:6282-6289. [PMID: 27616333 DOI: 10.1021/acs.nanolett.6b02590] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
β-Amyloid aggregates in the brain play critical roles in Alzheimer's disease, a chronic neurodegenerative condition. Amyloid-associated metal ions, particularly zinc and copper ions, have been implicated in disease pathogenesis. Despite the importance of such ions, the binding sites on the β-amyloid peptide remain poorly understood. In this study, we use scanning tunneling microscopy, circular dichroism, and surface-enhanced Raman spectroscopy to probe the interactions between Cu2+ ions and a key β-amyloid peptide fragment, consisting of the first 16 amino acids, and define the copper-peptide binding site. We observe that in the presence of Cu2+, this peptide fragment forms β-sheets, not seen without the metal ion. By imaging with scanning tunneling microscopy, we are able to identify the binding site, which involves two histidine residues, His13 and His14. We conclude that the binding of copper to these residues creates an interstrand histidine brace, which enables the formation of β-sheets.
Collapse
Affiliation(s)
- Diana Yugay
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Dominic P Goronzy
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Lisa M Kawakami
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Shelley A Claridge
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Tze-Bin Song
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Zhongbo Yan
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Ya-Hong Xie
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Jérôme Gilles
- Department of Mathematics and Statistics, San Diego State University , San Diego, California 92182, United States
| | - Yang Yang
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|