1
|
Kim JJ, Hong S, Seo JY. A Cysteine Residue of Human Cytomegalovirus vMIA Protein Plays a Crucial Role in Viperin Trafficking to Control Viral Infectivity. J Virol 2023; 97:e0187422. [PMID: 37306568 PMCID: PMC10308886 DOI: 10.1128/jvi.01874-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Viperin is a multifunctional interferon-inducible protein that is directly induced in cells by human cytomegalovirus (HCMV) infection. The viral mitochondrion-localized inhibitor of apoptosis (vMIA) interacts with viperin at the early stages of infection and translocates it from the endoplasmic reticulum to the mitochondria, where viperin modulates the cellular metabolism to increase viral infectivity. Viperin finally relocalizes to the viral assembly compartment (AC) at late stages of infection. Despite the importance of vMIA interactions with viperin during viral infection, their interacting residues are unknown. In the present study, we showed that cysteine residue 44 (Cys44) of vMIA and the N-terminal domain (amino acids [aa] 1 to 42) of viperin are necessary for their interaction and for the mitochondrial localization of viperin. In addition, the N-terminal domain of mouse viperin, which is structurally similar to that of human viperin, interacted with vMIA. This indicates that the structure, rather than the sequence composition, of the N-terminal domain of viperin, is required for the interaction with vMIA. Recombinant HCMV, in which Cys44 of vMIA was replaced by an alanine residue, failed to translocate viperin to the mitochondria at the early stages of infection and inefficiently relocalized it to the AC at late stages of infection, resulting in the impairment of viperin-mediated lipid synthesis and a reduction in viral replication. These data indicate that Cys44 of vMIA is therefore essential for the intracellular trafficking and function of viperin to increase viral replication. Our findings also suggest that the interacting residues of these two proteins are potential therapeutic targets for HCMV-associated diseases. IMPORTANCE Viperin traffics to the endoplasmic reticulum (ER), mitochondria, and viral assembly compartment (AC) during human cytomegalovirus (HCMV) infection. Viperin has antiviral activity at the ER and regulates cellular metabolism at the mitochondria. Here, we show that Cys44 of HCMV vMIA protein and the N-terminal domain (aa 1 to 42) of viperin are necessary for their interaction. Cys44 of vMIA also has a critical role for viperin trafficking from the ER to the AC via the mitochondria during viral infection. Recombinant HCMV expressing a mutant vMIA Cys44 has impaired lipid synthesis and viral infectivity, which are attributed to mislocalization of viperin. Cys44 of vMIA is essential for the trafficking and function of viperin and may be a therapeutic target for HCMV-associated diseases.
Collapse
Affiliation(s)
- Jeong Jin Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sookyung Hong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Gober IN, Riemen AJ, Villain M. Sequence sensitivity and pH dependence of maleimide conjugated N-terminal cysteine peptides to thiazine rearrangement. J Pept Sci 2021; 27:e3323. [PMID: 33786923 PMCID: PMC8243948 DOI: 10.1002/psc.3323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Thiazine formation during the conjugation of N‐terminal cysteine peptides to maleimides is an underreported side reaction in the peptide literature. When the conjugation was performed at neutral and basic pH, we observed the thiazine isomer as a significant by‐product. Nuclear magnetic resonance (NMR) spectroscopy confirmed the structure of the six‐membered thiazine and ultra‐high performance liquid chromatography (UHPLC) combined with tandem mass spectrometry (MS/MS) allowed for facile, unambiguous detection due to a unique thiazine mass fragment. Furthermore, substitution of various amino acids adjacent to the N‐terminal cysteine in a tripeptide model system resulted in different rates of thiazine formation, albeit within the same order of magnitude. We also determined that varying the N‐substitution of the maleimide affects the thiazine conversion rate. Altogether, our findings suggest that thiazine rearrangement for N‐terminal cysteine‐maleimide adducts is a general side reaction that is applicable to other peptide or protein systems. Performing the conjugation reaction under acidic conditions or avoiding the use of an N‐terminal cysteine with a free amino group prevents the formation of the thiazine impurity.
Collapse
Affiliation(s)
- Isaiah N Gober
- Research and Development Department, Bachem Americas, Inc., Torrance, California, USA
| | - Alexander J Riemen
- Research and Development Department, Bachem Americas, Inc., Torrance, California, USA
| | - Matteo Villain
- CMC Development Group, Bachem Americas, Inc., Torrance, California, USA
| |
Collapse
|
3
|
Qing XY, Steenackers H, Venken T, De Maeyer M, Voet A. Computational Studies of the Active and Inactive Regulatory Domains of Response Regulator PhoP Using Molecular Dynamics Simulations. Mol Inform 2017; 36. [PMID: 28598557 DOI: 10.1002/minf.201700031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs.
Collapse
Affiliation(s)
- Xiao-Yu Qing
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| | - Hans Steenackers
- Centre of Microbial and Plant Genetics, KULeuven, Kasteelpark Arenberg 20-bus2460, Belgium
| | - Tom Venken
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400, MOL, Belgium
| | - Marc De Maeyer
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| | - Arnout Voet
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| |
Collapse
|
4
|
Ng CA, Oehme DP, Kato Y, Tanokura M, Brownlee RTC. Binding of an RNA pol II Ligand to the WW Domain of Pin1 Using Molecular Dynamics Docking Simulations. J Chem Theory Comput 2015; 5:2886-97. [PMID: 26631800 DOI: 10.1021/ct900190n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel docking protocol using a long, all atom molecular dynamics (MD) simulation, in an explicit solvent medium, without using any distance constraints is presented. This MD docking protocol is able to dock ligands, based on the C-terminal domain (CTD) of RNA polymerase II, into the tryptophan-tryptophan (WW) domain of Pin1. In this docking process, a significant loop-bending event occurs in order to encircle the ligand into its solvent exposed binding site, which cannot be simulated using current protocols. The simulations were validated structurally and energetically against an X-ray structure to confirm correct sampling of conformational space. Based on these simulations, and justification of the starting structure as a valid intermediate structure, a potential molecular basis for binding was predicted as well as confirming the key residues involved in the formation of the final strong and stable Pin1 WW domain-ligand complex.
Collapse
Affiliation(s)
- Chai Ann Ng
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daniel P Oehme
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Kato
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Robert T C Brownlee
- Department of Chemistry, La Trobe University, VIC 3086, Australia, and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Jakobi S, Nguyen TXP, Debaene F, Metz A, Sanglier-Cianférani S, Reuter K, Klebe G. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme. Proteins 2014; 82:2713-32. [DOI: 10.1002/prot.24637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/24/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Stephan Jakobi
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Tran Xuan Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - François Debaene
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg; CNRS UMR7178; 25 rue Becquerel 67087 Strasbourg France
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg; CNRS UMR7178; 25 rue Becquerel 67087 Strasbourg France
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| |
Collapse
|
6
|
The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study. PLoS One 2014; 9:e98618. [PMID: 24915485 PMCID: PMC4051634 DOI: 10.1371/journal.pone.0098618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/05/2014] [Indexed: 02/02/2023] Open
Abstract
Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder–protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein–protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase–barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered “effective” solvent dielectric to account for crowding, although the “best” effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses.
Collapse
|
7
|
Debiec KT, Gronenborn AM, Chong LT. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. J Phys Chem B 2014; 118:6561-9. [PMID: 24702709 PMCID: PMC4064690 DOI: 10.1021/jp500958r] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Recent advances in computer hardware
and software have made rigorous
evaluation of current biomolecular force fields using microsecond-scale
simulations possible. Force fields differ in their treatment of electrostatic
interactions, including the formation of salt bridges in proteins.
Here we conducted an extensive evaluation of salt bridge interactions
in the latest AMBER, CHARMM, and OPLS force fields, using microsecond-scale
molecular dynamics simulations of amino acid analogues in explicit
solvent. We focused on salt bridges between three different pairs
of oppositely charged amino acids: Arg/Asp, Lys/Asp, and His(+)/Asp.
Our results reveal considerable variability in the predicted KA values of the salt bridges for these force
fields, as well as differences from experimental data: almost all
of the force fields overestimate the strengths of the salt bridges.
When amino acids are represented by side-chain analogues, the AMBER
ff03 force field overestimates the KA values
the least, while for complete amino acids, the AMBER ff13α force
field yields the lowest KA value, most
likely caused by an altered balance of side-chain/side-chain and side-chain/backbone
contacts. These findings confirm the notion that the implicit incorporation
of solvent polarization improves the accuracy of modeling salt bridge
interactions.
Collapse
Affiliation(s)
- Karl T Debiec
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University , Pittsburgh, Pennsylvania 15260/15213, United States
| | | | | |
Collapse
|
8
|
Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding. MOLECULAR BASED MATHEMATICAL BIOLOGY 2014; 1:124-150. [PMID: 24466561 DOI: 10.2478/mlbmb-2013-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins-a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein-protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models' differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes.
Collapse
|
9
|
Khadria AS, Senes A. The transmembrane domains of the bacterial cell division proteins FtsB and FtsL form a stable high-order oligomer. Biochemistry 2013; 52:7542-50. [PMID: 24083359 DOI: 10.1021/bi4009837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FtsB and FtsL are two essential integral membrane proteins of the bacterial division complex or "divisome", both characterized by a single transmembrane helix and a juxtamembrane coiled coil domain. The two domains are important for the association of FtsB and FtsL, a key event for their recruitment to the divisome, which in turn allows the recruitment of the late divisomal components to the Z-ring and subsequent completion of the division process. Here we present a biophysical analysis performed in vitro that shows that the transmembrane domains of FtsB and FtsL associate strongly in isolation. Using Förster resonance energy transfer, we have measured the oligomerization of fluorophore-labeled transmembrane domains of FtsB and FtsL in both detergent and lipid. The data indicate that the transmembrane helices are likely a major contributor to the stability of the FtsB-FtsL complex. Our analyses show that FtsB and FtsL form a 1:1 higher-order oligomeric complex, possibly a tetramer. This finding suggests that the FtsB-FtsL complex is capable of multivalent binding to FtsQ and other divisome components, a hypothesis that is consistent with the possibility that the FtsB-FtsL complex has a structural role in the stabilization of the Z-ring.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
10
|
Wong ETC, Na D, Gsponer J. On the importance of polar interactions for complexes containing intrinsically disordered proteins. PLoS Comput Biol 2013; 9:e1003192. [PMID: 23990768 PMCID: PMC3749945 DOI: 10.1371/journal.pcbi.1003192] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/06/2013] [Indexed: 11/18/2022] Open
Abstract
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions. Protein-protein interactions are essential to communication and signal integration in cells. For these processes to be precise, interactions between proteins have to be specific and well coordinated. In order to understand the specificity in protein interactions, researches have focused on interfaces between two or more folded proteins. It has been shown that specificity in interactions between folded proteins relies on shape complementarity, hydrogen bonding, and salt-bridge formation. However, many proteins lack a unique folded structure; the so-called intrinsically disordered proteins. These proteins fluctuate between different conformations in isolation but often adopt a single structure when interacting with partner proteins. As many intrinsically disordered proteins are involved in signaling and regulation, their interactions have to be highly specific. The finding that the interaction interfaces of intrinsically disordered proteins are enriched in hydrophobic residues has led to questions regarding the specificity of interactions mediated by this group of proteins. Here, we show that polar and charged residues play a larger role in interfaces that involve intrinsically disordered proteins compared to interfaces that involve only folded proteins. Our results suggest that polar interactions are key contributors to the specificity of interactions that involve intrinsically disordered proteins.
Collapse
Affiliation(s)
- Eric T. C. Wong
- Centre for High-Throughput Biology, University of British Columbia, East Mall, Vancouver, Canada
| | - Dokyun Na
- Centre for High-Throughput Biology, University of British Columbia, East Mall, Vancouver, Canada
| | - Jörg Gsponer
- Centre for High-Throughput Biology, University of British Columbia, East Mall, Vancouver, Canada
- * E-mail:
| |
Collapse
|
11
|
Fujimoto YK, Green DF. Carbohydrate recognition by the antiviral lectin cyanovirin-N. J Am Chem Soc 2012; 134:19639-51. [PMID: 23057413 DOI: 10.1021/ja305755b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyanovirin-N (CVN) is a cyanobacterial lectin with potent antiviral activity and has been the focus of extensive preclinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wild-type CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets, and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein-carbohydrate complexes.
Collapse
Affiliation(s)
- Yukiji K Fujimoto
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3600, United States
| | | |
Collapse
|
12
|
Simonson T, Satpati P. Nucleotide recognition by the initiation factor aIF5B: free energy simulations of a neoclassical GTPase. Proteins 2012; 80:2742-57. [PMID: 22887821 DOI: 10.1002/prot.24158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/16/2012] [Accepted: 07/28/2012] [Indexed: 12/13/2022]
Abstract
The GTPase aIF5B is a universally conserved initiation factor that assists ribosome assembly. Crystal structures of its nucleotide complexes, X-ray(GTP) and X-ray(GDP), are similar in the nucleotide vicinity, but differ in the orientation of a distant domain IV. This has led to two, contradictory, mechanistic models. One postulates that X-ray(GTP) and X-ray(GDP) are, respectively, the active, "ON" and the inactive, "OFF" states; the other postulates that both structures are OFF, whereas the ON state is still uncharacterized. We study GTP/GDP binding using molecular dynamics and a continuum electrostatic free energy method. We predict that X-ray(GTP) has a ≈ 3 kcal/mol preference to bind GDP, apparently contradicting its assignment as ON. However, the preference arises mainly from a single, nearby residue from the switch 2 motif: Glu81, which becomes protonated upon GTP binding, with a free energy cost of about 4 kcal/mol. We then propose a different model, where Glu81 protonation/deprotonation defines the ON/OFF states. With this model, the X-ray(GTP):GTP complex, with its protonated Glu81, is ON, whereas X-ray(GTP):GDP is OFF. The model postulates that distant conformational changes such as domain IV rotation are "uncoupled" from GTP/GDP exchange and do not affect the relative GTP/GDP binding affinities. We analyze the model using a general thermodynamic framework for GTPases. It yields rather precise predictions for the nucleotide specificities of each state, and the state specificities of each nucleotide, which are roughly comparable to the homologues IF2 and aIF2, despite the lack of any conformational switching in the model.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France.
| | | |
Collapse
|
13
|
Evnouchidou I, Birtley J, Seregin S, Papakyriakou A, Zervoudi E, Samiotaki M, Panayotou G, Giastas P, Petrakis O, Georgiadis D, Amalfitano A, Saridakis E, Mavridis IM, Stratikos E. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. THE JOURNAL OF IMMUNOLOGY 2012; 189:2383-92. [PMID: 22837489 DOI: 10.4049/jimmunol.1200918] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) cooperate to trim antigenic peptide precursors for loading onto MHC class I molecules and help regulate the adaptive immune response. Common coding single nucleotide polymorphisms in ERAP1 and ERAP2 have been linked with predisposition to human diseases ranging from viral and bacterial infections to autoimmunity and cancer. It has been hypothesized that altered Ag processing by these enzymes is a causal link to disease etiology, but the molecular mechanisms are obscure. We report in this article that the common ERAP2 single nucleotide polymorphism rs2549782 that codes for amino acid variation N392K leads to alterations in both the activity and the specificity of the enzyme. Specifically, the 392N allele excises hydrophobic N-terminal residues from epitope precursors up to 165-fold faster compared with the 392K allele, although both alleles are very similar in excising positively charged N-terminal amino acids. These effects are primarily due to changes in the catalytic turnover rate (k(cat)) and not in the affinity for the substrate. X-ray crystallographic analysis of the ERAP2 392K allele suggests that the polymorphism interferes with the stabilization of the N terminus of the peptide both directly and indirectly through interactions with key residues participating in catalysis. This specificity switch allows the 392N allele of ERAP2 to supplement ERAP1 activity for the removal of hydrophobic N-terminal residues. Our results provide mechanistic insight to the association of this ERAP2 polymorphism with disease and support the idea that polymorphic variation in Ag processing enzymes constitutes a component of immune response variability in humans.
Collapse
Affiliation(s)
- Irini Evnouchidou
- National Center for Scientific Research Demokritos, 15310 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
White BR, Carlson JCT, Kerns JL, Wagner CR. Protein interface remodeling in a chemically induced protein dimer. J Mol Recognit 2012; 25:393-403. [DOI: 10.1002/jmr.2196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brian R. White
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| | - Jonathan C. T. Carlson
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| | - Jessie L. Kerns
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| |
Collapse
|
15
|
Grimme D, González-ruiz D, Gohlke* H. Computational Strategies and Challenges for Targeting Protein–Protein Interactions with Small Molecules. PHYSICO-CHEMICAL AND COMPUTATIONAL APPROACHES TO DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735377-00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Salari R, Chong LT. Effects of High Temperature on Desolvation Costs of Salt Bridges Across Protein Binding Interfaces: Similarities and Differences between Implicit and Explicit Solvent Models. J Phys Chem B 2012; 116:2561-7. [DOI: 10.1021/jp210172b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reza Salari
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Satpati P, Simonson T. Conformational selection through electrostatics: Free energy simulations of GTP and GDP binding to archaeal initiation factor 2. Proteins 2012; 80:1264-82. [PMID: 22275120 DOI: 10.1002/prot.24023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 11/05/2022]
Abstract
Archaeal Initiation Factor 2 is a GTPase involved in protein biosynthesis. In its GTP-bound, "ON" conformation, it binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and their dependence on the conformational state, molecular dynamics free energy simulations were performed. The ON state specificity was predicted to be weak, with a GTP/GDP binding free energy difference of -1 kcal/mol, favoring GTP. The OFF state specificity is larger, 4 kcal/mol, favoring GDP. The overall effects result from a competition among many interactions in several complexes. To interpret them, we use a simpler, dielectric continuum model. Several effects are robust with respect to the model details. Both nucleotides have a net negative charge, so that removing them from solvent into the binding pocket carries a desolvation penalty, which is large for the ON state, and strongly disfavors GTP binding compared to GDP. Short-range interactions between the additional GTP phosphate group and ionized sidechains in the binding pocket offset most, but not all of the desolvation penalty; more distant groups also contribute significantly, and the switch 1 loop only slightly. The desolvation penalty is lower for the more open, wetter OFF state, and the GTP/GDP difference much smaller. Short-range interactions in the binding pocket and with more distant groups again make a significant contribution. Overall, the simulations help explain how conformational selection is achieved with a single phosphate group.
Collapse
Affiliation(s)
- Priyadarshi Satpati
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
18
|
Minkara MS, Davis PH, Radhakrishnan ML. Multiple drugs and multiple targets: An analysis of the electrostatic determinants of binding between non-nucleoside HIV-1 reverse transcriptase inhibitors and variants of HIV-1 RT. Proteins 2011; 80:573-90. [DOI: 10.1002/prot.23221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 10/06/2011] [Indexed: 11/09/2022]
|
19
|
Wolff P, Oliéric V, Briand JP, Chaloin O, Dejaegere A, Dumas P, Ennifar E, Guichard G, Wagner J, Burnouf DY. Structure-Based Design of Short Peptide Ligands Binding onto the E. coli Processivity Ring. J Med Chem 2011; 54:4627-37. [DOI: 10.1021/jm200311m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Philippe Wolff
- Architecture et Réactivité de l′ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | - Vincent Oliéric
- Swiss Light Source (SLS), Paul-Scherrer-Institute (PSI), Villigen, Switzerland
| | - Jean Paul Briand
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunologie et Chime Thérapeutiques, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | - Olivier Chaloin
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunologie et Chime Thérapeutiques, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | - Annick Dejaegere
- IGBMC, Département de Biologie Structurale et Génomique, 1 rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Philippe Dumas
- Architecture et Réactivité de l′ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | - Eric Ennifar
- Architecture et Réactivité de l′ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | - Gilles Guichard
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS UMR 5248, CBMN, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Jérôme Wagner
- CNRS UMR7242, ESBS, Université de Strasbourg, BP 10413, 67412 Strasbourg Cedex, France
| | - Dominique Y. Burnouf
- Architecture et Réactivité de l′ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084, Strasbourg cedex, France
| |
Collapse
|
20
|
Unique example of amyloid aggregates stabilized by main chain H-bond instead of the steric zipper: molecular dynamics study of the amyloidogenic segment of amylin wild-type and mutants. J Mol Model 2011; 18:891-903. [PMID: 21625904 DOI: 10.1007/s00894-011-1030-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 03/06/2011] [Indexed: 12/19/2022]
Abstract
Most proteins do not aggregate while in their native functional states. However, they may be disturbed from their native conformation by certain change in the environment, and form unwanted oligomeric or polymeric aggregates. Recent experimental data demonstrate that soluble oligomers of amyloidogenic proteins are responsible for amyloidosis and its cytotoxicity. Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. In this study we performed in silico mutation analysis to examine the stability of the double layer five strand aggregates formed by heptapeptide NNFGAIL segment from amyline peptide. This segment is one of the shortest fragments that can form amyloid fibrils similar to those formed by the full length peptide. The mutants obtained by single glycine replacement were also studied to investigate the specificity of the dry self-complementary interface between the neighboring β-sheet layers. The molecular dynamics simulations of the aggregates run for 20 ns at 330 K, the degree of the aggregate disassembly was investigated using several geometry analysis tools: the root mean square deviations of the C(α) atoms, root mean square fluctuations per residue, twist angles, interstrand distances, fraction of the secondary structure elements, and number of H-bonds. The analysis shows that most mutations make the aggregates unstable, and their stabilities were dependent to a large extent on the position of replaced residues. Our mutational simulations are in agreement with the pervious experimental observations. We also used free binding energy calculations to determine the role of different components: nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no clear trend in the entropy difference between wildtype and glycine mutants. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent could provide valuable insight into the future computer guided design efforts for the amyloid aggregation inhibitor.
Collapse
|
21
|
Huang B, Liu FF, Dong XY, Sun Y. Molecular Mechanism of the Affinity Interactions between Protein A and Human Immunoglobulin G1 Revealed by Molecular Simulations. J Phys Chem B 2011; 115:4168-76. [DOI: 10.1021/jp111216g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Huang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fu-Feng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Yamazaki T, Kovalenko A. Spatial Decomposition of Solvation Free Energy Based on the 3D Integral Equation Theory of Molecular Liquid: Application to Miniproteins. J Phys Chem B 2010; 115:310-8. [DOI: 10.1021/jp1082938] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Yamazaki
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G8, Canada
| | - Andriy Kovalenko
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G8, Canada
| |
Collapse
|
23
|
Salari R, Chong LT. Desolvation Costs of Salt Bridges across Protein Binding Interfaces: Similarities and Differences between Implicit and Explicit Solvent Models. J Phys Chem Lett 2010; 1:2844-2848. [PMID: 24920993 PMCID: PMC4047600 DOI: 10.1021/jz1010863] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/05/2010] [Indexed: 06/01/2023]
Abstract
The prevalence of salt bridges across protein binding interfaces is surprising given the significant costs of desolvating the two charged groups upon binding. These desolvation costs, which are difficult to examine using laboratory experiments, have been computed in previous studies using the Poisson-Boltzmann (PB) implicit solvent model. Here, for the first time, we directly compare the PB implicit solvent model with several explicit water models in computing the desolvation penalties of salt bridges across protein-protein interfaces. We report both overall agreement as well as significant differences between the implicit and explicit solvent results. These differences highlight challenges to be faced in the application of implicit solvent methods.
Collapse
|
24
|
Abstract
Abstract
RUNX1/ETO, the fusion protein resulting from the chromosomal translocation t(8;21), is one of the most frequent translocation products in acute myeloid leukemia. Several in vitro and in vivo studies have shown that the homo-tetramerization domain of ETO, the nervy homology region 2 (NHR2), is essential for RUNX1/ETO oncogenic activity. We analyzed the energetic contribution of individual amino acids within the NHR2 to RUNX1/ETO dimer-tetramer transition and found a clustered area of 5 distinct amino acids with strong contribution to the stability of tetramers. Substitution of these amino acids abolishes tetramer formation without affecting dimer formation. Similar to RUNX1/ETO monomers, dimers failed to bind efficiently to DNA and to alter expression of RUNX1-dependent genes. RUNX1/ETO dimers do not block myeloid differentiation, are unable to enhance the self-renewal capacity of hematopoietic progenitors, and fail to induce leukemia in a murine transplantation model. Our data reveal the existence of an essential structural motif (hot spot) at the NHR2 dimer-tetramer interface, suitable for a molecular intervention in t(8;21) leukemias.
Collapse
|
25
|
Carrascal N, Green DF. Energetic decomposition with the generalized-born and Poisson-Boltzmann solvent models: lessons from association of G-protein components. J Phys Chem B 2010; 114:5096-116. [PMID: 20355699 DOI: 10.1021/jp910540z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuum electrostatic models have been shown to be powerful tools in providing insight into the energetics of biomolecular processes. While the Poisson-Boltzmann (PB) equation provides a theoretically rigorous approach to computing electrostatic free energies of solution in such a model, computational cost makes its use for large ensembles of states impractical. The generalized-Born (GB) approximation provides a much faster alternative, although with a weaker theoretical framework. While much attention has been given to how GB recapitulates PB energetics for the overall stability of a biomolecule or the affinity of a complex, little attention has been given to how the contributions of individual functional groups are captured by the two methods. Accurately capturing these individual electrostatic components is essential both for the development of a mechanistic understanding of biomolecular processes and for the design of variant sequences and structures with desired properties. Here, we present a detailed comparison of the group-wise decomposition of both PB and GB electrostatic free energies of binding, using association of various components of the heterotrimeric-G-protein complex as a model. We find that, while net binding free energies are strongly correlated in the two models, the correlations of individual group contributions are highly variable; in some cases, strong correlation is seen, while in others, there is essentially none. Structurally, the GB model seems to capture the magnitude of direct, short-range electrostatic interactions quite well but performs more poorly with moderate-range "action-at-a-distance" interactions--GB has a tendency to overestimate solvent screening over moderate distances, and to underestimate the costs of desolvating charged groups somewhat removed from the binding interface. Despite this, however, GB does seem to be quite effective as a predictor of those groups that will be computed to be most significant in a PB-based model.
Collapse
Affiliation(s)
- Noel Carrascal
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| | | |
Collapse
|
26
|
Cai Y, Schiffer CA. Decomposing the energetic impact of drug resistant mutations in HIV-1 protease on binding DRV. J Chem Theory Comput 2010; 6:1358-1368. [PMID: 20543885 PMCID: PMC2882104 DOI: 10.1021/ct9004678] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Darunavir (DRV) is a high affinity (4.5×10(-12) M, ΔG = -15.2 kcal/mol) HIV-1 protease inhibitor. Two drug-resistant protease variants FLAP+ (L10I, G48V, I54V, V82A) and ACT (V82T, I84V) decrease the binding affinity with DRV by 1.0 kcal/mol and 1.6 kcal/mol respectively. In this study the absolute and relative binding free energies of DRV with wild-type protease, FLAP+ and ACT were calculated with MM-PB/GBSA and thermodynamic integration methods, respectively. Free energy decomposition elucidated that the mutations conferred resistance by distorting the active site of HIV-1 protease so that the residues that lost binding free energy were not limited to the sites of mutation. Specifically the bis-tetrahydrofuranylurethane moiety of DRV maintained interactions with the FLAP+ and ACT variants, whereas the 4 - amino phenyl group lost more binding free energy with the protease in the FLAP+ and ACT complexes than in the wild-type protease which could account for the majority of the loss in binding free energy. This suggested that replacement of the 4 - amino phenyl group might generate new inhibitors less susceptible to the drug resistant mutations.
Collapse
Affiliation(s)
- Yufeng Cai
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| |
Collapse
|
27
|
Kajander T, Sachs JN, Goldman A, Regan L. Electrostatic interactions of Hsp-organizing protein tetratricopeptide domains with Hsp70 and Hsp90: computational analysis and protein engineering. J Biol Chem 2009; 284:25364-74. [PMID: 19586912 DOI: 10.1074/jbc.m109.033894] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hsp-organizing protein (HOP) binds to the C termini of the chaperones Hsp70 and Hsp90, thus bringing them together so that substrate proteins can be passed from Hsp70 to Hsp90. Because Hsp90 is essential for the correct folding and maturation of many oncogenic proteins, it has become a significant target for anti-cancer drug design. HOP binds to Hsp70 and Hsp90 via two independent tetratricopeptide (TPR) domains, TPR1 and TPR2A, respectively. We have analyzed ligand binding using Poisson-Boltzmann continuum electrostatic calculations, free energy perturbation, molecular dynamics simulations, and site-directed mutagenesis to delineate the contribution of different interactions to the affinity and specificity of the TPR-peptide interactions. We found that continuum electrostatic calculations could be used to guide protein design by removing unfavorable interactions to increase binding affinity, with an 80-fold increase in affinity for TPR2A. Contributions at buried charged residues, however, were better predicted by free energy perturbation calculations. We suggest using a combination of the two approaches for increasing the accuracy of results, with free energy perturbation calculations used only at selected buried residues of the ligand binding pocket. Finally we present the crystal structure of TPR2A in complex with its non-cognate Hsp70 ligand, which provides insight on the origins of specificity in TPR domain-peptide recognition.
Collapse
Affiliation(s)
- Tommi Kajander
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA.
| | | | | | | |
Collapse
|
28
|
Lo CH, Chang YH, Wright JD, Chen SH, Kan D, Lim C, Liang PH. Combined experimental and theoretical study of long-range interactions modulating dimerization and activity of yeast geranylgeranyl diphosphate synthase. J Am Chem Soc 2009; 131:4051-62. [PMID: 19245203 DOI: 10.1021/ja808699c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present here how two amino acid residues in the first helix distal from the main dimer interface modulate the dimerization and activity of a geranylgeranyl diphosphate synthase (GGPPs). The enzyme catalyzes condensation of farnesyl diphosphate and isopentenyl diphosphate to generate a C(20) product as a precursor for chlorophylls, carotenoids, and geranylgeranylated proteins. The 3D structure of GGPPs from Saccharomyces cerevisiae reveals an unique positioning of the N-terminal helix A, which protrudes into the other subunit and stabilizes dimerization, although it is far from the main dimer interface. Through a series of mutants that were characterized by analytic ultracentrifugation (AUC), the replacement of L8 and I9 at this helix with Gly was found sufficient to disrupt the dimer into a monomer, leading to at least 10(3)-fold reduction in activity. Molecular dynamics simulations and free energy decomposition analyses revealed the possible effects of the mutations on the protein structures and several critical interactions for maintaining dimerization. Further site-directed mutagenesis and AUC studies elucidated the molecular mechanism for modulating dimerization and activity by long-range interactions.
Collapse
Affiliation(s)
- Chia-Hsiang Lo
- Institute of Biochemical Sciences, National Taiwan University, Taipei
| | | | | | | | | | | | | |
Collapse
|
29
|
Deng NJ, Cieplak P. Insights into affinity and specificity in the complexes of alpha-lytic protease and its inhibitor proteins: binding free energy from molecular dynamics simulation. Phys Chem Chem Phys 2009; 11:4968-81. [PMID: 19562127 DOI: 10.1039/b820961h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the binding free energy calculation and its decomposition for the complexes of alpha-lytic protease and its protein inhibitors using molecular dynamics simulation. Standard mechanism serine protease inhibitors eglin C and OMTKY3 are known to have strong binding affinity for many serine proteases. Their binding loops have significant similarities, including a common P1 Leu as the main anchor in the binding interface. However, recent experiments demonstrate that the two inhibitors have vastly different affinity towards alpha-lytic protease (ALP), a bacterial serine protease. OMTKY3 inhibits the enzyme much more weakly (by approximately 10(6) times) than eglin C. Moreover, a variant of OMTKY3 with five mutations, OMTKY3M, has been shown to inhibit 10(4) times more strongly than the wild-type inhibitor. The underlying mechanisms for the unusually large difference in binding affinities and the effect of mutation are not well understood. Here we use molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to investigate quantitatively the binding specificity. The calculated absolute binding free energies correctly differentiate the thermodynamic stabilities of these protein complexes, but the magnitudes of the binding affinities are systematically overestimated. Analysis of the binding free energy components provides insights into the molecular mechanism of binding specificity. The large DeltaDeltaG(bind) between eglin C and wild type OMTKY3 towards ALP is mainly attributable to the stronger nonpolar interactions in the ALP-eglin C complex, arising from a higher degree of structural complementarity. Here the electrostatic interaction contributes to a lesser extent. The enhanced inhibition in the penta-mutant OMTKY3M over its wild type is entirely due to an overall improvement in the solvent-mediated electrostatic interactions in the ALP-OMTKY3M complex. The results suggest that for these protein-complexes and similar enzyme-inhibitor systems (1) the binding is driven by nonpolar interactions, opposed by overall electrostatic and solute entropy contributions; (2) binding specificity can be tuned by improving the complementarity in electrostatics between two associating proteins. Binding free energy decomposition into contributions from individual protein residues provides additional detailed information on the structural determinants and subtle conformational changes responsible for the binding specificity.
Collapse
Affiliation(s)
- Nan-Jie Deng
- University of Science and Technology of China, Hefei, Anhui, China
| | | |
Collapse
|
30
|
Sharma G, Mavroidis C, Rege K, Yarmush ML, Budil D. Computational Studies of a Protein-based Nanoactuator for Nanogripping Applications. Int J Rob Res 2009. [DOI: 10.1177/0278364908100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design hypothesis, architectures, and computational modeling of a novel peptide-based nanoactuator are presented in this paper. We engineered the α-helical coiled-coil portion of the yeast transcriptional activator peptide called GCN4 to obtain an environmentally responsive nanoactuator. The dimeric coiled-coil peptide consists of two identical approximately 4.5 nm long and approximately 3 nm wide polypeptide chains. The actuation mechanism depends on the modification of electrostatic charges along the peptide by varying the pH of the solution resulting in the reversible movement of helices and, therefore, creating the motion of an actuator. Using molecular dynamics simulations we showed that pH changes led to a reversible opening of up to 1.5 nm which is approximately 150% of the initial separation of the nanoactuator. We also investigated the forces generated by the nanoactuator upon pH actuation, using a new method based on a modified steered molecular dynamics technique. Owing to its open and close motion resembling that of tweezers, the new nanoactuator can potentially be used as a nanogripper in various nanomanipulation tasks such as detection and removal of heavy metal ions during nanofabrication processes or as a molecular switch.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| | - Constantinos Mavroidis
- Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA,
| | - Kaushal Rege
- The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA, Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Martin L. Yarmush
- The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - David Budil
- Department of Chemistry and Chemical Biology, 60 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Moroy G, Martin E, Dejaegere A, Stote RH. Molecular basis for Bcl-2 homology 3 domain recognition in the Bcl-2 protein family: identification of conserved hot spot interactions. J Biol Chem 2009; 284:17499-511. [PMID: 19293158 DOI: 10.1074/jbc.m805542200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteins of the Bcl-2 family are important regulators of apoptosis, or programmed cell death. These proteins regulate this fundamental biological process via the formation of heterodimers involving both pro- and anti-apoptotic family members. Disruption of the balance between anti- and pro-apoptotic Bcl-2 proteins is the cause of numerous pathologies. Bcl-xl, an anti-apoptotic protein of this family, is known to form heterodimers with multiple pro-apoptotic proteins, such as Bad, Bim, Bak, and Bid. To elucidate the molecular basis of this recognition process, we used molecular dynamics simulations coupled with the Molecular Mechanics/Poisson-Boltzmann Surface Area approach to identify the amino acids that make significant energetic contributions to the binding free energy of four complexes formed between Bcl-xl and pro-apoptotic Bcl-2 homology 3 peptides. A fifth protein-peptide complex composed of another anti-apoptotic protein, Bcl-w, in complex with the peptide from Bim was also studied. The results identified amino acids of both the anti-apoptotic proteins as well as the Bcl-2 homology 3 (BH3) domains of the pro-apoptotic proteins that make strong, recurrent interactions in the protein complexes. The calculations show that the two anti-apoptotic proteins, Bcl-xl and Bcl-w, share a similar recognition mechanism. Our results provide insight into the molecular basis for the promiscuous nature of this molecular recognition process by members of the Bcl-2 protein family. These amino acids could be targeted in the design of new mimetics that serve as scaffolds for new antitumoral molecules.
Collapse
Affiliation(s)
- Gautier Moroy
- Laboratoire de Biophysicochimie Moléculaire, Institut de Chimie, UMR 7177, Université de Strasbourg, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Altman MD, Bardhan JP, White JK, Tidor B. Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements. J Comput Chem 2009; 30:132-53. [PMID: 18567005 PMCID: PMC3465726 DOI: 10.1002/jcc.21027] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson-Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Fourth, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as nonrigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods.
Collapse
Affiliation(s)
- Michael D. Altman
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Jaydeep P. Bardhan
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Jacob K. White
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Bruce Tidor
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biological Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
33
|
Aleksandrov A, Simonson T. Binding of tetracyclines to elongation factor Tu, the Tet repressor, and the ribosome: a molecular dynamics simulation study. Biochemistry 2009; 47:13594-603. [PMID: 19032078 DOI: 10.1021/bi801726q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetracycline (Tc) is a broad-spectrum antibiotic that kills bacteria by interrupting protein biosynthesis. It is thought that the bacteriostatic action of Tc is associated with its binding to the acceptor site (or A site) in the bacterial ribosome, interfering with the attachment of aminoacyl-tRNA. Recently, however, the crystal structure of a complex between Tc and trypsin-modified elongation factor Tu (tm-EF-Tu) was determined, raising the question of whether Tc binding to EF-Tu has a role in its inhibition of protein synthesis. We address this question using computer simulations. As controls, we first compute relative ribosome binding free energies for seven Tc variants for which experimental data are available, obtaining good agreement. We then consider the binding of Tc to both the trypsin-modified and unmodified EF-Tu-GDP complexes. We show that the direct contribution of EF-Tu to the binding free energy is negligible; rather, the binding can be solely attributed to interactions of Tc with a bridging Mg(2+) ion and the GDP phosphate groups. The effects of trypsin modification are modest. Further, our calculations show that EF-Tu does not exhibit any binding preference for Tc over the nonantibiotic, 4-dedimethyl-Tc, and EF-Tu does not bind the Tc analogue tigecycline, which is a potent antibiotic. In contrast, both the ribosome and the Tet Repressor protein (involved in Tc resistance) do show a binding preference for Tc over 4-dedimethyl-Tc, and the ribosome prefers to bind tigecycline over Tc. Overall, our results provide insights into the binding properties of tetracyclines and support the idea that EF-Tu is not their primary target.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
34
|
Tang S, Xiao V, Wei L, Whiteside CI, Kotra LP. Protein kinase C isozymes and their selectivity towards ruboxistaurin. Proteins 2008; 72:447-60. [PMID: 18214957 DOI: 10.1002/prot.21942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein kinase C (PKC) isozymes are an important class of enzymes in cell signaling and as drug targets. They are involved in specific pathways and have selectivity towards certain ligands, despite their high sequence similarities. Ruboxistaurin is a specific inhibitor of PKC-beta. To understand the molecular determinants for the selectivity of ruboxistaurin, we derived the three-dimensional structures of the kinase domains of PKC-alpha, -betaI, and -zeta using homology modeling. Several binding orientations of ruboxistaurin in the binding sites of these PKC catalytic domains were analyzed, and a putative alternative binding site for PKC-zeta was identified in its kinase domain. The calculated free energy of binding correlates well with the IC(50) of the inhibitor against each PKC isozyme. A residue-based energy decomposition analysis attributed the binding free energy to several key residues in the catalytic sites of these enzymes, revealing potential protein-ligand interactions responsible for ligand binding. The contiguous binding site revealed in the catalytic domain of PKC-zeta provides avenues for selective drug design. The details of structural nuances for specific inhibition of PKC isozymes are presented in the context of the three-dimensional structures of this important class of enzymes.
Collapse
Affiliation(s)
- Sishi Tang
- Division of Cell and Molecular Biology, Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, Toronto ON M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
35
|
Abstract
Described here are several computational procedures for the analysis of electrostatic interactions in molecular complexes, all based on a continuum model of solvation. The first section describes how to compute the residual potential, a measure of how electrostatically complementary a ligand is for its receptor. The second procedure describes electrostatic component analysis, a method by which the electrostatic contribution to the binding free energy can be broken up into terms directly attributable to individual chemical groups. Finally, electrostatic affinity optimization is described. This procedure is particularly useful in determining what portions of a ligand are the most suboptimal, and thus provide the greatest opportunity for the design of improvements.
Collapse
Affiliation(s)
- David F Green
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
36
|
Green DF. Optimized Parameters for Continuum Solvation Calculations with Carbohydrates. J Phys Chem B 2008; 112:5238-49. [DOI: 10.1021/jp709725b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David F. Green
- Department of Applied Mathematics and Statistics, and Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3600
| |
Collapse
|
37
|
Aleksandrov A, Schuldt L, Hinrichs W, Simonson T. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study. J Mol Biol 2008; 378:898-912. [PMID: 18395746 DOI: 10.1016/j.jmb.2008.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/27/2008] [Accepted: 03/03/2008] [Indexed: 11/16/2022]
Abstract
The Tet repressor (TetR) mediates the most important mechanism of bacterial resistance against tetracycline (Tc) antibiotics. In the absence of Tc, TetR is tightly bound to its operator DNA; upon binding of Tc with an associated Mg(2+) ion, it dissociates from the DNA, allowing expression of the repressed genes. Its tight control by Tc makes TetR broadly useful in genetic engineering. The Tc binding site is over 20 A from the DNA, so the binding signal must propagate a long distance. We use molecular dynamics simulations and continuum electrostatic calculations to test two models of the allosteric mechanism. We simulate the TetR:DNA complex, the Tc-bound, "induced" TetR, and the transition pathway between them. The simulations support the model inferred previously from the crystal structures and reveal new details. When [Tc:Mg](+) binds, the Mg(2+) ion makes direct and water-mediated interactions with helix 8 of one TetR monomer and helix 6 of the other monomer, and helix 6 is pulled in towards the central core of the structure. Hydrophobic interactions with helix 6 then pull helix 4 in a pendulum motion, with a maximal displacement at its N-terminus: the DNA interface. The crystal structure of an additional TetR reported here corroborates this motion. The N-terminal residue of helix 4, Lys48, is highly conserved in DNA-binding regulatory proteins of the TetR class and makes the largest contribution of any amino acid to the TetR:DNA binding free energy. Thus, the conformational changes lead to a drastic reduction in the TetR:DNA binding affinity, allowing TetR to detach itself from the DNA. Tc plays the role of a specific Mg(2+) carrier, whereas the Mg(2+) ion itself makes key interactions that trigger the allosteric transition in the TetR:Tc complex.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | |
Collapse
|
38
|
Sharma G, Rege K, Budil DE, Yarmush ML, Mavroidis C. Reversible pH-controlled DNA-binding peptide nanotweezers: an in-silico study. Int J Nanomedicine 2008; 3:505-21. [PMID: 19337419 PMCID: PMC2636583 DOI: 10.2147/ijn.s4046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe the molecular dynamics (MD)-aided engineering design of mutant
peptides based on the α-helical coiled-coil GCN4 leucine zipper
peptide (GCN4-p1) in order to obtain environmentally-responsive nanotweezers.
The actuation mechanism of the nanotweezers depends on the modification of
electrostatic charges on the residues along the length of the coiled coil.
Modulating the solution pH between neutral and acidic values results in the
reversible movement of helices toward and away from each other and creates a
complete closed-open-closed transition cycle between the helices. Our results
indicate that the mutants show a reversible opening of up to 15 Å
(1.5 nm; approximately 150% of the initial separation) upon pH
actuation. Investigation on the physicochemical phenomena that influence
conformational properties, structural stability, and reversibility of the
coiled-coil peptide-based nanotweezers revealed that a rationale- and
design-based approach is needed to engineer stable peptide or macromolecules
into stimuli-responsive devices. The efficacy of the mutant that demonstrated
the most significant reversible actuation for environmentally responsive
modulation of DNA-binding activity was also demonstrated. Our results have
significant implications in bioseparations and in the engineering of novel
transcription factors.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
39
|
Sapienza PJ, Rosenberg JM, Jen-Jacobson L. Structural and thermodynamic basis for enhanced DNA binding by a promiscuous mutant EcoRI endonuclease. Structure 2007; 15:1368-82. [PMID: 17997963 PMCID: PMC3366113 DOI: 10.1016/j.str.2007.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/23/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
Promiscuous mutant EcoRI endonucleases bind to the canonical site GAATTC more tightly than does the wild-type endonuclease, yet cleave variant (EcoRI(*)) sites more rapidly than does wild-type. The crystal structure of the A138T promiscuous mutant homodimer in complex with a GAATTC site is nearly identical to that of the wild-type complex, except that the Thr138 side chains make packing interactions with bases in the 5'-flanking regions outside the recognition hexanucleotide while excluding two bound water molecules seen in the wild-type complex. Molecular dynamics simulations confirm exclusion of these waters. The structure and simulations suggest possible reasons why binding of the A138T protein to the GAATTC site has DeltaS degrees more favorable and DeltaH degrees less favorable than for wild-type endonuclease binding. The interactions of Thr138 with flanking bases may permit A138T, unlike wild-type enzyme, to form complexes with EcoRI(*) sites that structurally resemble the specific wild-type complex with GAATTC.
Collapse
Affiliation(s)
- Paul J Sapienza
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
40
|
Browning C, Martin E, Loch C, Wurtz JM, Moras D, Stote RH, Dejaegere AP, Billas IML. Critical role of desolvation in the binding of 20-hydroxyecdysone to the ecdysone receptor. J Biol Chem 2007; 282:32924-34. [PMID: 17848566 DOI: 10.1074/jbc.m705559200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insect steroid hormone 20-hydroxyecdysone (20E) binds to its cognate nuclear receptor composed of the ecdysone receptor (EcR) and Ultraspiracle (USP) and triggers the main developmental transitions, in particular molting and metamorphosis. We present the crystal structure of the ligand-binding domains of EcR/USP in complex with 20E at 2.4A resolution and compare it with published structures of EcR/USP bound to ponasterone A (ponA). ponA is essentially identical to 20E but lacks the 25-OH group of 20E. The structure of 20E-bound EcR indicates that an additional hydrogen bond is formed compared with the ponA-bound receptor, yet, paradoxically, ponA has a significantly higher affinity for EcR than 20E. Theoretical studies based on docking and free energy methods lead to a rationale for understanding the difference in binding affinities between 20E and ponA. Results of the calculations indicate that the favorable contribution from the extra H-bond made by 25-OH of 20E is counterbalanced by its larger desolvation cost compared with that of ponA. The contribution of 25-OH to the binding affinity is further compared with those of 20- and 22-OH groups. Ligands that lack the 20- or 22-OH group are indeed known to bind less favorably to EcR than 20E, an effect opposite to that observed for ponA. The results indicate that their respective contributions to receptor-ligand complex stability reside mostly in their different contributions to solvation/desolvation. Together, the data demonstrate the critical role of ligand desolvation in determining binding affinity, with general implications for the binding of hormones to their cognate nuclear receptors.
Collapse
Affiliation(s)
- Christopher Browning
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lopes A, Alexandrov A, Bathelt C, Archontis G, Simonson T. Computational sidechain placement and protein mutagenesis with implicit solvent models. Proteins 2007; 67:853-67. [PMID: 17348031 DOI: 10.1002/prot.21379] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Structure prediction and computational protein design should benefit from accurate solvent models. We have applied implicit solvent models to two problems that are central to this area. First, we performed sidechain placement for 29 proteins, using a solvent model that combines a screened Coulomb term with an Accessible Surface Area term (CASA model). With optimized parameters, the prediction quality is comparable with earlier work that omitted electrostatics and solvation altogether. Second, we computed the stability changes associated with point mutations involving ionized sidechains. For over 1000 mutations, including many fully or partly buried positions, we compared CASA and two generalized Born models (GB) with a more accurate model, which solves the Poisson equation of continuum electrostatics numerically. CASA predicts the correct sign and order of magnitude of the stability change for 81% of the mutations, compared to 97% with the best GB. We also considered 140 mutations for which experimental data are available. Comparing to experiment requires additional assumptions about the unfolded protein structure, protein relaxation in response to the mutations, and contributions from the hydrophobic effect. With a simple, commonly-used unfolded state model, the mean unsigned error is 2.1 kcal/mol with both CASA and the best GB. Overall, the electrostatic model is not important for sidechain placement; CASA and GB are equivalent for surface mutations, while GB is far superior for fully or partly buried positions. Thus, for problems like protein design that involve all these aspects, the most recent GB models represent an important step forward. Along with the recent discovery of efficient, pairwise implementations of GB, this will open new possibilities for the computational engineering of proteins.
Collapse
Affiliation(s)
- Anne Lopes
- Laboratoire de Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, 91128, Palaiseau, France
| | | | | | | | | |
Collapse
|
42
|
Lafont V, Schaefer M, Stote RH, Altschuh D, Dejaegere A. Protein-protein recognition and interaction hot spots in an antigen-antibody complex: free energy decomposition identifies "efficient amino acids". Proteins 2007; 67:418-34. [PMID: 17256770 DOI: 10.1002/prot.21259] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method was applied to the study of the protein-protein complex between a camelid single chain variable domain (cAb-Lys3) and hen egg white lysozyme (HEL), and between cAb-Lys3 and turkey egg white lysozyme (TEL). The electrostatic energy was estimated by solving the linear Poisson-Boltzmann equation. A free energy decomposition scheme was developed to determine binding energy hot spots of each complex. The calculations identified amino acids of the antibody that make important contributions to the interaction with lysozyme. They further showed the influence of small structural variations on the energetics of binding and they showed that the antibody amino acids that make up the hot spots are organized in such a way as to mimic the lysozyme substrate. Through further analysis of the results, we define the concept of "efficient amino acids," which can provide an assessment of the binding potential of a particular hot spot interaction. This information, in turn, can be useful in the rational design of small molecules that mimic the antibody. The implications of using free energy decomposition to identify regions of a protein-protein complex that could be targeted by small molecules inhibitors are discussed.
Collapse
Affiliation(s)
- Virginie Lafont
- Structural Biology and Genomics Department, UMR 7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS / INSERM / ULP, F-67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Yan S, Gawlak G, Makabe K, Tereshko V, Koide A, Koide S. Hydrophobic surface burial is the major stability determinant of a flat, single-layer beta-sheet. J Mol Biol 2007; 368:230-43. [PMID: 17335845 PMCID: PMC1995161 DOI: 10.1016/j.jmb.2007.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/29/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Formation of a flat beta-sheet is a fundamental event in beta-sheet-mediated protein self-assembly. To investigate the contributions of various factors to the stability of flat beta-sheets, we performed extensive alanine-scanning mutagenesis experiments on the single-layer beta-sheet segment of Borrelia outer surface protein A (OspA). This beta-sheet segment consists of beta-strands with highly regular geometries that can serve as a building block for self-assembly. Our Ala-scanning approach is distinct from the conventional host-guest method, in that it introduces only conservative, truncation mutations that should minimize structural perturbation. Our results showed very weak correlation with experimental beta-sheet propensity scales, statistical beta-sheet propensity scales, or cross-strand pairwise correlations. In contrast, our data showed strong positive correlation with the change in buried non-polar surface area. Polar interactions including prominent Glu-Lys cross-strand pairs contribute marginally to the beta-sheet stability. These results were corroborated by results from additional non-Ala mutations. Taken together, these results demonstrate the dominant contribution of non-polar surface burial to flat beta-sheet stability even at solvent-exposed positions. The OspA single-layer beta-sheet achieves efficient hydrophobic surface burial without forming a hydrophobic core by a strategic placement of a variety of side-chains. These findings further suggest the importance of hydrophobic interactions within a beta-sheet layer in peptide self-assembly.
Collapse
Affiliation(s)
- Shude Yan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, U.S.A
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, U.S.A
| | - Grzegorz Gawlak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, U.S.A
| | - Koki Makabe
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, U.S.A
| | - Valentina Tereshko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, U.S.A
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, U.S.A
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, U.S.A
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, U.S.A
| |
Collapse
|
44
|
Max KEA, Wunderlich M, Roske Y, Schmid FX, Heinemann U. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. J Mol Biol 2007; 369:1087-97. [PMID: 17481655 DOI: 10.1016/j.jmb.2007.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
The bacterial cold shock proteins (Csp) are widely used as models for the experimental and computational analysis of protein stability. In a previous study, in vitro evolution was employed to identify strongly stabilizing mutations in Bs-CspB from Bacillus subtilis. The best variant found by this approach contained the mutations M1R, E3K and K65I, which raised the midpoint of thermal unfolding of Bs-CspB from 53.8 degrees C to 83.7 degrees C, and increased the Gibbs free energy of stabilization by 20.9 kJ mol(-1). Another selected variant with the two mutations A46K and S48R was stabilized by 11.1 kJ mol(-1). To elucidate the molecular basis of these stabilizations, we determined the crystal structures of these two Bs-CspB variants. The mutated residues are generally well ordered and provide additional stabilizing interactions, such as charge interactions, additional hydrogen bonds and improved side-chain packing. Several mutations improve the electrostatic interactions, either by the removal of unfavorable charges (E3K) or by compensating their destabilizing interactions (A46K, S48R). The stabilizing mutations are clustered at a contiguous surface area of Bs-CspB, which apparently is critically important for the stability of the beta-barrel structure but not well optimized in the wild-type protein.
Collapse
Affiliation(s)
- Klaas E A Max
- Makromolekulare Strukturen und Interaktionen, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Polydoridis S, Leonidas DD, Oikonomakos NG, Archontis G. Recognition of ribonuclease A by 3'-5'-pyrophosphate-linked dinucleotide inhibitors: a molecular dynamics/continuum electrostatics analysis. Biophys J 2007; 92:1659-72. [PMID: 17142283 PMCID: PMC1796809 DOI: 10.1529/biophysj.106.093419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022] Open
Abstract
The proteins of the pancreatic ribonuclease A (RNase A) family catalyze the cleavage of the RNA polymer chain. The development of RNase inhibitors is of significant interest, as some of these compounds may have a therapeutic effect in pathological conditions associated with these proteins. The most potent low molecular weight inhibitor of RNase reported to date is the compound 5'-phospho-2'-deoxyuridine-3-pyrophosphate (P-->5)-adenosine-3-phosphate (pdUppA-3'-p). The 3',5'-pyrophosphate group of this compound increases its affinity and introduces structural features which seem to be unique in pyrophosphate-containing ligands bound to RNase A, such as the adoption of a syn conformation by the adenosine base at RNase subsite B(2) and the placement of the 5'-beta-phosphate of the adenylate (instead of the alpha-phosphate) at subsite P(1) where the phosphodiester bond cleavage occurs. In this work, we study by multi-ns molecular dynamics simulations the structural properties of RNase A complexes with the ligand pdUppA-3'-p and the related weaker inhibitor dUppA, which lacks the 3' and 5' terminal phosphate groups of pdUppA-3'-p. The simulations show that the adenylate 5'-beta-phosphate binding position and the adenosine syn orientation constitute robust structural features in both complexes, stabilized by persistent interactions with specific active-site residues of subsites P(1) and B(2). The simulation structures are used in conjunction with a continuum-electrostatics (Poisson-Boltzmann) model, to evaluate the relative binding affinity of the two complexes. The computed relative affinity of pdUppA-3'-p varies between -7.9 kcal/mol and -2.8 kcal/mol for a range of protein/ligand dielectric constants (epsilon(p)) 2-20, in good agreement with the experimental value (-3.6 kcal/mol); the agreement becomes exact with epsilon(p) = 8. The success of the continuum-electrostatics model suggests that the differences in affinity of the two ligands originate mainly from electrostatic interactions. A residue decomposition of the electrostatic free energies shows that the terminal phosphate groups of pdUppA-3'-p make increased interactions with residues Lys(7) and Lys(66) of the more remote sites P(2) and P(0), and His(119) of site P(1).
Collapse
|
46
|
Computational Determination of the Relative Free Energy of Binding – Application to Alanine Scanning Mutagenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/1-4020-5372-x_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Free Energy Calculations: Approximate Methods for Biological Macromolecules. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-38448-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Basdevant N, Weinstein H, Ceruso M. Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study. J Am Chem Soc 2006; 128:12766-77. [PMID: 17002371 PMCID: PMC2570209 DOI: 10.1021/ja060830y] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Like other protein-protein interaction domains, PDZ domains are involved in many key cellular processes. These processes often require that specific multiprotein complexes be assembled, a task that PDZ domains accomplish by binding to specific peptide motifs in target proteins. However, a growing number of experimental studies show that PDZ domains (like other protein-protein interaction domains) can engage in a variety of interactions and bind distinct peptide motifs. Such promiscuity in ligand recognition raises intriguing questions about the molecular and thermodynamic mechanisms that can sustain it. To identify possible sources of promiscuity and selectivity underlying PDZ domain interactions, we performed molecular dynamics simulations of 20 to 25 ns on a set of 12 different PDZ domain complexes (for the proteins PSD-95, Syntenin, Erbin, GRIP, NHERF, Inad, Dishevelled, and Shank). The electrostatic, nonpolar, and configurational entropy binding contributions were evaluated using the MM/PBSA method combined with a quasi-harmonic analysis. The results revealed that PDZ domain interactions are characterized by overwhelmingly favorable nonpolar contributions and almost negligible electrostatic components, a mix that may readily sustain promiscuity. In addition, despite the structural similarity in fold and in recognition modes, the entropic and other dynamical aspects of binding were remarkably variable not only across PDZ domains but also for the same PDZ domain bound to distinct ligands. This variability suggests that entropic and dynamical components can play a role in determining selectivity either of PDZ domain interactions with peptide ligands or of PDZ domain complexes with downstream effectors.
Collapse
Affiliation(s)
- Nathalie Basdevant
- Department of Chemistry, CUNY College of Staten Island, 2800 Victory Boulevard, Staten Island, NY 10314, USA
| | | | | |
Collapse
|
49
|
Zoete V, Meuwly M, Karplus M. Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition. Proteins 2006; 61:79-93. [PMID: 16080143 DOI: 10.1002/prot.20528] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A calculation of the binding free energy for the dimerization of insulin has been performed using the molecular mechanics-generalized Born surface area approach. The calculated absolute binding free energy is -11.9 kcal/mol, in approximate agreement with the experimental value of -7.2 kcal/mol. The results show that the dimerization is mainly due to nonpolar interactions. The role of the hydrogen bonds between the 2 monomers appears to give the direction of the interactions. A per-atom decomposition of the binding free energy has been performed to identify the residues contributing most to the self association free energy. Residues B24-B26 are found to make the largest favorable contributions to the dimerization. Other residues situated at the interface between the 2 monomers were found to make favorable but smaller contributions to the dimerization: Tyr B16, Val B12, and Pro B28, and to an even lesser extent, Gly B23. The energy decomposition on a per-residue basis is in agreement with experimental alanine scanning data. The results obtained from a single trajectory (i.e., the dimer trajectory is also used for the monomer analysis) and 2 trajectories (i.e., separate trajectories are used for the monomer and dimer) are similar.
Collapse
Affiliation(s)
- Vincent Zoete
- Laboratoire de Chimie Biophysique, ISIS/Université Louis Pasteur, Strasbourg Cedex, France
| | | | | |
Collapse
|
50
|
Zeeh JC, Zeghouf M, Grauffel C, Guibert B, Martin E, Dejaegere A, Cherfils J. Dual specificity of the interfacial inhibitor brefeldin a for arf proteins and sec7 domains. J Biol Chem 2006; 281:11805-14. [PMID: 16484231 DOI: 10.1074/jbc.m600149200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs), which activate small GTP-binding proteins (SMG) by stimulating their GDP/GTP exchange, are emerging as candidate targets for the inhibition of cellular pathways involved in diseases. However, their specific inhibition by competitive inhibitors is challenging, because GEF and SMG families comprise highly similar members. Nature shows us an alternative strategy called interfacial inhibition, exemplified by Brefeldin A (BFA). BFA inhibits the activation of Arf1 by its GEFs in vivo by stabilizing an abortive complex between Arf-GDP and the catalytic Sec7 domain of some of its GEFs. Here we characterize the specificity of BFA toward wild-type (ARNO and BIG1) and mutant Sec7 domains and toward class I, II, and III Arfs. We find that BFA sensitivity of the exchange reaction depends on the nature of both the Sec7 domain and the Arf protein. A single Phe/Tyr substitution is sufficient to achieve BFA sensitivity of the Sec7 domain, which is supported by our characterization of brefeldin C (BFC), a BFA analog that cannot interact with the Tyr residue, and by free energy computations. We further show that Arf1 and Arf5, but not Arf6, are BFA-sensitive, despite their having every BFA-interacting residue in common. Analysis of Arf6 mutants points to the dynamics of the interswitch, which is involved in membrane-to-nucleotide signal propagation, as contributing to, although not sufficient for, BFA sensitivity. Altogether, our results reveal the Tyr/Phe substitution as a novel tool for monitoring BFA sensitivity of cellular ArfGEFs and document the exquisite and dual specificity that can be achieved by an interfacial inhibitor.
Collapse
Affiliation(s)
- Jean-Christophe Zeeh
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|