1
|
Kubala MH, Norwood SJ, Gomez GA, Jones A, Johnston W, Yap AS, Mureev S, Alexandrov K. Mammalian farnesyltransferase α subunit regulates vacuolar protein sorting-associated protein 4A (Vps4A)--dependent intracellular trafficking through recycling endosomes. Biochem Biophys Res Commun 2015; 468:580-6. [PMID: 26551458 DOI: 10.1016/j.bbrc.2015.10.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022]
Abstract
The protein farnesyltransferase (FTase) mediates posttranslational modification of proteins with isoprenoid lipids. FTase is a heterodimer and although the β subunit harbors the active site, it requires the α subunit for its activity. Here we explore the other functions of the FTase α subunit in addition to its established role in protein prenylation. We found that in the absence of the β subunit, the α subunit of FTase forms a stable autonomous dimeric structure in solution. We identify interactors of FTase α using mass spectrometry, followed by rapid in vitro analysis using the Leishmania tarentolae cell - free system. Vps4A was validated for direct binding to the FTase α subunit both in vitro and in vivo. Analysis of the interaction with Vps4A in Hek 293 cells demonstrated that FTase α controls trafficking of transferrin receptor upstream of this protein. These results point to the existence of previously undetected biological functions of the FTase α subunit that includes control of intracellular membrane trafficking.
Collapse
Affiliation(s)
- Marta H Kubala
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Suzanne J Norwood
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Nguyen UTT, Goody RS, Alexandrov K. Understanding and exploiting protein prenyltransferases. Chembiochem 2010; 11:1194-201. [PMID: 20432425 DOI: 10.1002/cbic.200900727] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Uyen T T Nguyen
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
3
|
Rasteiro R, Pereira-Leal JB. Multiple domain insertions and losses in the evolution of the Rab prenylation complex. BMC Evol Biol 2007; 7:140. [PMID: 17705859 PMCID: PMC1994686 DOI: 10.1186/1471-2148-7-140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/17/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rab proteins are regulators of vesicular trafficking, requiring a lipid modification for proper function, prenylation of C-terminal cysteines. This is catalysed by a complex of a catalytic heterodimer (Rab Geranylgeranyl Transferase - RabGGTase) and an accessory protein (Rab Escort Protein. REP). Components of this complex display domain insertions relative to paralogous proteins. The function of these inserted domains is unclear. RESULTS We profiled the domain architecture of the components of the Rab prenylation complex in evolution. We identified the orthologues of the components of the Rab prenylation machinery in 43 organisms, representing the crown eukaryotic groups. We characterize in detail the domain structure of all these components and the phylogenetic relationships between the individual domains. CONCLUSION We found different domain insertions in different taxa, in alpha-subunits of RGGTase and REP. Our results suggest that there were multiple insertions, expansions and contractions in the evolution of this prenylation complex.
Collapse
Affiliation(s)
- Rita Rasteiro
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras Portugal
| | | |
Collapse
|
4
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Pallen MJ, Francis MS, Fütterer K. Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol Lett 2003; 223:53-60. [PMID: 12799000 DOI: 10.1016/s0378-1097(03)00344-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Efficient type-III secretion depends on cytosolic molecular chaperones, which bind specifically to the translocators and effectors. In the past there has been a tendency to shoe-horn all type-III-secretion chaperones into a single structural and functional class. However, we have shown that the LcrH/SycD-like chaperones consist of three central tetratricopeptide-like repeats that are predicted to fold into an all-alpha-helical array that is quite distinct from the known structure of the SycE class of chaperones. Furthermore, we predict that this array creates a peptide-binding groove that is utterly different from the helix-binding groove in SycE. We present a homology model of LcrH/SycD that is consistent with existing mutagenesis data. We also report the existence of tetratricopeptide-like repeats in regulators of type-III secretion, such as HilA from Salmonella enterica and HrpB from Ralstonia solanacearum. The discovery of tetratricopeptide-like repeats in type-III-secretion regulators and chaperones provides a new conceptual framework for structural and mutagenesis studies and signals a potential unification of prokaryotic and eukaryotic chaperone biology.
Collapse
Affiliation(s)
- Mark J Pallen
- Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
6
|
Abstract
SUMMARY Three different protein prenyltransferases (farnesyltransferase and geranylgeranyltransferases I and II) catalyze the attachment of prenyl lipid anchors 15 or 20 carbons long to the carboxyl termini of a variety of eukaryotic proteins. Farnesyltransferase and geranylgeranyltransferase I both recognize a 'Ca1a2X' motif on their protein substrates; geranylgeranyltransferase II recognizes a different, non-CaaX motif. Each enzyme has two subunits. The genes encoding CaaX protein prenyltransferases are considerably longer than those encoding non-CaaX subunits, as a result of longer introns. Alternative splice forms are predicted to occur, but the extent to which each splice form is translated and the functions of the different resulting isoforms remain to be established. Farnesyltransferase-inhibitor drugs have been developed as anti-cancer agents and may also be able to treat several other diseases. The effects of these inhibitors are complicated, however, by the overlapping substrate specificities of geranylgeranyltransferase I and farnesyltransferase.
Collapse
|
7
|
Bradley CM, Barrick D. Limits of cooperativity in a structurally modular protein: response of the Notch ankyrin domain to analogous alanine substitutions in each repeat. J Mol Biol 2002; 324:373-86. [PMID: 12441114 DOI: 10.1016/s0022-2836(02)00945-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To determine the limits of cooperativity in a structurally modular protein, we characterized the structure and stability of glycine variants of the ankyrin repeat domain from the Drosophila melangaster Notch receptor. The substitutions are of analogous alanine residues to glycine in each repeat, and allow the same perturbation to be examined at different positions in the protein. The ankyrin domain is insensitive to substitution in repeat one, suggesting that the first repeat is not fully-folded. Glycine substitutions in repeat two through seven are strongly destabilizing, but the variants retain their overall secondary and tertiary structures. Spectroscopic and calorimetric data are consistent with two-state unfolding transitions for the repeat-two through repeat-five glycine variants, and for the wild-type protein. These data indicate that, despite its modular structure, the Notch ankyrin domain unfolds as a cooperative unit consisting of the six C-terminal repeats, and that this cooperativity is maintained in the presence of severely destabilizing substitutions in the N-terminal and central repeats. In contrast, glycine substitution in repeat six leads to a multi-state unfolding transition, suggesting that the coupling that gives rise to long-range cooperativity in the wild-type protein may have a weak link in the C-terminal region. Such behavior is captured by a simple statistical thermodynamic model in which an unstable C-terminal region is coupled to a stable N-terminal region through a strongly stabilizing interface.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
8
|
Kumar A, Roach C, Hirsh IS, Turley S, deWalque S, Michels PA, Hol WG. An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei. J Mol Biol 2001; 307:271-82. [PMID: 11243819 DOI: 10.1006/jmbi.2000.4465] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of helix-rich protein motifs are involved in a variety of critical protein-protein interactions in living cells. One of these is the tetratrico peptide repeat (TPR) motif that is involved, amongst others, in cell cycle regulation, chaperone function and post-translation modifications. So far, these helix-rich TPR motifs have always been observed to be a compact unit of two helices interacting with each other in antiparallel fashion. Here, we describe the structure of the first three TPR-motifs of the peroxin PEX5 from Trypanosoma brucei, the causative agent of sleeping sickness. Peroxins are proteins involved in peroxisome, glycosome and glyoxysome biogenesis. PEX5 is the receptor of the proteins targeted to these organelles by the "peroxisomal targeting signal-1", a C-terminal tripeptide called PTS-1. The first two of the three TPR-motifs of T. brucei PEX5 appear to adopt the canonical antiparallel helix hairpin structure. In contrast, the third TPR motif of PEX5 has a dramatically different conformation in our crystals: the two helices that were supposed to form a hairpin are folded into one single 44 A long continuous helix. Such a conformation has never been observed before for a TPR motif. This raises interesting questions including the potential functional importance of a "jack-knife" conformational change in TPR motifs.
Collapse
Affiliation(s)
- A Kumar
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ramarao MK, Bianchetta MJ, Lanken J, Cohen JB. Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 2001; 276:7475-83. [PMID: 11087759 DOI: 10.1074/jbc.m009888200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapsyn, a 43-kDa peripheral membrane protein of skeletal muscle, is essential for clustering nicotinic acetylcholine receptors (nAChR) in the postsynaptic membrane. Previous studies with rapsyn NH(2)-terminal fragments fused to green fluorescent protein, expressed in 293T cells along with nAChRs, establish the following: Rapsyn-(1-90), containing the myristoylated amino terminus and two tetratricopeptide repeats (TPRs), was sufficient for self-association at the plasma membrane; rapsyn-(1-287), containing seven TPRs, did not cluster nAChRs; whereas rapsyn-(1-360)(,) containing a coiled-coil domain (rapsyn-(298-331)), clustered nAChRs. To further analyze the role of rapsyn structural domains in self-association and nAChR clustering, we have characterized the clustering properties of additional rapsyn mutants containing deletions and substitutions within the TPR and coiled-coil domains. A mutant lacking the coiled-coil domain alone (rapsyn-(black triangle288-348)), failed to cluster nAChRs. Within the coiled-coil domain neutralization of the charged side chains was tolerated, while alanine substitutions of large hydrophobic residues resulted in the loss of nAChR clustering. Rapsyn self-association requires at least two TPRs, as a single TPR (TPR1 or TPR2 alone) was not sufficient. While TPRs 1 and 2 are sufficient for self-association, they are not necessary, as TPRs 3-7 also formed clusters similar to wild-type rapsyn. Fragments containing TPRs co-localized with full-length rapsyn, while the expressed coiled-coil or RING-H2 domain did not. These results are discussed in terms of a homology model of rapsyn, based on the three-dimensional structure of the TPR domain of protein phosphatase 5.
Collapse
Affiliation(s)
- M K Ramarao
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Protein phosphatase 5 (PP5) possesses unique biochemical properties, which include its tetratricopeptide repeat (TPR) targeting/regulatory domain and its ability to be activated by lipids. PP5 has been studied as a paradigm for TPR protein structure and function. Roles for PP5 in signal transduction are emerging: from cell cycle regulation and signaling by nuclear receptors, to possible regulation of membrane receptors and ion channels.
Collapse
Affiliation(s)
- M Chinkers
- Dept of Pharmacology, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
12
|
Poetsch M, Dittberner T, Cowell JK, Woenckhaus C. TTC4, a novel candidate tumor suppressor gene at 1p31 is often mutated in malignant melanoma of the skin. Oncogene 2000; 19:5817-20. [PMID: 11126369 DOI: 10.1038/sj.onc.1203961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel candidate tumor suppressor gene, TTC4, on chromosome 1p31 has been described recently. Since aberrations in this region have been detected in malignant melanoma, we investigated DNA of paraffin-embedded sections from 16 typical naevi, 19 atypical naevi, 32 primary melanomas (15 superficial spreading melanomas, 17 nodular melanomas) and 25 metastases and DNA from four melanoma cell lines by PCR and direct sequencing analysis for mutations in all exons of TTC4. Tumors comprised a wide range of thickness (Breslow index) and Clark levels. No mutations could be detected in typical or atypical naevi, but we found seven different point mutations in the tumor samples, six of them causing an amino acid change. Ten melanoma samples belonging to nine patients showed one or more of these mutations. In detail, in six of 25 metastases, in two of 17 nodular melanomas and in two of 15 superficial spreading melanomas point mutations could be detected. In two cell lines, a loss of a whole exon could be demonstrated and in one cell line we found a point mutation. In addition, three polymorphisms were found. Our findings indicate that TTC4 may participate in the pathogenesis of malignant melanomas of the skin.
Collapse
Affiliation(s)
- M Poetsch
- Institute of Forensic Medicine, University of Greifswald, Germany
| | | | | | | |
Collapse
|
13
|
Shao X, Grishin NV. Common fold in helix-hairpin-helix proteins. Nucleic Acids Res 2000; 28:2643-50. [PMID: 10908318 PMCID: PMC102670 DOI: 10.1093/nar/28.14.2643] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2000] [Revised: 06/05/2000] [Accepted: 06/05/2000] [Indexed: 12/13/2022] Open
Abstract
Helix-hairpin-helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein-protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)(2) domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)(2) domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each alpha-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the alpha-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glycosylases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)(2) domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)(2) functional unit.
Collapse
Affiliation(s)
- X Shao
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA
| | | |
Collapse
|
14
|
Ramsey AJ, Russell LC, Whitt SR, Chinkers M. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90. J Biol Chem 2000; 275:17857-62. [PMID: 10751404 DOI: 10.1074/jbc.m001625200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sequential binding of different tetratricopeptide repeat (TPR) proteins to heat shock protein 90 (hsp90) is essential to its chaperone function in vivo. We have previously shown that three basic residues in the TPR domain of PP5 are required for binding to the acidic C-terminal domain of hsp90. We have now tested which acidic residues in this C-terminal domain are required for binding to three different TPR proteins as follows: PP5, FKBP52, and Hop. Mutation of Glu-729, Glu-730, and Asp-732 at the C terminus of hsp90 interfered with binding of all three TPR proteins. Mutation of Glu-720, Asp-722, Asp-723, and Asp-724 inhibited binding of FKBP52 and PP5 but not of Hop. Mutation of Glu-651 and Asp-653 did not affect binding of FKBP52 or PP5 but inhibited both Hop binding and hsp90 chaperone activity. We also found that a conserved Lys residue required for PP5 binding to hsp90 was critical for the binding of FKBP52 but not for the binding of Hop to hsp90. These results suggest distinct but overlapping binding sites on hsp90 for different TPR proteins and indicate that the binding site for Hop, which is associated with hsp90 in intermediate stages of protein folding, overlaps with a site of chaperone activity.
Collapse
Affiliation(s)
- A J Ramsey
- Department of Pharmacology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND Rab geranylgeranyltransferase (RabGGT) catalyzes the addition of two geranylgeranyl groups to the C-terminal cysteine residues of Rab proteins, which is crucial for membrane association and function of these proteins in intracellular vesicular trafficking. Unlike protein farnesyltransferase (FT) and type I geranylgeranyltransferase, which both prenylate monomeric small G proteins or short peptides, RabGGT can prenylate Rab only when Rab is in a complex with Rab escort protein (REP). RESULTS The crystal structure of rat RabGGT at 2.0 A resolution reveals an assembly of four distinct structural modules. The beta subunit forms an alpha-alpha barrel that contains most of the residues in the active site. The alpha subunit consists of a helical domain, an immunoglobulin (Ig)-like domain, and a leucine-rich repeat (LRR) domain. The N-terminal region of the alpha subunit binds to the active site in the beta subunit; residue His2alpha directly coordinates a zinc ion. The prenyl-binding pocket of RabGGT is deeper than that in FT. CONCLUSIONS LRR and Ig domains are often involved in protein-protein interactions; in RabGGT they might participate in the recognition and binding of REP. The binding of the N-terminal peptide of the alpha subunit to the active site suggests an autoinhibition mechanism that might contribute to the inability of RabGGT to recognize short peptides or Rab alone as its substrate. Replacement of residues Trp102beta and Tyr154beta in FT by Ser48beta and Leu99beta, respectively, in RabGGT largely determine the different lipid-binding specificities of the two enzymes.
Collapse
Affiliation(s)
- H Zhang
- Department of Biochemistry, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, 75235-9050, USA
| | | | | |
Collapse
|
16
|
|