1
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Donovan BT, Chen H, Eek P, Meng Z, Jipa C, Tan S, Bai L, Poirier MG. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol Cell 2023; 83:1251-1263.e6. [PMID: 36996811 PMCID: PMC10182836 DOI: 10.1016/j.molcel.2023.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiyuan Meng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caroline Jipa
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Aditham AK, Markin CJ, Mokhtari DA, DelRosso N, Fordyce PM. High-Throughput Affinity Measurements of Transcription Factor and DNA Mutations Reveal Affinity and Specificity Determinants. Cell Syst 2020; 12:112-127.e11. [PMID: 33340452 DOI: 10.1016/j.cels.2020.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Transcription factors (TFs) bind regulatory DNA to control gene expression, and mutations to either TFs or DNA can alter binding affinities to rewire regulatory networks and drive phenotypic variation. While studies have profiled energetic effects of DNA mutations extensively, we lack similar information for TF variants. Here, we present STAMMP (simultaneous transcription factor affinity measurements via microfluidic protein arrays), a high-throughput microfluidic platform enabling quantitative characterization of hundreds of TF variants simultaneously. Measured affinities for ∼210 mutants of a model yeast TF (Pho4) interacting with 9 oligonucleotides (>1,800 Kds) reveal that many combinations of mutations to poorly conserved TF residues and nucleotides flanking the core binding site alter but preserve physiological binding, providing a mechanism by which combinations of mutations in cis and trans could modulate TF binding to tune occupancies during evolution. Moreover, biochemical double-mutant cycles across the TF-DNA interface reveal molecular mechanisms driving recognition, linking sequence to function. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Craig J Markin
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole DelRosso
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
4
|
Abstract
MYC dimerizes with MAX to bind DNA, with a preference for the E-box consensus CACGTG and several variant motifs. In cells, MYC binds DNA preferentially within transcriptionally active promoter regions. Although several thousand promoters are bound under physiological (low MYC) conditions, these represent only a fraction of all accessible, active promoters. MYC overexpression-as commonly observed in cancer cells-leads to invasion of virtually all active promoters, as well as of distal enhancer elements. We summarize here what is currently known about the mechanisms that may guide this process. We propose that binding site recognition is determined by low-affinity protein-protein interactions between MYC/MAX dimers and components of the basal transcriptional machinery, other chromatin-associated protein complexes, and/or DNA-bound transcription factors. DNA binding occurs subsequently, without an obligate requirement for sequence recognition. Local DNA scanning then leads to preferential stabilization of the MYC/MAX dimer on high-affinity DNA elements. This model is consistent with the invasion of all active promoters that occurs at elevated MYC levels, but posits that important differences in affinity persist between physiological target sites and the newly invaded elements, which may not all be bound in a productive regulatory mode. The implications of this model for transcriptional control by MYC in normal and cancer cells are discussed in the light of the latest literature.
Collapse
Affiliation(s)
- Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | | |
Collapse
|
5
|
Popovic M, Wienk H, Coglievina M, Boelens R, Pongor S, Pintar A. The basic helix-loop-helix region of the transcriptional repressor hairy and enhancer of split 1 is preorganized to bind DNA. Proteins 2014; 82:537-45. [DOI: 10.1002/prot.24507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Matija Popovic
- Protein Structure and Bioinformatics Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); AREA Science Park I-34149 Trieste Italy
| | - Hans Wienk
- Bijvoet Center for Biomolecular Research, Utrecht University; 3584 CH Utrecht the Netherlands
| | - Maristella Coglievina
- Protein Structure and Bioinformatics Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); AREA Science Park I-34149 Trieste Italy
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University; 3584 CH Utrecht the Netherlands
| | - Sándor Pongor
- Protein Structure and Bioinformatics Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); AREA Science Park I-34149 Trieste Italy
| | - Alessandro Pintar
- Protein Structure and Bioinformatics Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); AREA Science Park I-34149 Trieste Italy
| |
Collapse
|
6
|
De Jong AT. Effect of flanking bases on the DNA specificity of EmBP-1. Biochemistry 2013; 52:786-94. [PMID: 23305409 DOI: 10.1021/bi301404h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EmBP-1 is a basic region leucine zipper (bZIP) protein found in many types of plants. In general, plant bZIP proteins bind selectively to DNA sequences containing ACGT core sequences with different immediate flanking nucleotides preferred by different proteins. I report that the distant flanking sequence also has a strong effect on the preference of EmBP-1 for internal bases and determine the residue governing this effect. EmBP-1 binds selectively to the 10 bp gcG-box palindrome GCCACGTGGC 18-fold more tightly than the gcC-box GTGACGTCAC, but when the outer flanking G/C residues were changed to A/T (i.e., ACCACGTGGT and ATGACGTCAT), an only 1.2-fold preference for G-box binding was observed. Analysis of a series of single-residue alanine mutants of EmBP-1 revealed that this effect is mediated by arginine 10. Mutation of this residue to alanine greatly reduces the affinity for the gcG-box while leaving the affinity for other sequences relatively unchanged. Partial retention of G-box specificity upon mutation of R10 to lysine indicates that the effect is reliant on the basic nature of the residue. Additional studies with other EmBP-1 protein mutants and with oligonucleotides containing the T/A and C/G flanking sequences demonstrate the complexity of the protein-DNA interaction and demonstrate that the mechanism of sequence selective DNA binding is highly dependent on the flanking sequence.
Collapse
Affiliation(s)
- Antonia T De Jong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. J Mol Recognit 2012; 25:414-26. [PMID: 22733550 DOI: 10.1002/jmr.2203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
c-Myc must heterodimerize with Max to accomplish its functions as a transcription factor. This specific heterodimerization occurs through the b-HLH-LZ (basic region, helix 1-loop-helix 2-leucine zipper) domains. In fact, many studies have shown that the c-Myc b-HLH-LZ (c-Myc'SH) preferentially forms a heterodimer with the Max b-HLH-LZ (Max'SH). The primary mechanism underlying the specific heterodimerization lies on the destabilization of both homodimers and the formation of a more stable heterodimer. In this regard, it has been widely reported that c-Myc'SH has low solubility and homodimerizes poorly and that repulsions within the LZ domain account for the homodimer instability. Here, we show that replacing one residue in the basic region and one residue in Helix 1 (H(1)) of c-Myc'SH with corresponding residues conserved in b-HLH proteins confers to c-Myc'SH a higher propensity to form a stable homodimer in solution. In stark contrast to the wild-type protein, this double mutant (L362R, R367L) of the c-Myc b-HLH-LZ (c-Myc'RL) shows limited heterodimerization with Max'SH in vitro. In addition, c-Myc'RL forms highly stable and soluble complexes with canonical as well as non-canonical E-box probes. Altogether, our results demonstrate for the first time that structural determinants driving the specific heterodimerization of c-Myc and Max are embedded in the basic region and H(1) of c-Myc and that these can be exploited to engineer a novel homodimeric c-Myc b-HLH-LZ with the ability of binding the E-box sequence autonomously and with high affinity.
Collapse
Affiliation(s)
- Marie-Eve Beaulieu
- Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Ahmadpour F, Ghirlando R, De Jong AT, Gloyd M, Shin JA, Guarné A. Crystal structure of the minimalist Max-E47 protein chimera. PLoS One 2012; 7:e32136. [PMID: 22389683 PMCID: PMC3289634 DOI: 10.1371/journal.pone.0032136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.
Collapse
Affiliation(s)
- Faraz Ahmadpour
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Antonia T. De Jong
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Melanie Gloyd
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Ramakrishnan V, Jagannathan S, Shaikh AR, Rajagopalan R. Dynamic and Structural Changes in the Minimally Restructuring EcoRI Bound to a Minimally Mutated DNA Chain. J Biomol Struct Dyn 2012; 29:743-56. [DOI: 10.1080/073911012010525020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Chen G, De Jong AT, Shin JA. Forced homodimerization of the c-Fos leucine zipper in designed bHLHZ-like hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos. MOLECULAR BIOSYSTEMS 2012; 8:1286-96. [DOI: 10.1039/c2mb05354c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Ho MR, Lou YC, Wei SY, Luo SC, Lin WC, Lyu PC, Chen C. Human RegIV protein adopts a typical C-type lectin fold but binds mannan with two calcium-independent sites. J Mol Biol 2010; 402:682-95. [PMID: 20692269 DOI: 10.1016/j.jmb.2010.07.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 10/19/2022]
Abstract
Human RegIV protein, which contains a sequence motif homologous to calcium-dependent (C-type) lectin-like domain, is highly expressed in mucosa cells of the gastrointestinal tract during pathogen infection and carcinogenesis and may be applied in both diagnosis and treatment of gastric and colon cancers. Here, we provide evidence that, unlike other C-type lectins, human RegIV binds to polysaccharides, mannan, and heparin in the absence of calcium. To elucidate the structural basis for carbohydrate recognition by NMR, we generated the mutant with Pro91 replaced by Ser (hRegIV-P91S) and showed that the structural property and carbohydrate binding ability of hRegIV-P91S are almost identical with those of wild-type protein. The solution structure of hRegIV-P91S was determined, showing that it adopts a typical fold of C-type lectin. Based on the chemical shift perturbations of amide resonances, two calcium-independent mannan-binding sites were proposed. One site is similar to the calcium-independent sugar-binding site on human RegIII and Langerin. Interestingly, the other site is adjacent to the conserved calcium-dependent site at position Ca-2 of typical C-type lectins. Moreover, model-free analysis of (15)N relaxation parameters and simplified Carr-Purcell-Meiboom-Gill relaxation dispersion experiments showed that a slow microsecond-to-millisecond time-scale backbone motion is involved in mannan binding by this site, suggesting a potential role for specific carbohydrate recognition. Our findings shed light on the sugar-binding mode of Reg family proteins, and we postulate that Reg family proteins evolved to bind sugar without calcium to keep the carbohydrate recognition activity under low-pH environments in the gastrointestinal tract.
Collapse
Affiliation(s)
- Meng-Ru Ho
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen L, Lopes JM. Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. Yeast 2010; 27:345-59. [PMID: 20162531 DOI: 10.1002/yea.1757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The basic helix-loop-helix (bHLH) proteins comprise a eukaryotic transcription factor family involved in multiple biological processes. They have the ability to form multiple dimer combinations and most of them also bind a 6 bp site (E-box) with limited specificity. These properties make them ideal for combinatorial regulation of gene expression. The Saccharomyces cerevisiae CIT2 gene, which encodes citrate synthase, was previously known to be induced by the bHLH proteins Rtg1p and Rtg3p in response to mitochondrial damage. Rtg1p-Rtg3p dimers bind two R-boxes (modified E-boxes) in the CIT2 promoter. The current study tested the ability of all nine S. cerevisiae bHLH proteins to regulate the CIT2 gene. The results showed that expression of CIT2-lacZ reporter was induced in a rho(0) strain by the presence of inositol via the Ino2p and Ino4p bHLH proteins, which are known regulators of phospholipid synthesis. Promoter mutations revealed that inositol induction required a distal E-box in the CIT2 promoter. Interestingly, deleting the INO2, INO4 genes or the cognate E-box revealed phosphate induction of CIT2 expression. This layer of expression required the two R-boxes and the Pho4p bHLH protein, which is known to be required for phosphate-specific regulation. Lastly, the data show that the Hms1p and Sgc1p bHLH proteins also play important roles in repression of CIT2-lacZ expression. Collectively, these results support the model that yeast bHLH proteins coordinate different biological pathways.
Collapse
Affiliation(s)
- Linan Chen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
13
|
Ballin JD, Prevas JP, Ross CR, Toth EA, Wilson GM, Record MT. Contributions of the histidine side chain and the N-terminal alpha-amino group to the binding thermodynamics of oligopeptides to nucleic acids as a function of pH. Biochemistry 2010; 49:2018-30. [PMID: 20108951 DOI: 10.1021/bi902027z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interactions of histidine with nucleic acid phosphates and histidine pK(a) shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK ((+)NH(3)-His-Trp-Lys-Lys-NH(2)) and its lysine analogue KWKK ((+)NH(3)-Lys-Trp-Lys-Lys-NH(2)) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, K(obs), and magnitudes of log-log salt derivatives, SK(obs) identical with (partial differential logK(obs)/partial differential log[Na(+)]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and alpha-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same K(obs) and SK(obs) within uncertainty, and these SK(obs) values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pK(a) shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pK(a) shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the alpha-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific vs nonspecific nucleic acid binding.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
14
|
McDuff FO, Naud JF, Montagne M, Sauvé S, Lavigne P. The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis. J Mol Recognit 2009; 22:261-9. [PMID: 19189276 DOI: 10.1002/jmr.938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Specific heterodimerization plays a crucial role in the regulation of the biology of the cell. For example, the specific heterodimerization between the b-HLH-LZ transcription factors c-Myc and Max is a prerequisite for c-Myc transcriptional activity that leads to cell growth, proliferation and tumorigenesis. On the other hand, the Mad proteins can compete with c-Myc for Max. The Mad/Max heterodimer antagonizes the effect of the c-Myc/Max heterodimer. In this contribution, we have focused on the specific heterodimerization between the b-HLH-LZ domains of c-Myc and Max using CD and NMR. While the c-Myc and Max b-HLH-LZ domains are found to preferentially form a heterodimer; we demonstrate for the first time that a significant population of the Max homodimeric b-HLH-LZ can also form and hence interferes significantly with the specific heterodimerization. This indicates that the Max/Max homodimer can also interfere with c-Myc/Max functions, therefore adding to the complexity of the regulation of transcription by the Myc/Max/Mad network. The demonstration of the existence of the homodimeric population was made possible by the application of numerical routines that enable the simulation of composite spectroscopic signal (e.g. CD) as a function of temperature and total concentration of proteins. From a systems biology perspective, our routines may be of general interest as they offer the opportunity to treat many competing equilibriums in order to predict the probability of existence of protein complexes.
Collapse
Affiliation(s)
- François-Olivier McDuff
- Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
15
|
Spectral analysis of sequence variability in basic-helix-loop-helix (bHLH) protein domains. Evol Bioinform Online 2007; 2:187-96. [PMID: 19455213 PMCID: PMC2674655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors is used as a paradigm to explore structural implications of periodicity patterns in amino acid sequence variability. A Boltzmann-Shannon entropy profile represents site-by-site amino acid variation in the bHLH domain. Spectral analysis of almost 200 bHLH sequences documents the periodic nature of the bHLH sequence variation. Spectral analyses provide strong evidence that the patterns of amino acid variation in large numbers of sequences conform to the classical alpha-helix three-dimensional structure periodicity of 3.6 amino acids per turn. Multivariate indices of amino acid physiochemical attributes derived from almost 500 amino acid attributes are used to provide information regarding the underlying causal components of the bHLH sequence variability. Five multivariate attribute indices are used that reflect patterns in i) polarity - hydrophobicity - accessibility, ii) propensity for secondary structures, iii) molecular volume, iv) codon composition and v) electrostatic charge. Multiple regression analyses of the entropy values as dependent variables and the factor score means and variances as independent variables are used to partition variation in entropy values into their underlying causal structural components.
Collapse
|
16
|
Sauvé S, Naud JF, Lavigne P. The mechanism of discrimination between cognate and non-specific DNA by dimeric b/HLH/LZ transcription factors. J Mol Biol 2006; 365:1163-75. [PMID: 17109882 DOI: 10.1016/j.jmb.2006.10.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/21/2006] [Indexed: 12/27/2022]
Abstract
The Myc/Max/Mad proteins are basic region-helix-loop-helix-leucine zipper (b/HLH/LZ) transcription factors that regulate the transcription of numerous genes involved in cell growth and proliferation. The Max protein is the obligate heterodimeric partner of the Myc and Mad proteins. Heterodimerization and DNA binding to target gene promoters are mediated by the b/HLH/LZ domains. Max can also form a homodimeric b/HLH/LZ. The enhanced expression of Myc and binding to promoters of target genes contribute to almost every aspect of tumor biology. However, the detailed mechanism by which dimeric and heterodimeric b/HLH/LZs discriminate cognate DNA (E-Box: CACGTG) from non-specific sequences in the target gene promoters is still unknown. Here, we use the Max b/HLH/LZ homodimer as a model for this class of transcription factors in the characterization and understanding of the mechanism of discrimination between the E-Box and non-specific DNA sequences. We report the characterization of a cognate and a non-specific Max b/HLH/LZ/DNA complex by EMSA, CD and NMR. Our results support a detailed mechanism by which dimeric b/HLH/LZ transcription factors can discriminate E-Box sequences from non-specific DNA. The mechanism proceeds via the conformational selection of fitting b/HLH/LZ homodimers with the basic region only partially helical. Next, the basic region undergoes a DNA-assisted folding or induced-fit. It is this step that provides the discrimination by stabilizing and destabilizing the alpha-helical conformation of the basic region in the cognate and non-specific complexes, respectively. This leads to a low affinity complex with a higher probability of being dissociated and hence to discrimination. A description of the side-chains and nucleotides proposed to be involved in the discrimination process is provided.
Collapse
Affiliation(s)
- Simon Sauvé
- Département de Pharmacologie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Qc, Canada J1H 5N4
| | | | | |
Collapse
|
17
|
Abstract
We wish to understand the role of electrostatics in DNA stiffness and bending. The DNA charge collapse model suggests that mutual electrostatic repulsions between neighboring phosphates significantly contribute to DNA stiffness. According to this model, placement of fixed charges near the negatively charged DNA surface should induce bending through asymmetric reduction or enhancement of these inter-phosphate repulsive forces. We have reported previously that charged variants of the elongated basic-leucine zipper (bZIP) domain of Gcn4p bend DNA in a manner consistent with this charge collapse model. To extend this result to a more globular protein, we present an investigation of the dimeric basic-helix–loop–helix (bHLH) domain of Pho4p. The 62 amino acid bHLH domain has been modified to position charged amino acid residues near one face of the DNA double helix. As observed for bZIP charge variants, DNA bending toward appended cations (away from the protein:DNA interface) is observed. However, unlike bZIP proteins, DNA is not bent away from bHLH anionic charges. This finding can be explained by the structure of the more globular bHLH domain which, in contrast to bZIP proteins, makes extensive DNA contacts along the binding face.
Collapse
Affiliation(s)
- Robert J. McDonald
- Medical Scientist Training Program, Mayo Clinic College of MedicineRochester, MN 55905, USA
| | - Jason D. Kahn
- Medical Scientist Training Program, Mayo Clinic College of MedicineRochester, MN 55905, USA
| | - L. James Maher
- Department of Chemistry and Biochemistry, University of MarylandCollege Park, MD 20742-2021, USA
- To whom correspondence should be addressed. Tel: +1 507 284 9041; Fax: +1 507 284 2053;
| |
Collapse
|
18
|
Hu J, Banerjee A, Goss DJ. Assembly of b/HLH/z proteins c-Myc, Max, and Mad1 with cognate DNA: importance of protein-protein and protein-DNA interactions. Biochemistry 2005; 44:11855-63. [PMID: 16128587 PMCID: PMC3225066 DOI: 10.1021/bi050206i] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the best characterized of the transcription factors are the b/HLH/z proteins: USF, Max, Myc, and Mad. These proteins bind to the DNA E-box, a six base pair sequence, CACGTG. Max and Myc form a heterodimer that has strong oncogenic potential but can also repress transcription, while Mad and Max form a heterodimer that acts as a transcription repressor. We have used fluorescence anisotropy to measure protein-protein and protein-DNA affinity. The specific binding between MLP DNA and Max (K = 2.2 +/- 0.5 nM) is about 10-fold higher affinity than LCR DNA and about 100-fold higher than for a nonspecific DNA. USF has a similar binding affinity as Max to MLP DNA (K = 15 +/- 10 nM), but Max binds more tightly to LCR and nonspecific DNA. A series of oligonucleotides designated E-box, half-E-box, and non-E-box were constructed to examine the effects of DNA sequence. The binding results indicate that for Max protein most of the binding energy can be attributed to individual elements with little cooperativity among the two halves of the E-box. Further studies measured the equilibria for the entire thermodynamic cycle of monomer-dimer-DNA interactions. Surprisingly, the affinity of the Max monomer-DNA for the second monomer was greatly reduced (K for the first monomer in the nanomolar range and for the second monomer in the micromolar range). Looked at from the perspective of the Max protein, the binding of DNA to Max significantly reduces the affinity of the Max protein for the second monomer, whether the second monomer is Myc, Mad, or Max. These data suggest the importance of protein-protein interactions in assembly of a transcription initiation complex.
Collapse
Affiliation(s)
| | | | - Dixie J. Goss
- To whom correspondence should be addressed: Department of Chemistry, Hunter College of CUNY 695 Park Ave, New York, NY 10021 Tel: 212-772-5383; Fax: 212-772-5332;
| |
Collapse
|
19
|
Sauvé S, Tremblay L, Lavigne P. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. J Mol Biol 2004; 342:813-32. [PMID: 15342239 DOI: 10.1016/j.jmb.2004.07.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/15/2004] [Accepted: 07/08/2004] [Indexed: 11/21/2022]
Abstract
Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.
Collapse
Affiliation(s)
- Simon Sauvé
- Département de Pharmacologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | |
Collapse
|
20
|
Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 2003; 43:225-44. [PMID: 12740714 DOI: 10.1007/s00294-003-0400-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2003] [Revised: 04/05/2003] [Accepted: 04/08/2003] [Indexed: 01/08/2023]
Abstract
Membrane transport systems active in cellular inorganic phosphate (P(i)) acquisition play a key role in maintaining cellular P(i) homeostasis, independent of whether the cell is a unicellular microorganism or is contained in the tissue of a higher eukaryotic organism. Since unicellular eukaryotes such as yeast interact directly with the nutritious environment, regulation of P(i) transport is maintained solely by transduction of nutrient signals across the plasma membrane. The individual yeast cell thus recognizes nutrients that can act as both signals and sustenance. The present review provides an overview of P(i) acquisition via the plasma membrane P(i) transporters of Saccharomyces cerevisiae and the regulation of internal P(i) stores under the prevailing P(i) status.
Collapse
Affiliation(s)
- Bengt L Persson
- Department of Chemistry and Biomedical Science, Kalmar University, P.O. Box 905, 39182, Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Norberg J. Association of protein-DNA recognition complexes: electrostatic and nonelectrostatic effects. Arch Biochem Biophys 2003; 410:48-68. [PMID: 12559976 DOI: 10.1016/s0003-9861(02)00660-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study the electrostatic and nonelectrostatic contributions to the binding free energy of a number of different protein-DNA recognition complexes are investigated. To determine the electrostatic effects in the protein-DNA association the Poisson-Boltzmann approach was applied. Overall the salt-dependent electrostatic free energy opposed binding in all protein-DNA complexes except one, and the salt-independent electrostatic contribution favored binding in more than half of the complexes. Further the salt-dependent electrostatic free energy increased with higher ionic concentrations and therefore complex association is stronger opposed at higher ionic concentrations. The hydrophobic effect in the protein-DNA complexes was determined from the buried accessible surface area and the surface tension. A majority of the complexes showed more polar than nonpolar buried accessible surface area. Interestingly the buried DNA-accessible surface area was preferentially hydrophilic, only in one complex a slightly more hydrophobic buried accessible surface area was observed. A quite sophisticated balance between several different free energy components seems to be responsible for determining the free energy of binding in protein-DNA systems.
Collapse
Affiliation(s)
- Jan Norberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168 St., New York, NY 10032, USA.
| |
Collapse
|
22
|
Bhattacharya S, Botuyan MV, Hsu F, Shan X, Arunkumar AI, Arrowsmith CH, Edwards AM, Chazin WJ. Characterization of binding-induced changes in dynamics suggests a model for sequence-nonspecific binding of ssDNA by replication protein A. Protein Sci 2002; 11:2316-25. [PMID: 12237454 PMCID: PMC2373701 DOI: 10.1110/ps.0209202] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-stranded-DNA-binding proteins (SSBs) are required for numerous genetic processes ranging from DNA synthesis to the repair of DNA damage, each of which requires binding with high affinity to ssDNA of variable base composition. To gain insight into the mechanism of sequence-nonspecific binding of ssDNA, NMR chemical shift and (15)N relaxation experiments were performed on an isolated ssDNA-binding domain (RPA70A) from the human SSB replication protein A. The backbone (13)C, (15)N, and (1)H resonances of RPA70A were assigned for the free protein and the d-CTTCA complex. The binding-induced changes in backbone chemical shifts were used to map out the ssDNA-binding site. Comparison to results obtained for the complex with d-C(5) showed that the basic mode of binding is independent of the ssDNA sequence, but that there are differences in the binding surfaces. Amide nitrogen relaxation rates (R(1) and R(2)) and (1)H-(15)N NOE values were measured for RPA70A in the absence and presence of d-CTTCA. Analysis of the data using the Model-Free formalism and spectral density mapping approaches showed that the structural changes in the binding site are accompanied by some significant changes in flexibility of the primary DNA-binding loops on multiple timescales. On the basis of these results and comparisons to related proteins, we propose that the mechanism of sequence-nonspecific binding of ssDNA involves dynamic remodeling of the binding surface.
Collapse
Affiliation(s)
- Shibani Bhattacharya
- Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|