1
|
Onisuru OR, Ilunga AK, Potgieter K, Oseghale CO, Meijboom R. Colloidal metal nanocatalysts to advance orange II hydrogenolysis tracked by a microplate reader. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractThe thermal reduction method was applied to synthesize metal nanoparticles using poly(1-vinyl-2-pyrrolidone) as an organic stabilizer to control metal nanoparticle agglomeration. Colloidal metal nanoparticles, gold, palladium, and gold–palladium nanoparticles were synthesized, and UV–visible spectrophotometry and high-resolution transmission electron microscopy analyses were conducted to characterize them. The metal nanoparticle micrographs showed well-dispersed particles with an average size of 9.6 nm (Au), 15.4 nm (Pd), and 10.6 nm (AuPd). All the colloidal metal nanoparticles served as nanocatalysts to advance a reductive degradation of orange II in presence of borohydride ions. For a prompt screening of catalytic activity, the microplate reader system was considered at a fixed maximum absorbance wavelength of λ 489 nm respected by orange II. Excess borohydride ions were used to construct pseudo-first kinetic conditions. The Langmuir–Hinshelwood model allowed the finding of kinetic activity on the surface of metal nanoparticles. AuPd nanocatalyst interface exhibited low activation energy (5.38 kJ mol−1) compared to the one on Au (8.19 kJ mol−1) and Pd (7.23 kJ mol−1).
Graphical Abstract
Collapse
|
2
|
Yoo H, Davis CM. An in vitro cytomimetic of in-cell RNA folding. Chembiochem 2022; 23:e202200406. [PMID: 35999178 DOI: 10.1002/cbic.202200406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 11/07/2022]
Abstract
To discover the cytomimetic that accounts for cytoplasmic crowding and sticking on RNA stability, we conducted a two-dimensional scan of mixtures of artificial crowding and sticking agents, PEG10k and M-PERTM. As our model RNA, we investigate the fourU RNA thermometer motif of Salmonella, a hairpin-structured RNA that regulates translation by unfolding and exposing its RBS in response to temperature perturbations. We found that the addition of artificial crowding and sticking agents leads to a stabilization and destabilization of RNA folding, respectively, through the excluded volume effect and surface interactions. FRET-labels were added to the fourU RNA and Fast Relaxation Imaging (FReI), fluorescence microscopy coupled to temperature-jump spectroscopy, probed differences between folding stability of RNA inside single living cells and in vitro. Our results suggest that the cytoplasmic environment affecting RNA folding is comparable to a combination of 20% v/v M-PERTM and 150 g/L PEG10k.
Collapse
Affiliation(s)
- Hyejin Yoo
- Yale University, Chemistry, 225 Prospect St, 06511, New Haven, UNITED STATES
| | - Caitlin M Davis
- Yale University, Chemistry, 225 Prospect St., 06511, New Haven, UNITED STATES
| |
Collapse
|
3
|
Khrapunov S, Waterman A, Persaud R, Chang EP. Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Biochemistry 2021; 60:3582-3595. [PMID: 34747601 DOI: 10.1021/acs.biochem.1c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Temperature adaptation is ubiquitous among all living organisms, yet the molecular basis for this process remains poorly understood. It can be assumed that for parasite-host systems, the same enzymes found in both organisms respond to the same selection factor (human body temperature) with similar structural changes. Herein, we report the existence of a reversible temperature-dependent structural transition for the glycolytic enzyme lactate dehydrogenase (LDH) from the malaria parasite Plasmodium falciparum (pfLDH) and human heart (hhLDH) occurring in the temperature range of human fever. This transition is observed for LDHs from psychrophiles, mesophiles, and moderate thermophiles in their operating temperature range. Thermodynamic analysis reveals unique thermodynamic signatures of the LDH-substrate complexes defining a specific temperature range to which human LDH is adapted and parasite LDH is not, despite their common mesophilic nature. The results of spectroscopic analysis combined with the available crystallographic data reveal the existence of an active center within pfLDH that imparts psychrophilic structural properties to the enzyme. This center consists of two pockets, one formed by the five amino acids (5AA insert) within the substrate specificity loop and the other by the active site, that mutually regulate one another in response to temperature and induce structural and functional changes in the Michaelis complex. Our findings pave the way toward a new strategy for malaria treatments and drug design using therapeutic agents that inactivate malarial LDH selectively at a specific temperature range of the cyclic malaria paroxysm.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Akiba Waterman
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Rudra Persaud
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| |
Collapse
|
4
|
POT1 stability and binding measured by fluorescence thermal shift assays. PLoS One 2021; 16:e0245675. [PMID: 33784306 PMCID: PMC8009405 DOI: 10.1371/journal.pone.0245675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
The protein POT1 (Protection of Telomeres 1) is an integral part of the shelterin complex that protects the ends of human chromosomes from degradation or end fusions. It is the only component of shelterin that binds single-stranded DNA. We describe here the application of two separate fluorescent thermal shift assays (FTSA) that provide quantitative biophysical characterization of POT1 stability and its interactions. The first assay uses Sypro Orange™ and monitors the thermal stability of POT1 and its binding under a variety of conditions. This assay is useful for the quality control of POT1 preparations, for biophysical characterization of its DNA binding and, potentially, as an efficient screening tool for binding of small molecule drug candidates. The second assay uses a FRET-labeled human telomeric G-quadruplex structure that reveals the effects of POT1 binding on thermal stability from the DNA frame of reference. These complementary assays provide efficient biophysical approaches for the quantitative characterization of multiple aspects of POT1 structure and function. The results from these assays provide thermodynamics details of POT1 folding, the sequence selectivity of its DNA binding and the thermodynamic profile for its binding to its preferred DNA binding sequence. Most significantly, results from these assays elucidate two mechanisms for the inhibition of POT1 -DNA interactions. The first is by competitive inhibition at the POT1 DNA binding site. The second is indirect and is by stabilization of G-quadruplex formation within the normal POT1 single-stranded DNA sequence to prevent POT1 binding.
Collapse
|
5
|
Niu X, Menhart N. Structural Perturbations of Exon-Skipping Edits within the Dystrophin D20:24 Region. Biochemistry 2021; 60:765-779. [PMID: 33656846 DOI: 10.1021/acs.biochem.0c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exon skipping is a disease-modifying therapy in which oligonucleotide analogues mask specific exons, eliminating them from the mature mRNA, and also the cognate protein. That is one possible therapeutic aim, but it can also be used to restore the reading frame for diseases caused by frameshift mutations, which is the case for Duchenne muscular dystrophy (DMD). DMD most commonly arises as a result of large exonic deletions that create a frameshift and abolish protein expression. Loss of dystrophin protein leads to the pathology of the disease, which is severe, causing death generally in the second or third decade of life. Here, the primary aim of exon skipping is restoration of protein expression by reading frame correction. However, the therapeutically expressed protein is missing both the region of the underlying genetic defect and the therapeutically skipped exon. How removing some region from the middle of a protein affects its structure and function is unclear. Many different underlying deletions are known, and exon skipping can be applied in many ways, in some cases in different ways to the same defect. These vary in how severely perturbative they are, with possible clinical consequences. In this study, we examine a systematic, comprehensive panel of exon edits in a region of dystrophin and identify for the first time exon edits that are minimally perturbed and appear to keep the structural stability similar to that of wild-type protein. We also identify factors that appear to be correlated with how perturbative an edit is.
Collapse
Affiliation(s)
- Xin Niu
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Nick Menhart
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
6
|
Experimental investigation of uranium extraction from the industrial nuclear waste treatment plant by tri-butyl-phosphate. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07607-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Alanine to serine substitutions drive thermal adaptation in a psychrophilic diatom cytochrome c 6. J Biol Inorg Chem 2020; 25:489-500. [PMID: 32219554 DOI: 10.1007/s00775-020-01777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
In this study, we investigate the thermodynamic mechanisms by which electron transfer proteins adapt to environmental temperature by directly comparing the redox properties and folding stability of a psychrophilic cytochrome c and a mesophilic homolog. Our model system consists of two cytochrome c6 proteins from diatoms: one adapted specifically to polar environments, the other adapted generally to surface ocean environments. Direct electrochemistry shows that the midpoint potential for the mesophilic homolog is slightly higher at all temperatures measured. Cytochrome c6 from the psychrophilic diatom unfolds with a melting temperature 10.4 °C lower than the homologous mesophilic cytochrome c6. Changes in free energy upon unfolding are identical, within error, for the psychrophilic and mesophilic protein; however, the chemical unfolding transition of the psychrophilic cytochrome c6 is more cooperative than for the mesophilic cytochrome c6. Substituting alanine residues found in the mesophile with serine found in corresponding positions of the psychrophile demonstrates that burial of the polar serine both decreases the thermal stability and decreases the midpoint potential. The mutagenesis data, combined with differences in the m-value of chemical denaturation, suggest that differences in solvent accessibility of the hydrophobic core underlie the adaptation of cytochrome c6 to differing environmental temperature.
Collapse
|
8
|
Cote JM, Hecht CJS, Patel KR, Ramirez-Mondragon CA, Sham YY, Taylor EA. Opposites Attract: Escherichia coli Heptosyltransferase I Conformational Changes Induced by Interactions between the Substrate and Positively Charged Residues. Biochemistry 2020; 59:3135-3147. [PMID: 32011131 DOI: 10.1021/acs.biochem.9b01005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gram-negative bacterial viability is greatly reduced by the disruption of heptose sugar addition during the biosynthesis of lipopolysaccharide (LPS), an important bacterial outer membrane component. Heptosyltransferase I (HepI), a member of the GT-B structural subclass of glycosyltransferases, is therefore an essential enzyme for the biosynthesis of the LPS. The disruption of HepI also increases the susceptibility of bacteria to hydrophobic antibiotics, making HepI a potential target for drug development. In this work, the structural and dynamic properties of the catalytic cycle of HepI are explored. Previously, substrate-induced stabilization of HepI was observed and hypothesized to be assisted by interactions between the substrate and residues located on dynamic loops. Herein, positively charged amino acids were probed to identify binding partners of the negatively charged phosphates and carboxylates of Kdo2-lipid A and its analogues. Mutant enzymes were characterized to explore changes in enzymatic activities and protein stability. Molecular modeling of HepI in the presence and absence of ligands was then performed with the wild type and mutant enzyme to allow determination of the relative change in substrate binding affinity resulting from each mutation. Together, these studies suggest that multiple residues are involved in mediating substrate binding, and a lack of additivity of these effects illustrates the functional redundancy of these binding interactions. The redundancy of residues mediating conformational transitions in HepI illustrates the evolutionary importance of these structural rearrangements for catalysis. This work enhances the understanding of HepI's protein dynamics and mechanism and is a model for improving our understanding of glycosyltransferase enzymes.
Collapse
Affiliation(s)
- Joy M Cote
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Cody J S Hecht
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Kaelan R Patel
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlos A Ramirez-Mondragon
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erika A Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
9
|
Scheerer D, Chi H, McElheny D, Keiderling TA, Hauser K. Enhanced Sensitivity to Local Dynamics in Peptides by Use of Temperature-Jump IR Spectroscopy and Isotope Labeling. Chemistry 2020; 26:3524-3534. [PMID: 31782580 PMCID: PMC7155074 DOI: 10.1002/chem.201904497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/12/2022]
Abstract
Site-specific isotopic labeling of molecules is a widely used approach in IR spectroscopy to resolve local contributions to vibrational modes. The induced frequency shift of the corresponding IR band depends on the substituted masses, as well as on hydrogen bonding and vibrational coupling. The impact of these different factors was analyzed with a designed three-stranded β-sheet peptide and by use of selected 13 C isotope substitutions at multiple positions in the peptide backbone. Single-strand labels give rise to isotopically shifted bands at different frequencies, depending on the specific sites; this demonstrates sensitivity to the local environment. Cross-strand double- and triple-labeled peptides exhibited two resolved bands that could be uniquely assigned to specific residues, the equilibrium IR spectra of which indicated only weak local-mode coupling. Temperature-jump IR laser spectroscopy was applied to monitor structural dynamics and revealed an impressive enhancement of the isotope sensitivity to both local positions and coupling between them, relative to that of equilibrium FTIR spectroscopy. Site-specific relaxation rates were altered upon the introduction of additional cross-strand isotopes. Likewise, the rates for the global β-sheet dynamics were affected in a manner dependent on the distinct relaxation behavior of the labeled oscillator. This study reveals that isotope labels provide not only local structural probes, but rather sense the dynamic complexity of the molecular environment.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Heng Chi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Jiangsu Food and Pharmaceutical Science College, Huai'an, P.R. China
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
10
|
Allert MJ, Hellinga HW. Describing Complex Structure-Function Relationships in Biomolecules at Equilibrium. J Mol Biol 2020; 432:1926-1951. [PMID: 31940471 DOI: 10.1016/j.jmb.2019.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022]
Abstract
One of the great ambitions of structural biology is to describe structure-function relationships quantitatively. Statistical thermodynamics is a powerful, general tool for computing the behavior of biological macromolecules at equilibrium because it establishes a direct link between structure and function. Complex behavior emerges as equilibria of multiple reactions are coupled. Analytical treatment of linked equilibria scales poorly with increasing numbers of reactions and states as the algebraic constructs rapidly become unwieldy. We therefore developed a generalizable, but straightforward computational method to handle arbitrarily complex systems. To demonstrate this approach, we collected a multidimensional fluorescence landscape of an engineered fluorescent glucose biosensor and showed that its features could be modeled with ten intricately linked ligand-binding and conformational exchange reactions. This protein represents a minimalist model of sufficient complexity to encompass fundamental biomolecular structure-function relationships: two-state and multistate conformational ensembles, conformational hierarchies, osmolytes, coupling between different binding sites and coupling between ligand binding and conformational change. The successful fit of this complex, multifaceted system demonstrates generality of the method.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC, 27710, USA
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Ma KM, Thomas ES, Wereszczynski J, Menhart N. Empirical and Computational Comparison of Alternative Therapeutic Exon Skip Repairs for Duchenne Muscular Dystrophy. Biochemistry 2019; 58:2061-2076. [PMID: 30896926 DOI: 10.1021/acs.biochem.9b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common and devastating genetic disease primarily caused by exon deletions that create a genetic frameshift in dystrophin. Exon skipping therapy seeks to correct this by masking an exon during the mRNA maturation process, restoring dystrophin expression, but creating an edited protein missing both the original defect and the therapeutically skipped region. Crucially, it is possible to correct many defects in alternative ways, by skipping an exon either before or after the patient's defect. This results in alternatively edited, hybrid proteins that might have different properties and therapeutic consequences. We examined three such dystrophin exon-skipped edits, Δe45-53, Δe46-54, and Δe47-55, comprising two pairs of alternative repairs of Δe46-53 and Δe47-54 DMD defects. We found that in both cases, Δe46-54 was the more stable repair as determined by a variety of thermodynamic and biochemical measurements. We also examined the origin of these differences with molecular dynamics simulations, which showed that these stability differences were the result of different types of structural perturbations. For example, in one edit there was partial unfolding at the edit site that caused domain-localized perturbations while in another there was unfolding at the protein domain junctions distal to the edit site that increased molecular flexibility. These results demonstrate that alternative exon skip repairs of the same underlying defect can have very different consequences at the level of protein structure and stability and furthermore that these can arise by different mechanisms, either locally or by more subtle long-range perturbations.
Collapse
|
12
|
Quantifying protein dynamics and stability in a living organism. Nat Commun 2019; 10:1179. [PMID: 30862837 PMCID: PMC6414637 DOI: 10.1038/s41467-019-09088-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/08/2019] [Indexed: 11/09/2022] Open
Abstract
As an integral part of modern cell biology, fluorescence microscopy enables quantification of the stability and dynamics of fluorescence-labeled biomolecules inside cultured cells. However, obtaining time-resolved data from individual cells within a live vertebrate organism remains challenging. Here we demonstrate a customized pipeline that integrates meganuclease-mediated mosaic transformation with fluorescence-detected temperature-jump microscopy to probe dynamics and stability of endogenously expressed proteins in different tissues of living multicellular organisms.
Collapse
|
13
|
Moon S, Kim J, Koo J, Bae E. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:024702. [PMID: 31111079 PMCID: PMC6498869 DOI: 10.1063/1.5089707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Protein thermal stability is an important field since thermally stable proteins are desirable in many academic and industrial settings. Information on protein thermal stabilization can be obtained by comparing homologous proteins from organisms living at distinct temperatures. Here, we report structural and mutational analyses of adenylate kinases (AKs) from psychrophilic Bacillus globisporus (AKp) and mesophilic Bacillus subtilis (AKm). Sequence and structural comparison showed suboptimal hydrophobic packing around Thr26 in the CORE domain of AKp, which was replaced with an Ile residue in AKm. Mutations that improved hydrophobicity of the Thr residue increased the thermal stability of the psychrophilic AKp, and the largest stabilization was observed for a Thr-to-Ile substitution. Furthermore, a reverse Ile-to-Thr mutation in the mesophilic AKm significantly decreased thermal stability. We determined the crystal structures of mutant AKs to confirm the impact of the residue substitutions on the overall stability. Taken together, our results provide a structural basis for the stability difference between psychrophilic and mesophilic AK homologues and highlight the role of hydrophobic interactions in protein thermal stability.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Euiyoung Bae
- Author to whom correspondence should be addressed:. Telephone: +82-2-880-4648. Fax: +82-2-873-3112
| |
Collapse
|
14
|
Wang C, Aleksandrov AA, Yang Z, Forouhar F, Proctor EA, Kota P, An J, Kaplan A, Khazanov N, Boël G, Stockwell BR, Senderowitz H, Dokholyan NV, Riordan JR, Brouillette CG, Hunt JF. Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. J Biol Chem 2018; 293:17685-17704. [PMID: 29903914 PMCID: PMC6240863 DOI: 10.1074/jbc.ra117.000819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.
Collapse
Affiliation(s)
- Chi Wang
- From the Departments of Biological Sciences and
| | - Andrei A. Aleksandrov
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Zhengrong Yang
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | | | - Elizabeth A. Proctor
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pradeep Kota
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jianli An
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | - Anna Kaplan
- From the Departments of Biological Sciences and
| | - Netaly Khazanov
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Brent R. Stockwell
- From the Departments of Biological Sciences and ,Chemistry, Columbia University, New York, New York 10027
| | - Hanoch Senderowitz
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nikolay V. Dokholyan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John R. Riordan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - John F. Hunt
- From the Departments of Biological Sciences and , To whom correspondence should be addressed. Tel.:
212-854-5443; Fax:
212-865-8246; E-mail:
| |
Collapse
|
15
|
Seo D, Asano T. C-terminal residues of ferredoxin-NAD(P) + reductase from Chlorobaculum tepidum are responsible for reaction dynamics in the hydride transfer and redox equilibria with NADP +/NADPH. PHOTOSYNTHESIS RESEARCH 2018; 136:275-290. [PMID: 29119426 DOI: 10.1007/s11120-017-0462-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Ferredoxin-NAD(P)+ reductase ([EC 1.18.1.2], [EC 1.18.1.3]) from Chlorobaculum tepidum (CtFNR) is structurally homologous to the bacterial NADPH-thioredoxin reductase (TrxR), but possesses a unique C-terminal extension relative to TrxR that interacts with the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group. In this study, we introduce truncations to the C-terminal residues to examine their role in the reactions of CtFNR with NADP+ and NADPH by spectroscopic and kinetic analyses. The truncation of the residues from Tyr326 to Glu360 (the whole C-terminal extension region), from Phe337 to Glu360 (omitting Phe337 on the re-face of the isoalloxazine ring) and from Ser338 to Glu360 (leaving Phe337 intact) resulted in a blue-shift of the flavin absorption bands. The truncations caused a slight increase in the dissociation constant toward NADP+ and a slight decrease in the Michaelis constant toward NADPH in steady-state assays. Pre-steady-state studies of the redox reaction with NADPH demonstrated that deletions of Tyr326-Glu360 decreased the hydride transfer rate, and the amount of reduced enzyme increased at equilibrium relative to wild-type CtFNR. In contrast, the deletions of Phe337-Glu360 and Ser338-Glu360 resulted in only slight changes in the reaction kinetics and redox equilibrium. These results suggest that the C-terminal region of CtFNR is responsible for the formation and stability of charge-transfer complexes, leading to changes in redox properties and reactivity toward NADP+/NADPH.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi 13-1, Kanazawa, Ishikawa, 920-0934, Japan
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan
| |
Collapse
|
16
|
Caparco AA, Bommarius AS, Champion JA. Effect of peptide linker length and composition on immobilization and catalysis of leucine zipper‐enzyme fusion proteins. AIChE J 2018. [DOI: 10.1002/aic.16150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adam A. Caparco
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| |
Collapse
|
17
|
Mazal H, Aviram H, Riven I, Haran G. Effect of ligand binding on a protein with a complex folding landscape. Phys Chem Chem Phys 2018; 20:3054-3062. [PMID: 28721412 DOI: 10.1039/c7cp03327c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ligand binding to a protein can stabilize it significantly against unfolding. The variation of the folding free energy, ΔΔG0, due to ligand binding can be derived from a simple reaction scheme involving exclusive binding to the native state. One obtains the following expression: , where Kd is the ligand dissociation constant and L is its concentration, R is the universal gas constant and T is the temperature. This expression has been shown to correctly describe experimental results on multiple proteins. In the current work we studied the effect of ligand binding on the stability of the multi-domain protein adenylate kinase from E. coli (AKE). Unfolding experiments were conducted using single-molecule FRET spectroscopy, which allowed us to directly obtain the fraction of unfolded protein in a model-free way from FRET efficiency histograms. Surprisingly, it was found that the effect of two inhibitors (Ap5A and AMPPNP) and a substrate (AMP) on the stability of AKE was much smaller than expected based on Kd values obtained independently using microscale thermophoresis. To shed light on this issue, we measured the Kd for Ap5A over a range of chemical denaturant concentrations where the protein is still folded. It was found that Kd increases dramatically over this range, likely due to the population of folding intermediates, whose binding to the ligand is much weaker than that of the native state. We propose that binding to folding intermediates may dominate the effect of ligands on the stability of multi-domain proteins, and could therefore have a strong impact on protein homeostasis in vivo.
Collapse
Affiliation(s)
- Hisham Mazal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | |
Collapse
|
18
|
Moon S, Kim J, Bae E. Structural analyses of adenylate kinases from Antarctic and tropical fishes for understanding cold adaptation of enzymes. Sci Rep 2017; 7:16027. [PMID: 29167503 PMCID: PMC5700098 DOI: 10.1038/s41598-017-16266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Psychrophiles are extremophilic organisms capable of thriving in cold environments. Proteins from these cold-adapted organisms can remain physiologically functional at low temperatures, but are structurally unstable even at moderate temperatures. Here, we report the crystal structure of adenylate kinase (AK) from the Antarctic fish Notothenia coriiceps, and identify the structural basis of cold adaptation by comparison with homologues from tropical fishes including Danio rerio. The structure of N. coriiceps AK (AKNc) revealed suboptimal hydrophobic packing around three Val residues in its central CORE domain, which are replaced with Ile residues in D. rerio AK (AKDr). The Val-to-Ile mutations that improve hydrophobic CORE packing in AKNc increased stability at high temperatures but decreased activity at low temperatures, suggesting that the suboptimal hydrophobic CORE packing is important for cold adaptation. Such linkage between stability and activity was also observed in AKDr. Ile-to-Val mutations that destabilized the tropical AK resulted in increased activity at low temperatures. Our results provide the structural basis of cold adaptation of a psychrophilic enzyme from a multicellular, eukaryotic organism, and highlight the similarities and differences in the structural adjustment of vertebrate and bacterial psychrophilic AKs during cold adaptation.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- iNtRON Biotechnology, Inc., Seongnam, 13202, Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
19
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
20
|
Ilunga AK, Khoza T, Tjabadi E, Meijboom R. Effective Catalytic Reduction of Methyl Orange Catalyzed by the Encapsulated Random Alloy Palladium-Gold Nanoparticles Dendrimer. ChemistrySelect 2017. [DOI: 10.1002/slct.201701631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ali K. Ilunga
- Department of Chemistry; University of Johannesburg, PO Box; 524 Auckland Park 2006 Johannesburg South Africa
| | - Thembisile Khoza
- Department of Biochemistry; University of Johannesburg, PO Box; 524, Auckland Park 2006 Johannesburg South Africa
| | - Evah Tjabadi
- Department of Chemistry; University of Johannesburg, PO Box; 524 Auckland Park 2006 Johannesburg South Africa
| | - Reinout Meijboom
- Department of Chemistry; University of Johannesburg, PO Box; 524 Auckland Park 2006 Johannesburg South Africa
| |
Collapse
|
21
|
Ayed SH, Cloutier AD, McLeod LJ, Foo ACY, Damry AM, Goto NK. Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity. J Biol Chem 2017; 292:20732-20743. [PMID: 29066619 DOI: 10.1074/jbc.m117.805945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/15/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial cell division regulators MinD and MinE together with the division inhibitor MinC localize to the membrane in concentrated zones undergoing coordinated pole-to-pole oscillation to help ensure that the cytokinetic division septum forms only at the mid-cell position. This dynamic localization is driven by MinD-catalyzed ATP hydrolysis, stimulated by interactions with MinE's anti-MinCD domain. This domain is buried in the 6-β-stranded MinE "closed" structure, but is liberated for interactions with MinD, giving rise to a 4-β-stranded "open" structure through an unknown mechanism. Here we show that MinE-membrane interactions induce a structural change into a state resembling the open conformation. However, MinE mutants lacking the MinE membrane-targeting sequence stimulated higher ATP hydrolysis rates than the full-length protein, indicating that binding to MinD is sufficient to trigger this conformational transition in MinE. In contrast, conformational change between the open and closed states did not affect stimulation of ATP hydrolysis rates in the absence of membrane binding, although the MinD-binding residue Ile-25 is critical for this conformational transition. We therefore propose an updated model where MinE is brought to the membrane through interactions with MinD. After stimulation of ATP hydrolysis, MinE remains bound to the membrane in a state that does not catalyze additional rounds of ATP hydrolysis. Although the molecular basis for this inhibited state is unknown, previous observations of higher-order MinE self-association may explain this inhibition. Overall, our findings have general implications for Min protein oscillation cycles, including those that regulate cell division in bacterial pathogens.
Collapse
Affiliation(s)
- Saud H Ayed
- From the Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Adam D Cloutier
- From the Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Laura J McLeod
- From the Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alexander C Y Foo
- From the Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Adam M Damry
- From the Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Natalie K Goto
- From the Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
22
|
Malik A, Alsenaidy MA. MERS-CoV papain-like protease (PL pro): expression, purification, and spectroscopic/thermodynamic characterization. 3 Biotech 2017; 7:100. [PMID: 28560640 PMCID: PMC5449288 DOI: 10.1007/s13205-017-0744-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Within a decade, MERS-CoV emerged with nearly four times higher case fatality rate than an earlier outbreak of SARS-CoV and spread out in 27 countries in short span of time. As an emerging virus, combating it requires an in-depth understanding of its molecular machinery. Therefore, conformational characterization studies of coronavirus proteins are necessary to advance our knowledge of the matter for the development of antiviral therapies. In this study, MERS-CoV papain-like protease (PLpro) was recombinantly expressed and purified. Thermal folding pathway and thermodynamic properties were characterized using dynamic multimode spectroscopy (DMS) and thermal shift assay. DMS study showed that the PLpro undergoes a single thermal transition and follows a pathway of two-state folding with Tm and van’t Hoff enthalpy values of 54.4 ± 0.1 °C and 317.1 ± 3.9 kJ/mol, respectively. An orthogonal technique based on intrinsic tryptophan fluorescence also showed that MERS-CoV PLpro undergoes a single thermal transition and unfolds via a pathway of two-state folding with a Tm value of 51.4 °C. Our findings provide significant understandings of the thermodynamic and structural properties of MERS-CoV PLpro.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohammad A Alsenaidy
- Vaccines and Biologics Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
23
|
Srinivasan B, Zhou H, Mitra S, Skolnick J. Novel small molecule binders of human N-glycanase 1, a key player in the endoplasmic reticulum associated degradation pathway. Bioorg Med Chem 2016; 24:4750-4758. [PMID: 27567076 DOI: 10.1016/j.bmc.2016.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022]
Abstract
Peptide:N-glycanase (NGLY1) is an enzyme responsible for cleaving oligosaccharide moieties from misfolded glycoproteins to enable their proper degradation. Deletion and truncation mutations in this gene are responsible for an inherited disorder of the endoplasmic reticulum-associated degradation pathway. However, the literature is unclear whether the disorder is a result of mutations leading to loss-of-function, loss of substrate specificity, loss of protein stability or a combination of these factors. In this communication, without burdening ourselves with the mechanistic underpinning of disease causation because of mutations on the NGLY1 protein, we demonstrate the successful application of virtual ligand screening (VLS) combined with experimental high-throughput validation to the discovery of novel small-molecules that show binding to the transglutaminase domain of NGLY1. Attempts at recombinant expression and purification of six different constructs led to successful expression of five, with three constructs purified to homogeneity. Most mutant variants failed to purify possibly because of misfolding and the resultant exposure of surface hydrophobicity that led to protein aggregation. For the purified constructs, our threading/structure-based VLS algorithm, FINDSITE(comb), was employed to predict ligands that may bind to the protein. Then, the predictions were assessed by high-throughput differential scanning fluorimetry. This led to the identification of nine different ligands that bind to the protein of interest and provide clues to the nature of pharmacophore that facilitates binding. This is the first study that has identified novel ligands that bind to the NGLY1 protein as a possible starting point in the discovery of ligands with potential therapeutic applications in the treatment of the disorder caused by NGLY1 mutants.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States
| | - Sreyoshi Mitra
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| |
Collapse
|
24
|
Malik A, Fouad D, Labrou NE, Al-Senaidy AM, Ismael MA, Saeed HM, Ataya FS. Structural and thermodynamic properties of kappa class glutathione transferase from Camelus dromedarius. Int J Biol Macromol 2016; 88:313-9. [DOI: 10.1016/j.ijbiomac.2016.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
|
25
|
Mei X, Liu M, Herscovitz H, Atkinson D. Probing the C-terminal domain of lipid-free apoA-I demonstrates the vital role of the H10B sequence repeat in HDL formation. J Lipid Res 2016; 57:1507-17. [PMID: 27317763 DOI: 10.1194/jlr.m068874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 12/23/2022] Open
Abstract
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.
Collapse
Affiliation(s)
- Xiaohu Mei
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Minjing Liu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Haya Herscovitz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - David Atkinson
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
26
|
Smith SJ, Radford RJ, Subramanian RH, Barnett BR, Figueroa JS, Tezcan FA. Tunable Helicity, Stability and DNA-Binding Properties of Short Peptides with Hybrid Metal Coordination Motifs. Chem Sci 2016; 7:5453-5461. [PMID: 27800151 PMCID: PMC5085262 DOI: 10.1039/c6sc00826g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Given the prevalent role of α-helical motifs on protein surfaces in mediating protein-protein and protein-DNA interactions, there have been significant efforts to develop strategies to induce α-helicity in short, unstructured peptides to interrogate such interactions. Toward this goal, we have recently introduced hybrid metal coordination motifs (HCMs). HCMs combine a natural metal-binding amino acid side chain with a synthetic chelating group that are appropriately positioned in a peptide sequence to stabilize an α-helical conformation upon metal coordination. Here, we present a series of short peptides modified with HCMs consisting of a His and a phenanthroline group at i and i+7 positions that can induce α-helicity in a metal-tunable fashion as well as direct the formation of discrete dimeric architectures for recognition of biological targets. We show that the induction of α-helicity can be further modulated by secondary sphere interactions between amino acids at the i+4 position and the HCM. A frequently cited drawback of the use of peptides as therapeutics is their propensity to be quickly digested by proteases; here, we observe an enhancement of up to ∼100-fold in the half-lifes of the metal-bound HCM-peptides in the presence of trypsin. Finally, we show that an HCM-bearing peptide sequence, which contains the DNA-recognition domain of a bZIP protein but is devoid of the obligate dimerization domain, can dimerize with the proper geometry and in an α-helical conformation to bind a cognate DNA sequence with high affinities (Kd≥ 65 nM), again in a metal-tunable manner.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Mia, USA
| | - Robert J Radford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Mia, USA
| | - Rohit H Subramanian
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Mia, USA
| | - Brandon R Barnett
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Mia, USA
| | - Joshua S Figueroa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Mia, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Mia, USA
| |
Collapse
|
27
|
Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus. Biochem Biophys Res Commun 2016; 473:1281-1287. [PMID: 27086853 DOI: 10.1016/j.bbrc.2016.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways.
Collapse
|
28
|
Tang C, Lew S, He D. Using a second-order differential model to fit data without baselines in protein isothermal chemical denaturation. Protein Sci 2016; 25:898-904. [PMID: 26757366 DOI: 10.1002/pro.2878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022]
Abstract
In vitro protein stability studies are commonly conducted via thermal or chemical denaturation/renaturation of protein. Conventional data analyses on the protein unfolding/(re)folding require well-defined pre- and post-transition baselines to evaluate Gibbs free-energy change associated with the protein unfolding/(re)folding. This evaluation becomes problematic when there is insufficient data for determining the pre- or post-transition baselines. In this study, fitting on such partial data obtained in protein chemical denaturation is established by introducing second-order differential (SOD) analysis to overcome the limitations that the conventional fitting method has. By reducing numbers of the baseline-related fitting parameters, the SOD analysis can successfully fit incomplete chemical denaturation data sets with high agreement to the conventional evaluation on the equivalent completed data, where the conventional fitting fails in analyzing them. This SOD fitting for the abbreviated isothermal chemical denaturation further fulfills data analysis methods on the insufficient data sets conducted in the two prevalent protein stability studies.
Collapse
Affiliation(s)
- Chuanning Tang
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Scott Lew
- Neotein Therapeutics, New York, New York, 10706, USA
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
29
|
Dicko C, Kasoju N, Hawkins N, Vollrath F. Differential scanning fluorimetry illuminates silk feedstock stability and processability. SOFT MATTER 2016; 12:255-262. [PMID: 26457973 DOI: 10.1039/c5sm02036k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.
Collapse
Affiliation(s)
- C Dicko
- Department of Chemistry, Division for Pure and Applied Biochemistry, Lund University, Getigevägen 60, 2241, Lund, Sweden.
| | - N Kasoju
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK and Department of Biomaterials and Bioanalogous Polymer Systems, Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic, Heyrovského Square 2, 162 06, Prague, Czech Republic
| | - N Hawkins
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| | - F Vollrath
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| |
Collapse
|
30
|
Park SH, Kim HS, Park MS, Moon S, Song MK, Park HS, Hahn H, Kim SJ, Bae E, Kim HJ, Han BW. Structure and Stability of the Dimeric Triosephosphate Isomerase from the Thermophilic Archaeon Thermoplasma acidophilum. PLoS One 2015; 10:e0145331. [PMID: 26709515 PMCID: PMC4692482 DOI: 10.1371/journal.pone.0145331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023] Open
Abstract
Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED) pathway and Embden-Meyerhof-Parnas (EMP) pathway for glucose degradation. While triosephosphate isomerase (TPI), a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway. Here, we report crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI). TaTPI adopts the canonical TIM-barrel fold with eight α-helices and parallel eight β-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. We confirmed the dimeric conformation of TaTPI by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 as well as helix 4 of thermostable tetrameric TPIs have been known to play crucial roles in oligomerization, forming a hydrophobic interface. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6°C and maintains its overall structure with some changes in the secondary structure contents at extremely acidic conditions (pH 1–2). Based on our structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.
Collapse
Affiliation(s)
- Sang Ho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyoun Sook Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Mi Seul Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Mi Kyung Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Han Su Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Niklasson M, Andresen C, Helander S, Roth MGL, Zimdahl Kahlin A, Lindqvist Appell M, Mårtensson LG, Lundström P. Robust and convenient analysis of protein thermal and chemical stability. Protein Sci 2015; 24:2055-62. [PMID: 26402034 DOI: 10.1002/pro.2809] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
We present the software CDpal that is used to analyze thermal and chemical denaturation data to obtain information on protein stability. The software uses standard assumptions and equations applied to two-state and various types of three-state denaturation models in order to determine thermodynamic parameters. It can analyze denaturation monitored by both circular dichroism and fluorescence spectroscopy and is extremely flexible in terms of input format. Furthermore, it is intuitive and easy to use because of the graphical user interface and extensive documentation. As illustrated by the examples herein, CDpal should be a valuable tool for analysis of protein stability.
Collapse
Affiliation(s)
- Markus Niklasson
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Cecilia Andresen
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sara Helander
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Marie G L Roth
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Anna Zimdahl Kahlin
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Malin Lindqvist Appell
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Lars-Göran Mårtensson
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Patrik Lundström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
32
|
Portella G, Terrazas M, Villegas N, González C, Orozco M. Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Roy A, Srinivasan B, Skolnick J. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity. J Chem Inf Model 2015. [PMID: 26225536 DOI: 10.1021/acs.jcim.5b00232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Often in pharmaceutical research the goal is to identify small molecules that can interact with and appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins lack both known structures and small molecule binders, prerequisites of many virtual screening, VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from homologous and perhaps evolutionarily distant template proteins, has been shown to be a powerful VS approach to identify possible binding ligands. However, if we want to target a specific pocket for which there is no homologous holo template protein structure, then LHM will not work. To address this issue, in a new pocket-based approach, PoLi, we generalize LHM by exploiting the fact that the number of distinct small molecule ligand-binding pockets in proteins is small. PoLi identifies similar ligand-binding pockets in a holo template protein library, selectively copies relevant parts of template ligands, and uses them for VS. In practice, PoLi is a hybrid structure and ligand-based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity metrics for improved virtual screening performance. On standard DUD and DUD-E benchmark databases, using modeled receptor structures, PoLi achieves an average enrichment factor of 13.4 and 9.6, respectively, in the top 1% of the screened library. In contrast, traditional docking-based VS using AutoDock Vina and homology-based VS using FINDSITE(filt) have an average enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets, respectively. Experimental validation of PoLi predictions on dihydrofolate reductase, DHFR, using differential scanning fluorimetry, DSF, identifies multiple ligands with diverse molecular scaffolds, thus demonstrating the advantage of PoLi over current state-of-the-art VS methods.
Collapse
Affiliation(s)
- Ambrish Roy
- Center for the Study of Systems Biology, Georgia Institute of Technology , 250 14th Street NW, Atlanta, Georgia 30318, United States
| | - Bharath Srinivasan
- Center for the Study of Systems Biology, Georgia Institute of Technology , 250 14th Street NW, Atlanta, Georgia 30318, United States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, Georgia Institute of Technology , 250 14th Street NW, Atlanta, Georgia 30318, United States
| |
Collapse
|
34
|
Portella G, Terrazas M, Villegas N, González C, Orozco M. Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH. Angew Chem Int Ed Engl 2015. [PMID: 26224143 DOI: 10.1002/anie.201503770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stability of DNA is highly dependent on the properties of the surrounding solvent, such as ionic strength, pH, and the presence of denaturants and osmolytes. Addition of pyridine is known to unfold DNA by replacing π-π stacking interactions between bases, stabilizing conformations in which the nucleotides are solvent exposed. We show here experimental and theoretical evidences that pyridine can change its role and in fact stabilize the DNA under acidic conditions. NMR spectroscopy and MD simulations demonstrate that the reversal in the denaturing role of pyridine is specific, and is related to its character as pseudo groove binder. The present study sheds light on the nature of DNA stability and on the relationship between DNA and solvent, with clear biotechnological implications.
Collapse
Affiliation(s)
- Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain).,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW (UK)
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain)
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain).,Barcelona Supercomputing Center, Barcelona (Spain)
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, Madrid (Spain)
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain). .,Department of Biochemistry and Molecular Biology, University of Barcelona (Spain).
| |
Collapse
|
35
|
Native state dynamics affects the folding transition of porcine pancreatic phospholipase A2. Biophys Chem 2015; 206:12-21. [PMID: 26117657 DOI: 10.1016/j.bpc.2015.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/23/2022]
Abstract
Porcine pancreatic phospholipase A2, a small and disulfide rich protein, is extremely resistant against chemically or thermally induced unfolding. Despite this marked resistance, the protein displays broad unfolding transitions resulting in comparatively low apparent thermodynamic stability. Broad unfolding transitions may result from undetected folding intermediates, residual structures in the unfolded state or an inhomogeneity of the native state. Using circular dichroism, fluorescence, and NMR spectroscopy, we ruled out the existence of stably populated folding intermediates, whereas UV absorbance measurements hinted at stable residual structures in the unfolded state. These residual structures proved, however, to have no impact on the folding parameters. Studies by limited proteolysis, CD, and NMR spectroscopy under non-denaturing conditions suggested pronounced dynamics of the protein in the native state, which as long as unrestrained by acidic pH or bound Ca(2+) ions exert considerable influence on the unfolding transition.
Collapse
|
36
|
Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions. Sci Rep 2015; 5:10101. [PMID: 25960067 PMCID: PMC4650755 DOI: 10.1038/srep10101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.
Collapse
|
37
|
Zhu H, Liu Z, Huang Y, Zhang C, Li G, Liu W. Biochemical and structural characterization of MUPP1-PDZ4 domain from Mus musculus. Acta Biochim Biophys Sin (Shanghai) 2015; 47:199-206. [PMID: 25662616 DOI: 10.1093/abbs/gmv002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Specific protein-protein interactions are important for biological signal transduction. The postsynaptic density-95, disc-large, and zonulin-1 (PDZ) domain is one of the most abundant protein interaction modules. Multi-PDZ-domain protein 1 (MUPP1), as a scaffold protein, contains 13 PDZ domains and plays an important role in cytoskeletal organization, cell polarity, and cell proliferation. The study on PDZ domain of MUPP1 helps to understand the mechanisms and functions of MUPP1. In the present study, the fourth PDZ domain of MUPP1 (MUPP1-PDZ4) from Mus musculus was cloned, expressed, purified, and characterized. The MUPP1-PDZ4 domain was subcloned into a pET-vector and expressed in Escherichia coli. Affinity chromatography and size-exclusion chromatography were used to purify the protein. MUPP1-PDZ4 protein was a monomer with a molar mass of 16.4 kDa in solution and had a melting point of 60.3°C. Using the sitting-drop vapor-diffusion method, MUPP1-PDZ4 protein crystals were obtained in a solution (pH 7.0) containing 2% (v/v) polyethylene glycol 400, 0.1 M imidazole, and 24% (w/v) polyethylene glycol monoethyl ether 5000. Finally, the crystal was diffracted with 1.6 Å resolution. The crystal structure showed that MUPP1-PDZ4 domain contained three α-helices and six β-strands in the core. The GLGI motif, L562/A564 on the β-strand B, and H605/V608/L612 on the α-helix B formed a PDZ binding pocket which could bind to the C-terminal of the binding partners. This biochemical and structural information will provide insights into how PDZ binds to its target peptide and the theoretical foundation for the function of MUPP1.
Collapse
Affiliation(s)
- Haili Zhu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zexu Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuxin Huang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Chao Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
38
|
Greene MJ, Klimtchuk ES, Seldin DC, Berk JL, Connors LH. Cooperative stabilization of transthyretin by clusterin and diflunisal. Biochemistry 2014; 54:268-78. [PMID: 25478940 PMCID: PMC4303310 DOI: 10.1021/bi5011249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
circulating protein transthyretin (TTR) can unfold, oligomerize,
and form highly structured amyloid fibrils that are deposited in tissues,
causing organ damage and disease. This pathogenic process is caused
by a heritable TTR point mutation in cases of familial TTR-related
amyloidosis or wild-type TTR in cases of age-associated amyloidosis
(previously called senile systemic amyloidosis). The TTR amyloid cascade
is hypothesized to begin with the dissociation of the TTR native tetrameric
structure into folded but unstable monomeric TTR subunits. Unfolding
of monomeric TTR initiates an oligomerization process leading to aggregation
and fibril formation. Numerous proteostatic mechanisms for regulating
the TTR amyloid cascade exist. Extracellular chaperones provide an
innate defense against misfolded proteins. Clusterin (CLU), a plasma
protein, has the capacity to recognize exposed hydrophobic regions
of misfolded proteins, shielding them from aggregation. We have previously
demonstrated that CLU is associated with the amyloid fibrils in cardiac
tissues from patients with TTR amyloidosis. In this study, we have
used tetrameric and monomeric TTR structural variants to determine
the ability of CLU to inhibit TTR amyloid fibril formation. Using
circular dichroism spectroscopy, we determined that CLU preferentially
stabilizes monomeric TTR and generates increasingly stable conformations
under acid stress. Moreover, studies using surface plasmon resonance
showed a direct interaction of CLU with high-molecular weight TTR
oligomers. The interactions of CLU with monomeric and aggregated TTR
proceed in a cooperative manner in the presence of diflunisal, a small
molecule drug used to stabilize TTR tetramers.
Collapse
Affiliation(s)
- Michael J Greene
- Amyloidosis Center, Boston University School of Medicine , K-507, 715 Albany Street, Boston, Massachusetts 02118, United States
| | | | | | | | | |
Collapse
|
39
|
Negron C, Keating AE. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 2014; 136:16544-56. [PMID: 25337788 PMCID: PMC4277747 DOI: 10.1021/ja507847t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/11/2022]
Abstract
Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.
Collapse
Affiliation(s)
- Christopher Negron
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| | - Amy E. Keating
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| |
Collapse
|
40
|
Moon S, Bannen RM, Rutkoski TJ, Phillips GN, Bae E. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases. Proteins 2014; 82:2631-42. [PMID: 24931334 DOI: 10.1002/prot.24627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | |
Collapse
|
41
|
Srinivasan B, Zhou H, Kubanek J, Skolnick J. Experimental validation of FINDSITE(comb) virtual ligand screening results for eight proteins yields novel nanomolar and micromolar binders. J Cheminform 2014; 6:16. [PMID: 24936211 PMCID: PMC4038399 DOI: 10.1186/1758-2946-6-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/15/2014] [Indexed: 01/09/2023] Open
Abstract
Background Identification of ligand-protein binding interactions is a critical step in drug discovery. Experimental screening of large chemical libraries, in spite of their specific role and importance in drug discovery, suffer from the disadvantages of being random, time-consuming and expensive. To accelerate the process, traditional structure- or ligand-based VLS approaches are combined with experimental high-throughput screening, HTS. Often a single protein or, at most, a protein family is considered. Large scale VLS benchmarking across diverse protein families is rarely done, and the reported success rate is very low. Here, we demonstrate the experimental HTS validation of a novel VLS approach, FINDSITEcomb, across a diverse set of medically-relevant proteins. Results For eight different proteins belonging to different fold-classes and from diverse organisms, the top 1% of FINDSITEcomb’s VLS predictions were tested, and depending on the protein target, 4%-47% of the predicted ligands were shown to bind with μM or better affinities. In total, 47 small molecule binders were identified. Low nanomolar (nM) binders for dihydrofolate reductase and protein tyrosine phosphatases (PTPs) and micromolar binders for the other proteins were identified. Six novel molecules had cytotoxic activity (<10 μg/ml) against the HCT-116 colon carcinoma cell line and one novel molecule had potent antibacterial activity. Conclusions We show that FINDSITEcomb is a promising new VLS approach that can assist drug discovery.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 250, 14th Street, N.W., Atlanta, GA 30318, USA
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 250, 14th Street, N.W., Atlanta, GA 30318, USA
| | - Julia Kubanek
- School of Biology, Atlanta, GA 30332, USA ; School of Chemistry and Biochemistry, Aquatic Chemical Ecology Center, Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 250, 14th Street, N.W., Atlanta, GA 30318, USA
| |
Collapse
|
42
|
Moon S, Jung DK, Phillips GN, Bae E. An integrated approach for thermal stabilization of a mesophilic adenylate kinase. Proteins 2014; 82:1947-59. [PMID: 24615904 DOI: 10.1002/prot.24549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022]
Abstract
Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure-guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | | | | | | |
Collapse
|
43
|
Oswald VF, Chen W, Harvilla PB, Magyar JS. Overexpression, purification, and enthalpy of unfolding of ferricytochrome c552 from a psychrophilic microorganism. J Inorg Biochem 2014; 131:76-8. [PMID: 24275750 PMCID: PMC3885257 DOI: 10.1016/j.jinorgbio.2013.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022]
Abstract
The psychrophilic, hydrocarbonoclastic microorganism Colwellia psychrerythraea is important in global nutrient cycling and bioremediation. In order to investigate how this organism can live so efficiently at low temperatures (~4°C), thermal denaturation studies of a small electron transfer protein from Colwellia were performed. Colwellia cytochrome c552 was overexpressed in Escherichia coli, isolated, purified, and characterized by UV-visible absorption spectroscopy. The melting temperature (Tm) and the van't Hoff enthalpy (ΔHvH) were determined. These values suggest an unexpectedly high stability for this psychrophilic cytochrome.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, United States
| | - WeiTing Chen
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, United States
| | - Paul B Harvilla
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, United States; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States
| | - John S Magyar
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
44
|
Huard DJE, Kane KM, Tezcan FA. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat Chem Biol 2013; 9:169-76. [DOI: 10.1038/nchembio.1163] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022]
|
45
|
Peterson TA, Benallie RL, Bradford AM, Pias SC, Yazzie J, Lor SN, Haulsee ZM, Park CK, Johnson DL, Rohrschneider LR, Spuches A, Lyons BA. Dimerization in the Grb7 protein. J Mol Recognit 2012; 25:427-34. [PMID: 22811067 DOI: 10.1002/jmr.2205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies, we showed that the tyrosine phosphorylation state of growth factor receptor-bound protein 7 (Grb7) affects its ability to bind to the transcription regulator FHL2 and the cortactin-interacting protein, human HS-1-associated protein-1. Here, we present results describing the importance of dimerization in the Grb7-Src homology 2 (SH2) domain in terms of its structural integrity and the ability to bind phosphorylated tyrosine peptide ligands. A tyrosine phosphorylation-mimic mutant (Y80E-Grb7-SH2) is largely dimerization deficient and binds a tyrosine-phosphorylated peptide representative of the receptor tyrosine kinase (RTK) erbB2 with differing thermodynamic characteristics than the wild-type SH2 domain. Another dimerization-deficient mutant (F99R-Grb7-SH2) binds the phosphorylated erbB2 peptide with similarly changed thermodynamic characteristics. Both Y80E-Grb7-SH2 and F99R-Grb7-SH2 are structured by circular dichroism measurements but show reduced thermal stability relative to the wild type-Grb7-SH2 domain as measured by circular dichroism and nuclear magnetic resonance. It is well known that the dimerization state of RTKs (as binding partners to adaptor proteins such as Grb7) plays an important role in their regulation. Here, we propose the phosphorylation state of Grb7-SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs such as erbB2. In this manner, additional dimerization-dependent regulation could occur downstream of the membrane-bound kinase in RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Tabitha A Peterson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nyström S, Mishra R, Hornemann S, Aguzzi A, Nilsson KPR, Hammarström P. Multiple substitutions of methionine 129 in human prion protein reveal its importance in the amyloid fibrillation pathway. J Biol Chem 2012; 287:25975-84. [PMID: 22669942 DOI: 10.1074/jbc.m112.372136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of the polymorphism Met or Val in position 129 in the human prion protein is well documented regarding disease susceptibility and clinical manifestations. However, little is known about the molecular background to this phenomenon. We investigated herein the conformational stability, amyloid fibrillation kinetics, and seeding propensity of different 129 mutants, located in β-strand 1 of PrP (Met(129) (WT), M129A, M129V, M129L, M129W, M129P, M129E, M129K, and M129C) in HuPrP(90-231). The mutations M129V, M129L, M129K, and M129C did not affect stability (midpoints of thermal denaturation, T(m) = 65-66 °C), whereas the mutants M129A and M129E and the largest side chain M129W were destabilized by 3-4 °C. The most destabilizing substitution was M129P, which lowered the T(m) by 7.2 °C. All mutants, except for M129C, formed amyloid-like fibrils within hours during fibril formation under near physiological conditions. Fibril-forming mutants showed a sigmoidal kinetic profile and showed shorter lag times during seeding with preformed amyloid fibrils implicating a nucleated polymerization reaction. In the spontaneous reactions, the lag time of fibril formation was rather uniform for the mutants M129A, M129V, and M129L resembling the wild type. When the substituted amino acid had a distinct feature discriminating it from the wild type, such as size (M129W), charge (M129E, M129K), or rotational constraint (M129P), the fibrillation was impeded. M129C did not form ThT/Congo red-positive fibrils, and non-reducing SDS-PAGE of M129C during fibrillation conditions at different time points revealed covalent dimer formation already 15 min after fibrillation reaction initiation. Position 129 appears to be a key site for dictating PrP receptiveness toward recruitment into the amyloid state.
Collapse
Affiliation(s)
- Sofie Nyström
- IFM-Department of Chemistry, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Cable J, Prutzman K, Gunawardena HP, Schaller MD, Chen X, Campbell SL. In vitro phosphorylation of the focal adhesion targeting domain of focal adhesion kinase by Src kinase. Biochemistry 2012; 51:2213-23. [PMID: 22372511 DOI: 10.1021/bi300123a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.
Collapse
Affiliation(s)
- Jennifer Cable
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | |
Collapse
|
48
|
Blackwood JK, Rzechorzek NJ, Abrams AS, Maman JD, Pellegrini L, Robinson NP. Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex. Nucleic Acids Res 2011; 40:3183-96. [PMID: 22135300 PMCID: PMC3326311 DOI: 10.1093/nar/gkr1157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helicase–nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.
Collapse
Affiliation(s)
- John K Blackwood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
49
|
Marcheschi RJ, Tonelli M, Kumar A, Butcher SE. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication. ACS Chem Biol 2011; 6:857-64. [PMID: 21648432 PMCID: PMC3158809 DOI: 10.1021/cb200082d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmed -1 translational frameshifting is an essential event in the replication cycle of HIV. Frameshifting is required for expression of the viral Pol proteins, and drug-like molecules that target this process may inhibit HIV replication. A small molecule stimulator of HIV-1 frameshifting and inhibitor of viral replication, DB213 (RG501), was previously discovered from a high-throughput screen. However, the mechanistic basis for this compound's effects was unknown, and to date no structural information exists for small molecule effectors of frameshifting. Here, we investigate the binding of DB213 to the frameshift site RNA and have determined the structure of this complex by NMR. Binding of DB213 stabilizes the RNA and increases its melting temperature by 10 °C. The ligand binds to a primary site on the RNA stem-loop, although nonspecific interactions are also detected. The compound binds in the major groove and spans a distance of 9 base pairs. DB213 hydrogen bonds to phosphate groups on opposite sides of the major groove and alters the conformation of a conserved GGA bulge in the RNA. This study may provide a starting point for structure-based optimization of compounds targeting the HIV-1 frameshift site RNA.
Collapse
Affiliation(s)
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison
| | - Arvind Kumar
- Department of Chemistry, Georgia State University
| | | |
Collapse
|
50
|
Harrison JS, Higgins CD, Chandran K, Lai JR. Designed protein mimics of the Ebola virus glycoprotein GP2 α-helical bundle: stability and pH effects. Protein Sci 2011; 20:1587-96. [PMID: 21739501 PMCID: PMC3190153 DOI: 10.1002/pro.688] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 11/09/2022]
Abstract
Ebola virus (EboV) belongs to the Filoviridae family of viruses that causes severe and fatal hemhorragic fever. Infection by EboV involves fusion between the virus and host cell membranes mediated by the envelope glycoprotein GP2 of the virus. Similar to the envelope glycoproteins of other viruses, the central feature of the GP2 ectodomain postfusion structure is a six-helix bundle formed by the protein's N- and C-heptad repeat regions (NHR and CHR, respectively). Folding of this six-helix bundle provides the energetic driving force for membrane fusion; in other viruses, designed agents that disrupt formation of the six-helix bundle act as potent fusion inhibitors. To interrogate determinants of EboV GP2-mediated membrane fusion, we designed model proteins that consist of the NHR and CHR segments linked by short protein linkers. Circular dichroism and gel filtration studies indicate that these proteins adopt stable α-helical folds consistent with design. Thermal denaturation indicated that the GP2 six-helix bundle is highly stable at pH 5.3 (melting temperature, T(m) , of 86.8 ± 2.0°C and van't Hoff enthalpy, ΔH(vH) , of -28.2 ± 1.0 kcal/mol) and comparable in stability to other viral membrane fusion six-helix bundles. We found that the stability of our designed α-helical bundle proteins was dependent on buffering conditions with increasing stability at lower pH. Small pH differences (5.3-6.1) had dramatic effects (ΔT(m) = 37°C) suggesting a mechanism for conformational control that is dependent on environmental pH. These results suggest a role for low pH in stabilizing six-helix bundle formation during the process of GP2-mediated viral membrane fusion.
Collapse
Affiliation(s)
- Joseph S Harrison
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|