1
|
Burden E, Seyoum Y, Evans JP, Thomas W, Kitson J, Batten T, Patel R, van der Giezen M, Smith C. Mapping the microbial landscape and variations based on biological sex, age, and biopsy location in the shoulder skin microbiome. J Shoulder Elbow Surg 2025:S1058-2746(25)00188-0. [PMID: 40032061 DOI: 10.1016/j.jse.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The organisms responsible for periprosthetic joint infections (PJIs) of the shoulder are often skin pathogens originating from the patient's own skin flora at the time of surgery. Understanding the normal skin flora around the shoulder is an important step to identify the range of organisms that could be responsible for PJI and to ensure optimization of culture mediums to identify them. This study aimed to provide the first description of the shoulder skin microbiome using high-throughput next-generation sequencing methodology and explore variations by age, biological sex, and biopsy location. METHODS Patients undergoing arthroscopic surgery were approached for informed consent to have punch biopsies taken from anterior, lateral, and posterior arthroscopy portal sites. DNA extraction was undertaken followed by illumina sequencing, focusing on the V3-V4 regions of the 16S rRNA gene. Amplicon sequence variants (ASVs) were generated using Deblur workflow and used for taxonomic assignment. Variation in the microbiota community based on age, biological sex, and biopsy location was assessed through alpha and beta diversity metric calculations using phyloseq R package. RESULTS Sixty-two patients (24 female, 38 male) aged 18-80 years were recruited, resulting in 186 punch biopsy samples for analysis. Following removal of low-prevalence taxa, 606 ASVs were aggregated at the genus level, resulting in 214 genera across 13 phyla. The top 20 most abundant genera accounted for 73.5% of the overall sequence count. Cutibacterium was the most abundant genus within the study population, followed by Ralstonia, Staphylococcus, Bacteroides, and Streptococcus. Significant differences were observed in beta diversity metrics when comparing by biological sex, which accounted for 3.9%-5.3% of the variation in the microbial community, but not age or biopsy location. Males displayed a greater proportion of gram-positive and aerobic bacteria, whereas females exhibited a greater proportion of gram-negative and stress-tolerant bacteria. CONCLUSION This is the first study to look specifically at the microbiome of the cutaneous shoulder and describe the most abundant genera and compositional differences based on age, biological sex, and biopsy location. Biological sex was the only host covariant studied that reached significance in explaining microbiota variation. The top 20 most abundant genera, accounting for 74% of the overall sequence count, would be isolated with standard microbiological culture. As such, this study does not highlight a need to change current culture investigation practice for shoulder PJI, but it serves as an important catalog of skin commensals around the operative site in shoulder surgery.
Collapse
Affiliation(s)
- Eleanor Burden
- Royal Devon University Healthcare Foundation Trust, Exeter, UK.
| | - Yohannes Seyoum
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Jonathan Peter Evans
- Royal Devon University Healthcare Foundation Trust, Exeter, UK; College of Medicine and Health, University of Exeter, Exeter, UK
| | - William Thomas
- Royal Devon University Healthcare Foundation Trust, Exeter, UK
| | - Jeffrey Kitson
- Royal Devon University Healthcare Foundation Trust, Exeter, UK
| | - Timothy Batten
- Gloucester Hospital NHS Foundation Trust, Gloucester, UK
| | - Rachel Patel
- Royal Devon University Healthcare Foundation Trust, Exeter, UK
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway; Biosciences, University of Exeter, Exeter, UK; Research Department, Stavanger University Hospital, Stavanger, Norway
| | | |
Collapse
|
2
|
Potbhare R, RaviKumar A, Munukka E, Lahti L, Ashma R. Skin microbiota variation in Indian families. PeerJ 2025; 13:e18881. [PMID: 40034669 PMCID: PMC11874944 DOI: 10.7717/peerj.18881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/28/2024] [Indexed: 03/05/2025] Open
Abstract
Background In India, joint families often encompass members spanning multiple generations cohabiting in the same household, thereby sharing the same ethnicity, genetics, dietary habits, lifestyles, and other living conditions. Such an extended family provides a unique opportunity to evaluate the effect of genetics and other confounding factors like geographical location, diet and age on the skin microbiota within and between families across three generations. Methods The present study involved seventy-two individuals from fifteen families from two geographical regions of Maharashtra, India. The 16S rRNA sequencing of V3-V4 regions was performed and the generated taxonomic profiles were used for downstream analysis. Results Our study highlights a significant difference in community composition (beta diversity) between families (PERMANOVA; p = 0.001) and geographical locations (p = 0.001). We observed geographical location-wise differences in the relative abundances Staphylococcus in the families from Pune (Wilcoxon test, p = 0.007), and Bacillus in the Ahmednagar families (Wilcoxon test, p = 0.004). When within and between-family comparisons of skin microbiota composition were carried out between different generations (G1-G2, G2-G3, and G1-G3); we observed skin microbiota tended to be more similar within than between families but this difference was not significant. Conclusion This study underscores the diversity and commonalities in skin microbiota composition within and between families. Our result suggests that geographical location is significantly associated with the genus composition of skin microbiota, which is quantitatively unique for a family and likely explained by co-habitation.
Collapse
Affiliation(s)
- Renuka Potbhare
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ameeta RaviKumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Eveliina Munukka
- Turku Clinical Microbiome Bank, Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Technology, University of Turku, Turku, Finland
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
3
|
Li Z, Li P, Xu Y, Yan C, Ma X, Wang H, Cheng H, Zeng J, Li T, Li X, Zhou J, Zhang J, Zhou J, Yang R, Wu Y, Li L, Lai W, Zhao J, Liu Z, Meng Q. Efficacy of a Postbiotic Formulation Combined With Microneedling for Mild-to-Moderate Acne: A Self-Control Study. J Cosmet Dermatol 2025; 24:e16703. [PMID: 39620488 PMCID: PMC11845973 DOI: 10.1111/jocd.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 02/23/2025]
Abstract
BACKGROUND Acne vulgaris significantly affects young individuals globally, with its onset associated with an increased prevalence of C acnes, a naturally occurring skin bacterium. In light of the rising concerns regarding antibiotic resistance and the potential for adverse effects, pharmacological interventions may not consistently represent the most suitable option. Nonpharmacological approaches, such as microneedling, offer promising alternative treatment modalities. Furthermore, the integration of postbiotics in skincare formulations for acne management has gained traction recently. Nonetheless, there remains a lack of sufficient evidence to establish the efficacy and safety of postbiotics when combined with microneedling. OBJECTIVE To assess the clinical effectiveness of a postbiotic formulation combined with microneedling in mild-to-moderate facial acne vulgaris. METHODS Twenty Chinese patients were enrolled, all received one treatment and were monitored 4 weeks posttreatment. The evaluation assessed symptom improvement, treatment safety, and patient satisfaction. RESULTS The global acne grading system (GAGS) score decreased more than half based on the baseline. Clinical photographs following treatment revealed improved the skin lesions and brightened skin tone. Statistics from VISIA showed excellent improvement in speckle, pore, red region, and porphyrin. No significant adverse reactions have been reported during the treatment period. Additionally, more than 85% were very satisfied or satisfied with the outcome. CONCLUSION Our results showed that the postbiotic formulation combined with microneedling may benefit the restoration of the skin barrier and the equilibrium of skin microbiota. This approach may help mitigate inflammation and address skin lesions, presenting a promising therapeutic avenue for the prevention and management of acne vulgaris.
Collapse
Affiliation(s)
- Zhanhong Li
- Guangzhou MLT Medical Cosmetic ClinicGuangzhouChina
| | - Peihui Li
- Changsha 7HE VLINES Medical Cosmetic HospitalChangshaChina
| | - Yu Xu
- Wuhuazhenqi Medical Cosmetic ClinicKunmingChina
| | - Changqing Yan
- Non‐Surgical Center, Changsha MYLIKE Medical Cosmetic HospitalChangshaChina
| | - Xiufen Ma
- Department of Cosmetic DermatologyXiamen MYLIKE Medical Cosmetic HospitalXiamenChina
| | - Huiying Wang
- Department of Traditional Chinese Medicine Cosmetic DermatologyShenzhen Yestar Medical Cosmetic HospitalShenzhenChina
| | - Hong Cheng
- Beijing J Yan LaserKing Medical Cosmetic ClinicBeijingChina
| | - Jing Zeng
- Department of Cosmetic DermatologyFuzhou Maen Medical Cosmetic ClinicFuzhouChina
| | - Ting Li
- Medical Cosmetic CenterXinjiang Uiger Municipal People's HospitalUrumqiChina
| | - Xinxian Li
- Shenzhen Coastal Starlight Medical Cosmetic ClinicShenzhenChina
| | - Jia Zhou
- Non‐Surgical Center, Changsha MYLIKE Medical Cosmetic HospitalChangshaChina
| | - Jie Zhang
- Guangzhou MLT Medical Cosmetic ClinicGuangzhouChina
| | | | - Rongya Yang
- Department of Dermatologythe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yan Wu
- Department of DermatologyPeking University First HospitalBeijingChina
| | - Li Li
- Department of DermatologyWest China Hospital of Sichuan UniversityChengduChina
| | - Wei Lai
- Department of DermatologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jiangyun Zhao
- Beijing Heyan Yijie Medical Beauty ClinicBeijingChina
| | - Zhe Liu
- Shenyang Heping Heyan Xiandao Medical Beauty ClinicShenyangChina
| | - Qiong Meng
- Guangzhou MLT Medical Cosmetic ClinicGuangzhouChina
| |
Collapse
|
4
|
Hernández-Melgar AG, Guerrero A, Moreno-Ulloa A. Chronic Exposure to Petroleum-Derived Hydrocarbons Alters Human Skin Microbiome and Metabolome Profiles: A Pilot Study. J Proteome Res 2024; 23:4273-4285. [PMID: 39024464 DOI: 10.1021/acs.jproteome.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Petroleum-derived substances, like industrial oils and grease, are ubiquitous in our daily lives. Comprised of petroleum hydrocarbons (PH), these substances can come into contact with our skin, potentially causing molecular disruptions and contributing to the development of chronic disease. In this pilot study, we employed mass spectrometry-based untargeted metabolomics and 16S rRNA gene sequencing analyses to explore these effects. Superficial skin samples were collected from subjects with and without chronic dermal exposure to PH at two anatomical sites: the fingers (referred to as the hand) and arms (serving as an intersubject variability control). Exposed hands exhibited higher bacterial diversity (Shannon and Simpson indices) and an enrichment of oil-degrading bacteria (ODB), including Dietzia, Paracoccus, and Kocuria. Functional prediction suggested enriched pathways associated with PH degradation in exposed hands vs non-exposed hands, while no differences were observed when comparing the arms. Furthermore, carboxylic acids, glycerophospholipids, organooxygen compounds, phenol ethers, among others, were found to be more abundant in exposed hands. We observed positive correlations among multiple ODB and xenobiotics, suggesting a chemical remodeling of the skin favorable for ODB thriving. Overall, our study offers insights into the complex dysregulation of bacterial communities and the chemical milieu induced by chronic dermal exposure to PH.
Collapse
Affiliation(s)
- Alan G Hernández-Melgar
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
- Posgrado en Ciencias de la Vida, CICESE, Ensenada 22860, Baja California, Mexico
| | - Abraham Guerrero
- CONAHCyT Research, Research Center in Food & Development A.C. (CIAD), Mazatlán 82112, Sinaloa, Mexico
| | - Aldo Moreno-Ulloa
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| |
Collapse
|
5
|
Koch W, Zagórska J, Michalak-Tomczyk M, Karav S, Wawruszak A. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules 2024; 29:4234. [PMID: 39275081 PMCID: PMC11397085 DOI: 10.3390/molecules29174234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Plants are a rich source of secondary metabolites, among which phenolics are the most abundant. To date, over 8000 various polyphenolic compounds have been identified in plant species, among which phenolic acids, flavonoids, coumarins, stilbenes and lignans are the most important ones. Acne is one of the most commonly treated dermatological diseases, among which acne vulgaris and rosacea are the most frequently diagnosed. In the scientific literature, there is a lack of a detailed scientific presentation and discussion on the importance of plant phenolics in the treatment of the most common specific skin diseases, e.g., acne. Therefore, the aim of this review is to gather, present and discuss the current state of knowledge on the activity of various plant phenolics towards the prevention and treatment of acne, including in vitro, in vivo and human studies. It was revealed that because of their significant antibacterial, anti-inflammatory and antioxidant activities, phenolic compounds may be used in the treatment of various types of acne, individually as well as in combination with commonly used drugs like clindamycin and benzoyl peroxide. Among the various phenolics that have been tested, EGCG, quercetin and nobiletin seem to be the most promising ones; however, more studies, especially clinical trials, are needed to fully evaluate their efficacy in treating acne.
Collapse
Affiliation(s)
- Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Magdalena Michalak-Tomczyk
- Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Whittle MJ, Castillo-Fernandez J, Amos GCA, Watson P. Metagenomic characterisation of canine skin reveals a core healthy skin microbiome. Sci Rep 2024; 14:20104. [PMID: 39209855 PMCID: PMC11362342 DOI: 10.1038/s41598-024-63999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Furthering our knowledge of the skin microbiome is essential to understand health and disease in canines. To date, studies into the canine skin microbiome have focused on 16S rRNA high throughput sequencing however, these lack the granularity of species and strain level taxonomic characterisation and their associated functions. The aim of this study was to provide a comprehensive assessment of the skin microbiome by analysing the skin microbiome of 72 healthy adult colony dogs, across four distinct skin sites and four breeds, using metagenomic sequencing. Our analysis revealed that breed and skin site are drivers of variation, and a core group of taxa and genes are present within the skin microbiome of healthy dogs, comprising 230 taxa and 1219 gene families. We identified 15 species within the core microbiome that are represented by more than one strain. The biosynthesis of secondary metabolites pathway was enriched in the core microbiome suggesting the skin microbiome may play a role in colonisation resistance and protection from invading pathogens. Additionally, we uncovered the novelty of the canine skin microbiome and show that further investigation is required to increase the suitability of current databases for metagenomic sequencing of canine skin samples.
Collapse
Affiliation(s)
- Michaella J Whittle
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | - Juan Castillo-Fernandez
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
7
|
Jaimes J, Patiño LH, Herrera G, Cruz C, Pérez J, Correa-Cárdenas CA, Muñoz M, Ramírez JD. Prokaryotic and eukaryotic skin microbiota modifications triggered by Leishmania infection in localized Cutaneous Leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0012029. [PMID: 38478569 PMCID: PMC10962849 DOI: 10.1371/journal.pntd.0012029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Cutaneous Leishmaniasis (CL) is a tropical disease characterized by cutaneous ulcers, sometimes with satellite lesions and nodular lymphangitis. Leishmania parasites, transmitted by sandfly vectors, cause this widespread public health challenge affecting millions worldwide. CL's complexity stems from diverse Leishmania species and intricate host interactions. Therefore, this study aims to shed light on the spatial-temporal distribution of Leishmania species and exploring the influence of skin microbiota on disease progression. We analyzed 40 samples from CL patients at three military bases across Colombia. Using Oxford Nanopore's Heat Shock Protein 70 sequencing, we identified Leishmania species and profiled microbiota in CL lesions and corresponding healthy limbs. Illumina sequencing of 16S-rRNA and 18S-rRNA genes helped analyze prokaryotic and eukaryotic communities. Our research uncovered a spatial-temporal overlap between regions of high CL incidence and our sampling locations, indicating the coexistence of various Leishmania species. L. naiffi emerged as a noteworthy discovery. In addition, our study delved into the changes in skin microbiota associated with CL lesions sampled by scraping compared with healthy skin sampled by brushing of upper and lower limbs. We observed alterations in microbial diversity, both in prokaryotic and eukaryotic communities, within the lesioned areas, signifying the potential role of microbiota in CL pathogenesis. The significant increase in specific bacterial families, such as Staphylococcaceae and Streptococcaceae, within CL lesions indicates their contribution to local inflammation. In essence, our study contributes to the ongoing research into CL, highlighting the need for a multifaceted approach to decipher the intricate interactions between Leishmaniasis and the skin microbiota.
Collapse
Affiliation(s)
- Jesús Jaimes
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Cruz
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Julie Pérez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Camilo A. Correa-Cárdenas
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
8
|
Syafarina I, Mazaya M, Indrawati A, Akbar SZ, Sukowati C, Sadikin R. Skin Microbial Composition and Genetic Mutation Analysis in Precision Medicine for Epidermolysis Bullosa. Curr Drug Targets 2024; 25:404-415. [PMID: 38566380 DOI: 10.2174/0113894501290512240327091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Epidermolysis bullosa (EB) is an inherited skin disease representing a spectrum of rare genetic disorders. These conditions share the common trait that causes fragile skin, resulting in the development of blisters and erosions. The inheritance follows an autosomal pattern, and the array of clinical presentations leads to significant physical suffering, considerable morbidity, and mortality. Despite EB having no cure, effectively managing EB remains an exceptional challenge due to its rarity and complexity, occasionally casting a profound impact on the lives of affected individuals. Considering that EB management requires a multidisciplinary approach, this sometimes worsens the condition of patients with EB due to inappropriate handling. Thus, more appropriate and precise treatment management of EB is essentially needed. Advanced technology in medicine and health comes into the bioinformatics era. Including treatment for skin diseases, omics-based approaches aim to evaluate and handle better disease management and treatment. In this work, we review several approaches regarding the implementation of omics-based technology, including genetics, pathogenic mutation, skin microbiomics, and metagenomics analysis for EB. In addition, we highlight recent updates on the potential of metagenomics analysis in precision medicine for EB.
Collapse
Affiliation(s)
- Inna Syafarina
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Maulida Mazaya
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Ariani Indrawati
- Research Center for Data Science and Information, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Sharfina Zahra Akbar
- Department of Nanotechnology Engineering, Airlangga University, Surabaya, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
- Liver Cancer Unit, Italian Liver Foundation NPO, Fondazione Italiana Fegato ONLUS, Trieste, Italy
| | - Rifki Sadikin
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| |
Collapse
|
9
|
Savoia P, Azzimonti B, Rolla R, Zavattaro E. Role of the Microbiota in Skin Neoplasms: New Therapeutic Horizons. Microorganisms 2023; 11:2386. [PMID: 37894044 PMCID: PMC10608979 DOI: 10.3390/microorganisms11102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The skin and the gut are regularly colonized by a variety of microorganisms capable of interacting with the immune system through their metabolites and influencing the balance between immune tolerance and inflammation. Alterations in the composition and diversity of the skin microbiota have been described in various cutaneous diseases, including skin cancer, and the actual function of the human microbiota in skin carcinogenesis, such as in progression and metastasis, is currently an active area of research. The role of Human Papilloma Virus (HPV) in the pathogenesis of squamous cell carcinoma is well consolidated, especially in chronically immunosuppressed patients. Furthermore, an imbalance between Staphylococcus spp., such as Staphylococcus epidermidis and aureus, has been found to be strongly related to the progression from actinic keratosis to squamous cell carcinoma and differently associated with various stages of the diseases in cutaneous T-cell lymphoma patients. Also, in melanoma patients, differences in microbiota have been related to dissimilar disease course and prognosis and may affect the effectiveness and tolerability of immune checkpoint inhibitors, which currently represent one of the best chances of a cure. From this point of view, acting on microbiota can be considered a possible therapeutic option for patients with advanced skin cancers, even if several issues are still open.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy; (B.A.); (R.R.); (E.Z.)
| | | | | | | |
Collapse
|
10
|
Surbek M, Sukseree S, Eckhart L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites 2023; 13:1005. [PMID: 37755285 PMCID: PMC10534741 DOI: 10.3390/metabo13091005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The skin protects the body against exogenous stressors. Its function is partially achieved by the permanent regeneration of the epidermis, which requires high metabolic activity and the shedding of superficial cells, leading to the loss of metabolites. Iron is involved in a plethora of important epidermal processes, including cellular respiration and detoxification of xenobiotics. Likewise, microorganisms on the surface of the skin depend on iron, which is supplied by the turnover of epithelial cells. Here, we review the metabolism of iron in the skin with a particular focus on the fate of iron in epidermal keratinocytes. The iron metabolism of the epidermis is controlled by genes that are differentially expressed in the inner and outer layers of the epidermis, establishing a system that supports the recycling of iron and counteracts the release of iron from the skin surface. Heme oxygenase-1 (HMOX1), ferroportin (SLC40A1) and hephaestin-like 1 (HEPHL1) are constitutively expressed in terminally differentiated keratinocytes and allow the recycling of iron from heme prior to the cornification of keratinocytes. We discuss the evidence for changes in the epidermal iron metabolism in diseases and explore promising topics of future studies of iron-dependent processes in the skin.
Collapse
Affiliation(s)
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.); (S.S.)
| |
Collapse
|
11
|
Adu SA, Twigg MS, Naughton PJ, Marchant R, Banat IM. Glycolipid Biosurfactants in Skincare Applications: Challenges and Recommendations for Future Exploitation. Molecules 2023; 28:molecules28114463. [PMID: 37298939 DOI: 10.3390/molecules28114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The 21st century has seen a substantial increase in the industrial applications of glycolipid biosurfactant technology. The market value of the glycolipid class of molecules, sophorolipids, was estimated to be USD 409.84 million in 2021, with that of rhamnolipid molecules projected to reach USD 2.7 billion by 2026. In the skincare industry, sophorolipid and rhamnolipid biosurfactants have demonstrated the potential to offer a natural, sustainable, and skin-compatible alternative to synthetically derived surfactant compounds. However, there are still many barriers to the wide-scale market adoption of glycolipid technology. These barriers include low product yield (particularly for rhamnolipids) and potential pathogenicity of some native glycolipid-producing microorganisms. Additionally, the use of impure preparations and/or poorly characterised congeners as well as low-throughput methodologies in the safety and bioactivity assessment of sophorolipids and rhamnolipids challenges their increased utilisation in both academic research and skincare applications. This review considers the current trend towards the utilisation of sophorolipid and rhamnolipid biosurfactants as substitutes to synthetically derived surfactant molecules in skincare applications, the challenges associated with their application, and relevant solutions proposed by the biotechnology industry. In addition, we recommend experimental techniques/methodologies, which, if employed, could contribute significantly to increasing the acceptance of glycolipid biosurfactants for use in skincare applications while maintaining consistency in biosurfactant research outputs.
Collapse
Affiliation(s)
- Simms A Adu
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Matthew S Twigg
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Patrick J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Roger Marchant
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Ibrahim M Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
12
|
Ma Q, Yue Y, Kou X, Hou W, Wang M, Yang X, Liu G, Li Y, Wang C. Dynamic Distribution of Skin Microorganisms in Donkeys at Different Ages and Various Sites of the Body. Animals (Basel) 2023; 13:ani13091566. [PMID: 37174603 PMCID: PMC10177048 DOI: 10.3390/ani13091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Considerable evidence suggests that the skin microbiota is not only important and complex in humans and other mammals but also critical for maintaining health and skin homeostasis. To date, studies on the skin microorganisms of donkeys are surprisingly rare. To investigate the dynamic changes in commensal microbial communities on the skins of healthy donkeys throughout the growing period, skin and soil samples were collected from 30 healthy Dezhou donkeys (ranging from 1, 6, 12, 24 to 48 months of age) and their corresponding breeding sheds on the farm. All samples were analysed for high-throughput sequencing of the 16S rRNA and ITS to characterize the skin microbiota of healthy donkeys and compare the differences in skin microbiota among donkeys of different ages. There were notable differences in the proportions of various genera (including bacteria and fungi) between dorsal and abdominal skin with increasing age. The comparison of the skin microbial communities among these groups revealed that Staphylococcus was mainly enriched in the early growing stage (1 and 6 months), while the relative abundance of Streptococcus was higher in both the 1- and 48-month-old age groups. Moreover, some bacteria and commensal fungi, such as Staphylococcus and Trichosporon, were found to be positively correlated between the skin and the environment. This is the first study to investigate the dynamic changes in skin microbiota diversity and composition in donkeys of different ages and at different sites of the body. Furthermore, this study provides insights into the dynamic alterations in skin microbes during a donkey's growth and characterizes the profiles of bacterial and fungal communities across a donkey's body regions (dorsal and abdomen).
Collapse
Affiliation(s)
- Qingshan Ma
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Yunshuang Yue
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiyan Kou
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Wanting Hou
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Mingyu Wang
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Xihao Yang
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
13
|
Robert C, Cascella F, Mellai M, Barizzone N, Mignone F, Massa N, Nobile V, Bona E. Influence of Sex on the Microbiota of the Human Face. Microorganisms 2022; 10:microorganisms10122470. [PMID: 36557723 PMCID: PMC9786802 DOI: 10.3390/microorganisms10122470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The role of the microbiota in health and disease has long been recognized and, so far, the cutaneous microbiota in humans has been widely investigated. The research regarded mainly the microbiota variations between body districts and disease skin states (i.e., atopic dermatitis, psoriasis, acne). In fact, relatively little information is available about the composition of the healthy skin microbiota. The cosmetic industry is especially interested in developing products that maintain and/or improve a healthy skin microbiota. Therefore, in the present work, the authors chose to investigate in detail the structure and composition of the basal bacterial community of the face. Ninety-six cheek samples (48 women and 48 men) were collected in the same season and the same location in central northern Italy. Bacterial DNA was extracted, the 16S rDNA gene was amplified by PCR, the obtained amplicons were subjected to next generation sequencing. The principal members of the community were identified at the genus level, and statistical analyses showed significant variations between the two sexes. This study identified abundant members of the facial skin microbiota that were rarely reported before in the literature and demonstrated the differences between male and female microbiota in terms of both community structure and composition.
Collapse
Affiliation(s)
- Clémence Robert
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Correspondence: (C.R.); (E.B.)
| | - Federica Cascella
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
| | - Marta Mellai
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Nadia Barizzone
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Flavio Mignone
- Department of Science and Technologic Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy
- SmartSeq s.r.l., 28100 Novara, Italy
| | - Nadia Massa
- Department of Science and Technologic Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
| | - Elisa Bona
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, 13100 Vercelli, Italy
- Correspondence: (C.R.); (E.B.)
| |
Collapse
|
14
|
Acne Vulgaris, Atopic Dermatitis and Rosacea: The Role of the Skin Microbiota-A Review. Biomedicines 2022; 10:biomedicines10102523. [PMID: 36289784 PMCID: PMC9599554 DOI: 10.3390/biomedicines10102523] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The skin harbors a huge number of different microorganisms such as bacteria, fungi and viruses, and it acts as a protective shield to prevent the invasion of pathogens and to maintain the health of the commensal microbiota. Several studies, in fact, have shown the importance of the skin microbiota for healthy skin. However, this balance can be altered by intrinsic and extrinsic factors, leading to the development of skin disease, such as acne vulgaris (AV), atopic dermatitis (AD) and rosacea(RS). Although these diseases are widespread and affect both adolescents and adults, the scientific correlation between these disorders and the skin microbiota and physiological parameters (TEWL, hydration and lipid composition) is still unclear. This review aims to investigate the current literature regarding the correlation between the skin microbiota and its imbalance underlying microbiological aspects, how the skin microbiota changes over the course of the disease and the current possible treatments. The following reported studies show a general imbalance of the bacterial flora. For this reason, more in-depth studies are necessary to explore the different subspecies and strains involved in all three diseases.
Collapse
|
15
|
Sideris N, Paschou E, Bakirtzi K, Kiritsi D, Papadimitriou I, Tsentemeidou A, Sotiriou E, Vakirlis E. New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature. J Clin Med 2022; 11:4974. [PMID: 36078904 PMCID: PMC9456375 DOI: 10.3390/jcm11174974] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory dermatosis with periods of exacerbation and remissions. AD is characterized by intense, persistent pruritus and heterogeneity in clinical symptomatology and severity. Therapeutic goals include the amelioration of cutaneous eruptions, diminishing relapses and eventually the disease burden. To date, topical corticosteroids (TCS) and calcineurin inhibitors (TCI) have yet been deemed the mainstay of topical treatments in AD management. Nevertheless, despite their indisputable efficiency, TCS and TCI are not indicated for continuous long-term use given their safety profile. While research in AD has concentrated predominantly on systemic therapies, more than 30 novel topical compounds are under development. The existing data appear encouraging, with some regimens that are already FDA-approved (ruxolitinib was the most recent in September 2021) and several pharmaceutical pipeline products for mild-to-moderate AD that are in an advanced stage of development, such as tapinarof, difamilast and roflumilast. Larger, long-term studies are still required to evaluate the efficacy and safety of these novel compounds in the long run and weigh their advantages over present treatments. In this review, we aim to provide an overview of the latest knowledge about AD topical treatments, echoing upcoming research trends.
Collapse
Affiliation(s)
- Nikolaos Sideris
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Eleni Paschou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Katerina Bakirtzi
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ilias Papadimitriou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Aikaterini Tsentemeidou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Elena Sotiriou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| |
Collapse
|
16
|
Pistone D, Meroni G, Panelli S, D’Auria E, Acunzo M, Pasala AR, Zuccotti GV, Bandi C, Drago L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int J Mol Sci 2021; 22:9846. [PMID: 34576010 PMCID: PMC8469928 DOI: 10.3390/ijms22189846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
The human skin microbiota is essential for maintaining homeostasis and ensuring barrier functions. Over the years, the characterization of its composition and taxonomic diversity has reached outstanding goals, with more than 10 million bacterial genes collected and cataloged. Nevertheless, the study of the skin microbiota presents specific challenges that need to be addressed in study design. Benchmarking procedures and reproducible and robust analysis workflows for increasing comparability among studies are required. For various reasons and because of specific technical problems, these issues have been investigated in gut microbiota studies, but they have been largely overlooked for skin microbiota. After a short description of the skin microbiota, the review tackles methodological aspects and their pitfalls, covering NGS approaches and high throughput culture-based techniques. Recent insights into the "core" and "transient" types of skin microbiota and how the manipulation of these communities can prevent or combat skin diseases are also covered. Finally, this review includes an overview of the main dermatological diseases, the changes in the microbiota composition associated with them, and the recommended skin sampling procedures. The last section focuses on topical and oral probiotics to improve and maintain skin health, considering their possible applications for skin diseases.
Collapse
Affiliation(s)
- Dario Pistone
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Gabriele Meroni
- Department of Biomedical Surgical and Dental Sciences-One Health Unit, University of Milan, 20133 Milan, Italy;
| | - Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Enza D’Auria
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Miriam Acunzo
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Ajay Ratan Pasala
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
17
|
Rademacher F, Gläser R, Harder J. Antimicrobial peptides and proteins: Interaction with the skin microbiota. Exp Dermatol 2021; 30:1496-1508. [PMID: 34310774 DOI: 10.1111/exd.14433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The cutaneous microbiota comprises all living skin microorganisms. There is increasing evidence that the microbiota plays a crucial role in skin homeostasis. Accordingly, a dysbiosis of the microbiota may trigger cutaneous inflammation. The need for a balanced microbiota requires specific regulatory mechanisms that control and shape the microbiota. In this review, we highlight the present knowledge suggesting that antimicrobial peptides (AMPs) may exert a substantial influence on the microbiota by controlling their growth. This is supported by own data showing the differential influence of principal skin-derived AMPs on commensal staphylococci. Vice versa, we also illuminate how the cutaneous microbiota interacts with skin-derived AMPs by modulating AMP expression and how microbiota members protect themselves from the antimicrobial activity of AMPs. Taken together, the current picture suggests that a fine-tuned and well-balanced AMP-microbiota interplay on the skin surface may be crucial for skin health.
Collapse
Affiliation(s)
| | - Regine Gläser
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, Kiel University, Kiel, Germany
| |
Collapse
|
18
|
Manus MB, Kuthyar S, Perroni-Marañón AG, de la Mora AN, Amato KR. Comparing different sample collection and storage methods for field-based skin microbiome research. Am J Hum Biol 2021; 34:e23584. [PMID: 33644952 DOI: 10.1002/ajhb.23584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The skin, as well as its microbial communities, serves as the primary interface between the human body and the surrounding environment. In order to implement the skin microbiome into human biology research, there is a need to explore the effects of different sample collection and storage methodologies, including the feasibility of conducting skin microbiome studies in field settings. METHODS We collected 99 skin microbiome samples from nine infants living in Veracruz, Mexico using a dual-tipped "dry" swab on the right armpit, palm, and forehead and a "wet" swab (0.15 M NaCl and 0.1% Tween 20) on the same body parts on the left side of the body. One swab from each collection method was stored in 95% ethanol while the other was frozen at -20°C. 16S rRNA amplicon sequencing generated data on bacterial diversity and community composition, which were analyzed using PERMANOVA, linear mixed effects models, and an algorithm-based classifier. RESULTS Treatment (wet_ethanol, wet_freezer, dry_ethanol, and dry_freezer) had an effect (~10% explanatory power) on the bacterial community diversity and composition of skin samples, although body site exhibited a stronger effect (~20% explanatory power). Within treatments, the collection method (wet vs. dry) affected measures of bacterial diversity to a greater degree than did the storage method (ethanol vs. freezer). CONCLUSIONS Our study provides novel information on skin microbiome sample collection and storage methods, suggesting that ethanol storage is suitable for research in resource-limited settings. Our results highlight the need for future study design to account for interbody site microbial variation.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|