1
|
Lin W, De K, Xiang X, Feng T, Li F, Wei X. Effects of simulated litter inputs on plant-microbe carbon pool trade-offs in degraded alpine meadows. FRONTIERS IN PLANT SCIENCE 2025; 16:1549867. [PMID: 40247939 PMCID: PMC12004496 DOI: 10.3389/fpls.2025.1549867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025]
Abstract
Introduction Litter, as a major carbon source in alpine meadow ecosystems, seriously affect the variation of plant-microbe carbon pools in alpine meadows. In order to study the response of plant-microbial biomass carbon pool trade-offs in degraded alpine meadow to litter inputs. Methods We investigated the effects of different levels of litter inputs on the carbon pools of alpine meadows plant aboveground communities, the carbon pools of the root, and the total carbon pools of the plant communities and the soil microbial biomass carbon pools, and clarified the variable factors that affect the balance of the plant-microbial biomass carbon pools and the process of influencing the trade-offs. Result (1) Litter inputs had a positive effect on plant carbon pools, and the aboveground community carbon pools, root carbon pools, total plant community carbon pools and soil microbial biomass carbon pools of alpine meadows were all maximized in the T3 treatment. (2) The trade-off analyses showed that the trade-off relationships of ungrazed alpine meadows TPCPMBCP in the following order under different levels of litter treatments: T1(0.0414) > T2 (0.0269) > T0 (0.0086) > T3 (0.0012), the trade-off relationship of TPCP-MBCP in lightly grazed alpine meadows was in the order of T2 (0.0494) > T3 (0.0140) > T0 (0.0097) > T1 (0.002), and the tradeoff relationship of TPCP-MBCP in moderately grazed alpine meadows was in the order of T3 (0.0383) > T1 (0.0307) > T2 (0.0196) > T0 (0.0005). (3) Propensity analysis showed that the TPCP-MBCP trade-offs tended to favor MBCP under ungrazed, lightly grazed and moderately grazed meadows under the T1 treatment. (4) Structural equation modeling showed that RB and APC were positively correlation, RCP was significantly negatively correlated with the TPCPMBCP trade-off in lightly grazed grassland (P<0.05), and MBC was significantly positively correlated with the TPCP-MBCP trade-off in moderately grazed grassland (P<0.05). Discussion There was no uniform pattern in TPCP-MBCP trade-off and propensities in ungrazed, lightly grazed, and moderately grazed alpine meadows under different levels of litter inputs. This study can help to optimize the grazing management measures, predict the changes of carbon pools in alpine meadows and clarify the transfer and storage of carbon pools between plants and microorganisms, so as to provide a theoretical basis for the study of carbon pools in degraded alpine meadows.
Collapse
Affiliation(s)
| | - Kejia De
- Academy of Animal Husbandry and Veterinary Medicine, Qinghai University, Xining, China
| | | | | | | | | |
Collapse
|
2
|
Wang Y, Yu D, Li J, Huang T. Modeling the carbon dynamics of ecosystem in a typical permafrost area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173204. [PMID: 38750735 DOI: 10.1016/j.scitotenv.2024.173204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Climate change poses mounting threats to fragile alpine ecosystem worldwide. Quantifying changes in carbon stocks in response to the shifting climate was important for developing climate change mitigation and adaptation strategies. This study utilized a process-based land model (Community Land Model 5.0) to analyze spatiotemporal variations in vegetation carbon stock (VCS) and soil organic carbon stock (SOCS) across a typical permafrost area - Qinghai Province, China, from 2000 to 2018. Multiple potential factors influencing carbon stocks dynamics were analyzed, including climate, vegetation, soil hydrothermal status, and soil properties. The results indicated that provincial vegetation carbon storage was 0.22 PgC (0.32 kg/m2) and soil organic carbon pool was 9.12 PgC (13.03 kg/m2). VCS showed a mild increase while SOCS exhibited fluctuating uptrends during this period. Higher carbon stocks were observed in forest (21.74 kg/m2) and alpine meadow (18.08 kg/m2) compared to alpine steppes (9.63 kg/m2). Over 90 % of the carbon was stored in the 0-30 cm topsoil layer. The contribution rates of soil carbon in the 30-60 cm and 60-100 cm soil layers were significantly small, despite increasing stocks across all depths. Solar radiation, temperature, and NDVI emerged as primary influential factors for overall carbon stocks, exhibiting noticeable spatial variability. For SOCS at different depths, the normalized differential vegetation index (NDVI) was the foremost predictor of landscape-level carbon distributions, which explained 52.8 % of SOCS variability in shallow layers (0-30 cm) but dropped to just 12.97 % at the depth of 30-60 cm. However, the dominance of NDVI diminished along the soil depth gradients, superseded by radiation and precipitation. Additionally, with an increase in soil depth, the influence of inherent soil properties also increased. This simulation provided crucial insights for landscape-scale carbon responses to climate change, and offered valuable reference for other climate change-sensitive areas in terms of ecosystem carbon management.
Collapse
Affiliation(s)
- Yusheng Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Deyong Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810016, China.
| | - Jingwen Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
3
|
Li Y, Fu C, Wang W, Zeng L, Tu C, Luo Y. An overlooked soil carbon pool in vegetated coastal ecosystems: National-scale assessment of soil organic carbon stocks in coastal shelter forests of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162823. [PMID: 36921854 DOI: 10.1016/j.scitotenv.2023.162823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Protection and restoration of vegetated coastal ecosystems provide opportunities to mitigate climate change. Coastal shelter forests as one of vegetated coastal ecosystems play vital role on sandy coasts protection, but less attention is paid on their soil organic carbon (OC) sequestration potential. Here, we provide the first national-scale assessment of the soil OC stocks, fractions, sources and accumulation rates from 48 sites of shelter forests and 74 sites of sandy beaches across 22° of latitude in China. We find that, compared with sandy beaches, shelter forest plantation achieves an average soil desalination rate of 92.0 % and reduces the soil pH by 1.3 units. The improved soil quality can facilitate OC sequestration leading to an increase of soil OC stock of 11.8 (0.60-64.2) MgC ha-1 in shelter forests. Particulate OC (POC) is a dominant OC fraction in both sandy beaches and shelter forests, but most sites are >80 % in shelter forests. The low δ13C values and higher C:N ratios, which are more regulated by climate and tree species, together with high POC proportions suggest a substantial contribution of plant-derived OC. Bayesian mixing model indicates that 71.8 (33.5-91.6)% of the soil OC is derived from local plant biomass. We estimate that soil OC stocks in Chinese shelter forests are 20.5 (7.44-79.7) MgC ha-1 and 4.53 ± 0.71 TgC in the top meter, with an accumulation rate of 45.0 (6.90 to 194.1) gC m-2 year-1 and 99.5 ± 44.9 GgC year-1. According to coastal shelter forest afforestation plan, additional 1.72 ± 0.27 TgC with a rate of 37.9 ± 17.1 GgC year-1 can be sequestrated in the future. Our findings suggest that construction of coastal shelter forests can be an effective solution to sequester more soil carbon in coastal ecosystems.
Collapse
Affiliation(s)
- Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Chuancheng Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, PR China; Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China; Institute of Geography, Fujian Normal University, Fuzhou 350007, PR China
| | - Lin Zeng
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, PR China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, PR China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, PR China.
| |
Collapse
|
4
|
Chen M, Shi Z, Liu S, Xu G, Cao X, Chen J, Zhang M, Feng Q, Centritto M, Cao J. Leaf functional traits have more contributions than climate to the variations of leaf stable carbon isotope of different plant functional types on the eastern Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162036. [PMID: 36746282 DOI: 10.1016/j.scitotenv.2023.162036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Elucidating the mechanisms that control the leaf stable carbon isotope values (δ13Cleaf) is the prerequisite for the widespread application of δ13Cleaf. However, the competing effects of physiological and environmental factors on δ13Cleaf variations of the different plant functional types (PFTs) have not been disentangled, and the corresponding mechanisms remain unclear. Based on large-scale δ13Cleaf measurements on the eastern Qinghai-Tibetan Plateau, the relative contributions and regulatory pathways of leaf functional traits (LFTs) and climatic factors to δ13Cleaf variations of the different PFTs were investigated. We found that δ13Cleaf of the different PFTs was correlated with annual mean precipitation negatively, but not a simple linear relationship with annual mean temperature and varied by PFTs. Leaf nitrogen content per unit area and leaf mass per area (correlated with δ13Cleaf positively) had more substantial effects on the δ13Cleaf variations of the different PFTs than other LFTs. The relative contributions of LFTs to the δ13Cleaf variations were greater than that of climatic factors, and the direct and indirect effects of climatic factors on δ13Cleaf variations varied by PFTs. Our findings provide new insights into understanding key drivers of δ13Cleaf variations at the PFT level on a regional scale.
Collapse
Affiliation(s)
- Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy.
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Qiuhong Feng
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Jiahao Cao
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China
| |
Collapse
|
5
|
Jia N, Niklas KJ, Yao B, Wang Z. Altitude patterns of seed C, N, and P concentrations and their stoichiometry in an alpine meadow on the eastern Tibetan Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1093474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the altitudinal patterns of plant stoichiometry in seeds is critical for characterizing important germination and dormancy strategies, soil seed bank composition, seed predation probability, efficiency of seed dispersal and seedling performance, and to predict how biodiversity might be influenced by climate change. However, our understanding of the altitudinal patterns of seed stoichiometry is extremely limited. In this study, we measured the concentrations of carbon (C), nitrogen (N) and phosphorus (P) in the seeds of 253 herbaceous species along an altitudinal transect (2,000–4,200 m) on the eastern Tibetan Plateau, China, and further to characterize seed C:N:P stoichiometry. The geometric means of C, N, and P concentrations were 569.75 mg/g, 34.76 mg/g, and 5.03 mg/g, respectively. The C:N, C:P, and N:P ratios were 16.39, 113.31, and 6.91, respectively. The seed C, N, and P concentrations and C:N:P ratios varied widely among major plant groups and showed significant altitudinal trends. In general, C, N, and P concentrations increased, whereas seed C:N:P ratios decreased with elevation. These results inform our understanding of the altitudinal patterns of seed stoichiometry and how to model ecosystem nutrient cycling.
Collapse
|
6
|
Chen Q, Chen J, Andersen MN, Cheng X. Elevational shifts in foliar-soil δ 15 N in the Hengduan Mountains and different potential mechanisms. GLOBAL CHANGE BIOLOGY 2022; 28:5480-5491. [PMID: 35713965 DOI: 10.1111/gcb.16306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The natural abundance of stable nitrogen isotopes (δ15 N) provides insights into the N dynamics of terrestrial ecosystems, the determination of which is considered an effective approach for gaining a better understanding ecosystem N cycling. However, there is currently little information available regarding the patterns and mechanisms underlying the variation in foliar-soil δ15 N among mountain ecosystems. In this study, we examined the determinants of foliar-soil δ15 N in association with N transportation rates along an elevational gradient in the Hengduan Mountains. Despite the relatively high levels of available N produced from high N fixation and mineralization, we detected the lowest levels of foliar δ15 N at 3500 m a.s.l., reflecting the stronger vegetation N limitation at medium high elevations. The enhanced vegetation N limitation was driven by the combined effects of higher microbial immobilization and inherent plant dynamic (the shifts of δ15 N in vegetation preference, including vegetation community) with changing climate along the elevational gradient. Unexpectedly, we established that soil δ15 N was characterized by an undulating rise and uncoupled correlation with foliar δ15 N with increasing elevation, thereby indicating that litter input might not be a prominent driver of soil δ15 N. Conversely, soil nitrification and denitrification were found to make a more pronounced contribution to the pattern of soil δ15 N along the elevational gradient. Collectively, our results serve to highlight the importance of microbial immobilization in soil N dynamics and provide novel insights that will contribute to enhancing our understanding of N cycling as indicated by foliar-soil δ15 N along elevational gradients.
Collapse
Affiliation(s)
- Qiong Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
| |
Collapse
|
7
|
Neves GD, Sena-Souza JP, Santos FLDS, Sano EE, Nardoto GB, Couto Junior AF. Spatial distribution of soil δ 13C in the central Brazilian savanna. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113758. [PMID: 34537556 DOI: 10.1016/j.jenvman.2021.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/21/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Stable carbon isotope ratios (δ13C) of soil record information regarding C3 and C4 plants at the landscape scale that can be used to document vegetation distribution patterns. The Central Brazilian savanna (locally called the Cerrado) has a substantial potential to develop studies of patterns of dynamics and distribution of soil δ13C, due to its environmental diversity. The purpose of this work was to develop a spatial model of soil δ13C (soil δ13C isoscape) to the Cerrado, based on multiple linear regression analysis, and compare the results with the existing model to obtain greater detail of the soil δ13C distribution. The model used 219 soil samples (0-20 cm depth) and a set of climatic, pedological, topographic, and vegetation correlations. The soil δ13C isoscape model presented amplitude between -29‰ and -13‰, with the highest estimated values in the southern and the lowest values in the northern of the Cerrado. Results indicate that soil δ13C, by reflecting the relative contribution of C3 and C4 species to plant community productivity, served as a proxy indicator of the vegetation history at the landscape scale for the Central Brazilian savanna. Despite the large sampling effort, there are still regions with some gaps that the model could not estimate. However, the soil δ13C isoscape model filled most the existing gaps and provided greater detail of some unique local aspects of the Cerrado.
Collapse
Affiliation(s)
- Glauber das Neves
- Faculdade UnB Planaltina, Universidade de Brasília, CEP: 73345-010, DF, Planaltina, Brazil.
| | - João Paulo Sena-Souza
- Departamento de Geociências, Universidade Estadual de Montes Claros, CEP: 39401-089, Montes Claros, MG, Brazil.
| | | | - Edson Eyji Sano
- Embrapa Cerrados, BR-020 km 18, CEP: 73301-970, DF, Planaltina, Brazil.
| | | | | |
Collapse
|
8
|
Zhang Z, Gao P, Li T, Dong X, Zhang J, Shao Z, Xu J, Dun X. Carbon isotopic measurements from coastal zone protected forests in northern China: Soil carbon decomposition assessment and its influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113649. [PMID: 34474259 DOI: 10.1016/j.jenvman.2021.113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Panting protected forests to increase soil carbon sequestration is an effective means of reducing carbon emissions. Soil organic carbon (SOC) decomposition is one of the main indicators of soil carbon sequestration. However, SOC decomposition and its influencing factors in protected forests have not been fully characterized, especially in coastal zones. In this paper, coastal zone protected forest stands composed of Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP) and mixed PTP and QAC (MF) were selected as the research objects. The trends of the SOC decomposition rate were characterized by the beta (β) value, and the influencing factors were further explored with structural equation models. The results were as follows: The SOC content decreased from leaf to litter and then to the soil profile at all sites, while the δ13C value increased. The β value ranged from -3.12 to -5.76, with an average of -3.81. The β value was positively correlated with the diversity and richness of soil bacteria, supporting the hypothesis that the increase in δ13C with depth was mainly caused by isotope fractionation in the process of microbial SOC decomposition. The structural equation model showed that nitrogen and the availability of nitrogen have a strong ability to explain the value of β, which indicates that nitrogen-based edaphic variables play an important role in affecting SOC decomposition. The SOC decomposition rate in PTP was higher than that in QAC and MF. The results of this study indicate that the prediction of SOC decomposition based on the β value is suitable for coastal zone protected forests. The incorporation of edaphic variables into global carbon cycle models may enhance the predictions of SOC dynamics in coastal zone protected forests.
Collapse
Affiliation(s)
- Zixu Zhang
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Peng Gao
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China.
| | - Teng Li
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Xuede Dong
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Jiachen Zhang
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Ziqing Shao
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Jingwei Xu
- Shandong Academy of Forestry, Ji'nan, Shandong, 250014, China.
| | - Xingjian Dun
- Shandong Academy of Forestry, Ji'nan, Shandong, 250014, China
| |
Collapse
|
9
|
Niu W, Chen H, Wu J. Soil Moisture and Soluble Salt Content Dominate Changes in Foliar δ 13C and δ 15N of Desert Communities in the Qaidam Basin, Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2021; 12:675817. [PMID: 34305974 PMCID: PMC8297661 DOI: 10.3389/fpls.2021.675817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Changing precipitation and temperature are principal drivers for nutrient cycling dynamics in drylands. Foliar isotopic carbon (C) and nitrogen (N) composition (δ13C and δ15N) are often used to describe the plant's water use efficiency and nitrogen use strategy in plant ecology research. However, the drivers and mechanisms under differential foliar δ13C and δ15N among plant species and communities are largely unknown for arid high-elevation regions. This study collected 462 leaf samples of ten top-dominant plant species (two or three replicates per species) across 16 sites in 2005 and 2010 to measure the community-weighted means (CWMs) of foliar δ13C and δ15N, northeastern Qaidam Basin, Qinghai-Tibetan Plateau. Our results showed that the CWM of foliar δ15N was higher in 2005 than in 2010 and was lower in the warm-dry season (July and August) than the cool-wet one (June and September) in 2010. Similarly, the CWM of foliar δ13C was higher in 2005 than in 2010, but no difference between warm-dry and cool-wet seasons in 2010. C4 plants have higher δ13C and generally grow faster than C3 species under warm-wet weathers. This might be why the CWM of foliar δ13C was high, while the CWM of foliar δ15N was low in the wet sampling year (2010). The general linear mixed models revealed that soil moisture was the most critical driver for the CWM of foliar δ15N, which explained 42.1% of the variance alone. However, the total soluble salt content was the crucial factor for the CWM of foliar δ13C, being responsible for 29.7% of the variance. Growing season temperature (GST) was the second most vital factor and explained 28.0% and 21.9% of the variance in the CWMs of foliar δ15N and δ13C. Meanwhile, remarkable differences in the CWMs of foliar δ15N and δ13C were also found at the species level. Specifically, Kalidium gracile and Salsola abrotanoides have higher foliar δ15N, while Ephedra sinica and Tamarix chinensis have lower foliar δ15N than other species. The foliar δ13C of Calligonum Kozlov and H. ammodendron was the highest among the ten species. Except for the foliar δ13C of E. sinica was higher than Ceratoide latens between the two sampling years or between the cool-wet and warm-dry seasons, no significant difference in foliar δ13C was found for other species. Overall, the CWMs of foliar δ15N and δ13C dynamics were affected by soil properties, wet-dry climate change, and species identity in high-elevation deserts on the Qinghai Tibetan Plateau.
Collapse
Affiliation(s)
- Weiling Niu
- Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Chen
- Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Li H, Yan F, Tuo D, Yao B, Chen J. The effect of climatic and edaphic factors on soil organic carbon turnover in hummocks based on δ 13C on the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140141. [PMID: 32615420 DOI: 10.1016/j.scitotenv.2020.140141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Hummocks (thúfur, pounus) are peculiar landforms usually formed by repeated freeze-thaw processes and differential frost heave, and are common in frost soil regions, especially in the Qinghai-Tibet Plateau. However, little is known about the response of δ13C in soil organic carbon (δ13CSOC) to soil and climate properties in hummocks. The β value indicates the decomposition rate of soil organic carbon (SOC) in soil, and was obtained from the slope of the regression between the log10-transformed SOC concentration and δ13CSOC in soil depth profiles. In this study, we investigated δ13CSOC and SOC contents along a soil profile (0-60 cm), together with edaphic and climatic properties, both in hummocks and control plots (alpine grasslands) on the northeastern Qinghai-Tibet Plateau. Then, the variations in δ13CSOC and β values, and the main factors affecting them, were analyzed. The results show that δ13CSOC increases with soil depth, while SOC decreases both in the hummocks and control plots. However, β values in the hummocks were significantly (P < 0.05) higher than in the control plots while δ13CSOC showed no difference between hummock and control. Redundancy analysis showed that altitude is the main control factor for δ13CSOC and β in the hummocks. Climate type was the main factor affecting δ13CSOC in the control plots, while mean annual precipitation and soil fractal dimension were the main factors controlling β. Overall, climate, rather than soil, is the key factor that affects the carbon turnover rate in the hummock in the northeastern QTP. The findings of this study will expand our understanding of the soil carbon cycle and δ13CSOC changes, especially in the case of hummocks.
Collapse
Affiliation(s)
- Hanzhi Li
- Institute of Desertification Studies, Chinese Academy of Forestry, 100091 Beijing, China
| | - Feng Yan
- Institute of Desertification Studies, Chinese Academy of Forestry, 100091 Beijing, China.
| | - Dengfeng Tuo
- Institute of Desertification Studies, Chinese Academy of Forestry, 100091 Beijing, China
| | - Bin Yao
- Institute of Desertification Studies, Chinese Academy of Forestry, 100091 Beijing, China
| | - Junhan Chen
- Institute of Desertification Studies, Chinese Academy of Forestry, 100091 Beijing, China
| |
Collapse
|
11
|
Gu J, Pang Q, Ding J, Yin R, Yang Y, Zhang Y. The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115079. [PMID: 32806461 DOI: 10.1016/j.envpol.2020.115079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Soils, especially permafrost in the Arctic and the Tibetan Plateau, are one of the largest reservoirs of mercury (Hg) in the global environment. The Hg concentration in the grassland soils over the Tibetan Plateau and its driving factors have been less studied. This study analyzes soil total mercury (STHg) concentrations and its vertical distribution in grassland soil samples collected from the Tibetan Plateau. We adopt a nested-grid high-resolution GEOS-Chem model to simulate atmospheric Hg deposition. The relationship between STHg and soil organic carbon (SOC), as well as atmospheric deposition, are explored. Our results show that the STHg concentrations in the Tibetan Plateau are 19.8 ± 12.2 ng/g. The concentrations are higher in the south and lower in the north in the Tibetan Plateau, consistent with the previous results. Our model shows that the average deposition flux of Hg is 3.3 μg m-2 yr-1, with 57% contributed by dry deposition of elemental mercury (Hg0), followed by dry (19%) and wet (24%) deposition of divalent mercury. We calculate the Hg to carbon ratio (RHg:C) as 5.6 ± 6.5 μg Hg/g C, and the estimated STHg is 86.6 ± 101.2 Gg in alpine grasslands in the Tibetan Plateau. We find a positive relationship between STHg and SOC in the Tibetan Plateau (r2 = 0.36) and a similar positive relationship between STHg and atmospheric total Hg deposition (r2 = 0.24). A multiple linear regression involving both variables better model the observed STHg (r2 = 0.42). We conclude that SOC and atmospheric deposition influence STHg simultaneously in this region. The data provides information to quantify the size of the soil Hg pool in the Tibetan Plateau further, which has important implications for the Hg cycles in the permafrost regions as well as on the global scale.
Collapse
Affiliation(s)
- Jing Gu
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiaotong Pang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinzhi Ding
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
| | - Runsheng Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environment Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Zhang D, Feng J, Yang F, Wu J, Jia W, Cheng X. Shift in functional plant groups under flooding impacted ecosystem C and N dynamics across riparian zones in the Three Gorges of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138302. [PMID: 32247970 DOI: 10.1016/j.scitotenv.2020.138302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
Large water conservancy project can strongly alter the plant community composition, however, how these changes can potentially affect ecosystem carbon (C) and nitrogen (N) dynamics is not fully understood. Here, we investigated natural 13C and 15N abundance of C3 and C4 plants and soil in different fractions [labile C (LC) and N (LN), recalcitrant C (RC) and N (RN)]from 6 sites with two elevations (flooding zone, 145-175 m, area with revegetation due to flooding, N = 6); and unflooding zone, >175 m with original plant as a control, N = 3) in riparian zones of the Three Gorges Reservoir, China. The dominant species were the C4 plants in the upstream including Changshou (CS), Fuling (FL) and Zhongxian (ZX) and the C3 plants in the downstream in unflooding zone including Wanzhou (WZ) Badong (BD), and Zigui (ZG). C4 plant in flooding zone was significant decreased by mean 25% compared with unflooding zone in the upstream but significantly increased the by mean 59% in the downstream. The 13C isotopic differences between soil and plant (Δδ13C) was lower than zero in both flooding and unflooding in the upstream, but was only lower than zero in flooding zone in the downstream. The proportion of C3-derived C in soil organic carbon pool (average 74.64%) was lower for the flooding zone compared to the unflooding zone (average 87.26%) in most sites, while the proportion of C3-derived C in LC (average 44.38%) was decreased in the flooding zone compared to the unflooding zone (69.52%) in the downstream. Additionally, the δ15N values of soil were higher than plant community in most sites, and were strongly associated with soil C and N pool content, as well as soil pH. Overall, our results revealed that soil C accumulation was primarily determined by C3 plant in situ and new C input by existing dominant C4 plant, whereas soil N dynamics was predictably dependent on soil relative C and N availability in response to flooding at regional scale.
Collapse
Affiliation(s)
- Dandan Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan 430074, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Feng
- School of Resources and Environmental Science, Huazhong Agriculture University, Wuhan 430074, PR China
| | - Fan Yang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Junjun Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan 430074, PR China
| | - Wei Jia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan 430074, PR China
| | - Xiaoli Cheng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan 430074, PR China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
13
|
Zhang Q, Yang G, Song Y, Kou D, Wang G, Zhang D, Qin S, Mao C, Feng X, Yang Y. Magnitude and Drivers of Potential Methane Oxidation and Production across the Tibetan Alpine Permafrost Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14243-14252. [PMID: 31718180 DOI: 10.1021/acs.est.9b03490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methane (CH4) dynamics across permafrost regions is critical in determining the magnitude and direction of permafrost carbon (C)-climate feedback. However, current studies are mainly derived from the Arctic area, with limited evidence from other permafrost regions. By combining large-scale laboratory incubation across 51 sampling sites with machine learning techniques and bootstrap analysis, here, we determined regional patterns and dominant drivers of CH4 oxidation potential in alpine steppe and meadow (CH4 sink areas) and CH4 production potential in swamp meadow (CH4 source areas) across the Tibetan alpine permafrost region. Our results showed that both CH4 oxidation potential (in alpine steppe and meadow) and CH4 production potential (in swamp meadow) exhibited large variability across various sampling sites, with the median value being 8.7, 9.6, and 11.5 ng g-1 dry soil h-1, respectively. Our results also revealed that methanotroph abundance and soil moisture were two dominant factors regulating CH4 oxidation potential, whereas CH4 production potential was mainly affected by methanogen abundance and the soil organic carbon content, with functional gene abundance acting as the best explaining variable. These results highlight the crucial role of microbes in regulating CH4 dynamics, which should be considered when predicting the permafrost C cycle under future climate scenarios.
Collapse
Affiliation(s)
- Qiwen Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xuehui Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
14
|
Reid REB, Lalk E, Marshall F, Liu X. Carbon and nitrogen isotope variability in the seeds of two African millet species: Pennisetum glaucum and Eleusine coracana. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1693-1702. [PMID: 29947034 DOI: 10.1002/rcm.8217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE A range of important small seeded C4 crops were domesticated in Africa, but little is known about their carbon and nitrogen isotope ratios (δ13 C and δ15 N values). Understanding natural isotopic variability within and among millets has the potential to help us to understand the conditions under which ancient cereals were grown and has significant implications for the interpretation of ancient diets based on stable isotope signatures. METHODS We conducted carbon and nitrogen isotope analyses of modern and historical pearl millet (Pennisetum glaucum, n = 108) and finger millet (Eleusine coracana, n = 17) seed samples sourced from the United States Department of Agriculture as well as the Harlan Collection curated at the Crop Evolution Laboratory Herbarium at the University of Illinois. RESULTS The millet species have significantly different mean carbon and nitrogen isotope ratios over broad temporal and spatial scales. We also found substantial isotopic variation within species (range of 1.9‰ and 8.5‰ in δ13 C and δ15 N values, respectively). Both water availability and growing season temperature significantly affected the P. glaucum δ13 C and δ15 N values; cumulative annual precipitation was positively correlated with both seed δ13 C and δ15 N values, while temperature was positively correlated with δ15 N values but negatively correlated with seed δ13 C values. CONCLUSIONS The importance of both temperature and precipitation as predictors of δ13 C and δ15 N values in millets suggests that C4 plants may be more sensitive to environmental parameters than previously appreciated. Given the high degree of carbon and nitrogen isotope variability among accessions of these species, it is imperative that site-relevant plant isotope ratios are used for making isotope-based paleo-dietary predictions.
Collapse
Affiliation(s)
- Rachel E B Reid
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, McMillan Hall, Room 112, One Brookings Dr., St Louis, MO, 63130-4899, USA
| | - Ellen Lalk
- Department of Chemistry, Washington University in St Louis, Campus Box 1134, One Brookings Dr., St Louis, MO, 63130-4899, USA
| | - Fiona Marshall
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, McMillan Hall, Room 112, One Brookings Dr., St Louis, MO, 63130-4899, USA
| | - Xinyi Liu
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, McMillan Hall, Room 112, One Brookings Dr., St Louis, MO, 63130-4899, USA
| |
Collapse
|
15
|
Han C, Wang Z, Si G, Lei T, Yuan Y, Zhang G. Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of alpine grassland on the eastern Tibetan Plateau. Can J Microbiol 2017; 63:811-821. [PMID: 28742981 DOI: 10.1139/cjm-2017-0157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0-10 cm) was more sensitive to precipitation than that in subsurface layers (10-40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5-10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.
Collapse
Affiliation(s)
- Conghai Han
- a Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zongli Wang
- c Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guicai Si
- d Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, People's Republic of China
| | - Tianzhu Lei
- d Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, People's Republic of China
| | - Yanli Yuan
- a Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Gengxin Zhang
- a Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
16
|
Wu J, Zhang Q, Yang F, Lei Y, Zhang Q, Cheng X. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:52-56. [PMID: 27285796 DOI: 10.1016/j.scitotenv.2016.05.224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and <53μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (<250μm) than in macro-aggregates (>2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Qian Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Fan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yao Lei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Xiaoli Cheng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
17
|
Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. GLOBAL CHANGE BIOLOGY 2016; 22:2688-701. [PMID: 26913840 DOI: 10.1111/gcb.13257] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/14/2016] [Indexed: 05/12/2023]
Abstract
The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.
Collapse
Affiliation(s)
- Jinzhi Ding
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Beibei Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Inner Mongolia University of Technology, Inner Mongolia, 010051, China
| | - Li Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chengjun Ji
- Department of Ecology, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|